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This supplementary document is organized as follows:
Sec. 1 provides more results and implementation details for the TMOs used

in our paper.
Sec. 2 provides more details about the datasets we collect and capture for

our experiments.
Sec. 3 provides more experimental details about the user study.
Sec. 4 provides some visual results for SDRTVs synthesized from unlabeled

real-world HDRTVs.
Sec. 5 provides some visual results for the ablation study.
Sec. 6 provides an intuitive understanding of our HTMP loss function.
Sec. 7 provides additional implementation details of both our method and

the baseline HDRTV reconstruction networks.

1 More results and details for used TMOs

We collect 31 traditional TMOs and one deep learning based TMO, i.e., UTM-
Net [39] and use them in the main paper for both statistical analysis in Sec. 3
and experimental comparisons in Sec. 5. Specifically, we use traditional ones im-
plemented in two open-source libraries FFmpeg 3 and HDR Toolbox 4 while the
TMO Liang [28] is implemented by the official code 5. For UTMNet, we use its
official implementation and pre-trained model 6.

Among these methods, Youtube [1] and Davinci [2] are implemented using
FFmpeg with the default 3DLUTs used for their softwares, which can map the
HDRTVs to SDRTVs straightforwardly. For the other TMOs originally used for
linear radiance maps, we need to linearize the input HDRTVs first. In specific,
for the TMOs which process color information independent of the luminance

⋆ Equal contribution. This work was done when Zhen Cheng was an intern in Huawei
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3 https://www.ffmpeg.org/
4 https://github.com/banterle/HDR_Toolbox
5 https://github.com/zhetongliang/L1-L0-Tone-mapping
6 https://github.com/yael-vinker/unpaired_hdr_tmo
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channel using either color channel rescaling strategy [3,9,11,12,22,25,36,38,27,39]
or self-designed chromatic processing strategies [26,31,32,28], we only exploit the
PQ EOTF [19] for linearization. For the methods which process all the channels
together, we apply a gamut transformation as described in BT.2407 [20] for
linearization.

We list these TMOs in Table 1 together with evaluation metrics, i.e., PSNR,
SSIM [41], CIEDE-2000 [37] and TMQI [43] averaged on our RealHDRTV dataset.
We also list the results of our method as a reference.

PSNR↑ SSIM↑ CIEDE↓ TMQI↑ PSNR↑ SSIM↑ CIEDE↓ TMQI↑
Clip∗ 13.82 0.719 18.68 0.7477 KimKautz [22] 17.42 0.753 13.58 0.8189

Linear∗ [42] 16.46 0.758 15.15 0.7353 Krawczyk [25] 13.61 0.708 19.78 0.7776
Gamma∗ 20.90 0.809 8.46 0.7638 Kuang [26] 20.92 0.717 9.35 0.7804

Hable∗ [15] 23.27 0.840 6.38 0.7822 Logarithmic 16.86 0.725 14.52 0.7801
Mobius∗ 15.62 0.748 15.84 0.7702 Mertens [31] 17.69 0.696 12.81 0.7806

Reinhard∗ [34] 17.02 0.766 13.73 0.7759 Normalize 20.38 0.757 9.94 0.7968
Davinci∗ [2] 17.01 0.747 14.09 0.7903 Raman [32] 20.97 0.627 9.52 0.7759
Youtube∗ [1] 22.99 0.824 6.83 0.7940 ReinhardDevlin [33] 11.51 0.625 26.98 0.7512
Ashikhmin [3] 13.42 0.681 21.48 0.7992 Reinhard [34] 19.94 0.776 10.65 0.8194
BestExposure 19.78 0.775 10.32 0.8110 Schlick [36] 20.13 0.782 10.65 0.8136

BruceExpoBlend [5] 14.58 0.688 16.40 0.7881 Tumblin [38] 17.08 0.748 12.48 0.8341
Chiu [9] 13.49 0.686 19.42 0.7437 WardGlobal [42] 12.30 0.578 22.79 0.6780

Drago [11] 18.27 0.753 13.37 0.8156 WardHistAdj [27] 19.59 0.739 10.52 0.8361
Durand [12] 9.99 0.618 30.38 0.7181 Liang [28] 16.21 0.676 14.81 0.8807
Exponential 9.81 0.595 32.46 0.7320 UTMNet [39] 15.77 0.681 16.14 0.8747

Gamma 11.31 0.557 26.17 0.7222 Ours 24.54 0.844 5.80 0.7988

Table 1. Evaluation metrics on both fidelity and color difference between the SDRTVs
synthesized by different methods and the ground truth ones on our RealHDRTV
dataset. The superscript ∗ denotes that the TMO is implemented with FFmpeg while
the others except Liang [28] and UTMNet [39] are implemented with HDR Toolbox.
Gray background indicates the results shown in the main paper.

2 Details about our datasets

For the training of our SDRTV data synthesis network, we collect a dataset H
containing 3679 HDRTVs (BT.2020 with PQ OETF [19]) and a dataset S con-
taining 3603 SDRTVs (BT.709 with gamma OETF [18]) from public datasets [23].
Specifically, we collect 27 4K HDR10 videos and 20 4K SDR videos and use FFm-
peg to extract the frames. Note that we only consider the most common format
with PQ OETF, for other formats such as HLG [21] and Dolby Vision [10], peo-
ple are encouraged to collect their own HDRTV dataset to train our network
and generate the SDRTV-HDRTV pairs specified to their desired formats.

For the paired evaluation, we captured SDRTV-HDRTV pairs with a smart-
phone camera. It has two modes “SDR” and “HDR10” for 8K video acquisition.
The resultant videos are with the same formats with our collected training data.
While building the scenes, we involve dolls, fruits and plants with various and
vivid color (as shown in Fig. 1) to maximize the advantages of the wide color
gamut with HDRTVs. Moreover, we also controll the lighting conditions and
directions by several light sources to create high-light and low-light regions (as
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shown in Fig. 1(c) and (d)) to enlarge the differences between SDRTVs and
HDRTVs.

To avoid possible misalignment, we only capture indoor scenes such as dolls
in a table of a meeting room as shown in Fig. 1(a), (c) and (d) or controlled
static scenes such as an empty hall as shown in Fig. 1(b). We also use a pro-
fessional steady tripod (SIRUI R-22047) to avoid the possible vibration of the
environment. After that, we get 93 pairs of 8K SDR and 8K HDR10 videos and
extract their frames using FFmpeg. However, they still suffer from obvious mis-
alignment with more than 10 pixels, we then cut out the regions with obvious
motions and light condition changes and use a global 2D translation to align the
cropped image pairs follow the procedures of [6]. Specifically, we compute and
match SIFT key points [30] and estimate a homography using RANSAC [13].
The estimated homography is used to shift the SDRTVs through interpolation
for alignment. Afterwards, we crop each image pair into 4K images and remove
the pairs which are still with obvious misalignment and finally get 97 4K image
pairs with misalignment no more than 1 pixel for evaluation.

In addition, as we noted in the main paper, although we set careful acquisition
environment and applied post-processing to avoid misalignment, the sub-pixel
shifts between the SDRTVs and their HDRTV versions still exist, thus the full-
reference metrics such as PSNR and SSIM with our RealHDRTV dataset may
be not as high as those with perfectly-aligned datasets.

(a) (b)

(c) (d)

Fig. 1. SDRTV examples of our RealHDRTV dataset.

7 https://www.siruiusa.com/
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3 Details about the user study

For the user study, we invite 11 professional photographers for preference testing.
Specifically, for each input SDRTV, we feed it into 3 HDRTVNet-AGCM [7] net-
works trained with 3 paired SDRTV-HDRTV datasets synthesized by Youtube [1],
Hable [15] and Ours and get 3 versions of output HDRTVs. Every two of them
are merged to a video with the HDR10 format (BT.2020 with PQ OETF [19])
with an all-white scanning line as shown in Fig. 2 and we can slide the progress
bar of the video to change the position of the scanning line for a better one-to-one
comparison. Note that the video frame shown in Fig. 2 is rendered to be properly
displayed with ordinary SDR-TVs and printed papers and the rendering tool we
used here is the madVR8 equipped to the video player MPC-HC9.

Fig. 2. A visual example for the videos used for pair-wise comparisons during the user
study.

During the testing, we display the videos on an HDR-TV (EIZO ColorE-
dege CG319X10 with a peak brightness of 1000 nits and the display mode set
to BT.2020 color gamut and PQ OETF) in a darkroom and instruct the par-
ticipants to take the following factors into considerations: (1) whether there are
obvious artifacts and unnatural color, (2) whether the overall chromaticity and
contrast are natural, (3) whether the details in extreme-light regions are recov-
ered properly. Each participant is given enough time to move the scanning line
for comparison and decide which one is better for him/her. Note that for each

8 http://madvr.com/
9 https://mpc-hc.org/

10 https://www.eizo.com/products/coloredge/cg319x/

http://madvr.com/
https://mpc-hc.org/
https://www.eizo.com/products/coloredge/cg319x/
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image, the orders of HDRTV versions are randomized so that the participants
can not make intentional preference. After the testing, we collect their preference
chart and summarize them into a preference matrix following the same proce-
dure as in [8]. As shown in the main paper, our results achieves much obvious
preference over most participants compared with every baseline, which indicates
the superiority of our method at modeling realistic degradations.
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4 Visual results for SDRTVs synthesized from unlabeled
real-world HDRTVs

In this section we provide visual results for SDRTVs synthesized from unlabeled
real-world HDRTVs in Fig. 3. The input HDRTVs shown here are from the
HDRTV1K dataset [7]. We can see that while the baseline TMOs suffer from
information over-preservation (Fig. 3(a) and Fig. 3(b)) and obvious artifacts
(Fig. 3(c) and Fig. 3(d)), our method can drop out the extreme-light details
(e.g., the clouds in the red rectangle of Fig. 3(a) and the lines of the building in
the red rectangle of Fig. 3(b)) and avoid the artifacts such as wrong structures
(e.g., the words in the red rectangle of Fig. 3(c)) and color banding (e.g., the sky
in the red rectangle of Fig. 3(d)), resulting more realistic and natural SDRTV
results.

HDRTV Youtube Hable Ours

(a
)

(b
)

(c
)

(d
)

Fig. 3. Visual comparisons on the SDRTVs synthesized by Youtube [1], Hable [15] and
Ours as well as the input HDRTVs. The input HDRTVs are from the unlabeled real-
world HDRTV dataset HDRTV1K [7]. Zoom in the figure for a better visual experience.
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5 Visual results for the ablation study

In this subsection, we provide some visual examples for the ablation study shown
with numerical results in the main paper. The test HDRTVs here are from the
HDRTV1K [7] dataset. Note that although there are no ground truth SDRTVs
here, we can still recognize the differences between the results and judge whether
it is realistic according to the aspects we discussed in Sec.4.2 of the main paper.

5.1 Network design

Condition. We provide a visual example for the ablation on the condition
network Nc in Fig. 4. We can see that, without the condition network or with
the input HDRTV as the condition, there are obvious highlight discontinuities
and wrong structures. But we can see that our result is much more continuous
without any unexpected structures. Such results show that the conditioned tone
mapping results together with the condition network can guide the network to
learn better degradation modeling.

HDRTV Without Nc Input HDRTV to Nc Ours

Fig. 4. Visual comparison for ablation on the condition network. Zoom in the figure
for a better visual experience.

Streams. We provide an example for the ablation on the network streams,
i.e., the global stream Ng and the local stream Nl, in Fig. 5. We can see that
while the global stream Ng is unable to drop out the details at the high-light
region marked in a red rectangle, the local stream Nl can make up this problem.
Also, while the local stream is unable to transform the color of the sunset clouds
marked in a green rectangle, the global stream can do it. Thus, merging these two
streams together forms a better modeling of real-world SDRTV data synthesis.

5.2 Loss function

Lhtmp and Ladv. We provide an example for the ablation on Lhtmp and Ladv

in Fig. 6. With only Ladv, the output SDRTV only changes its style and does
not have any aspects of realistic SDRTVs. But with only Lhtmp, the network
produces natural cloud in the sky and drops out information in the low-light
region. Moreover, with the help of Ladv, these details are emphasized to be more
realistic. Such visual results show a clear advantage combining these two loss
functions together to generate more realistic SDRTVs.
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HDRTV Ng Nl Ng + Nl (Ours)

Fig. 5. Visual comparison for ablation on the network streams. Zoom in the figure for
a better visual experience.

HDRTV Ladv Lhtmp Lhtmp + λLadv

Fig. 6. Visual comparison for ablation on the loss function. Zoom in the figure for a
better visual experience.

TMOs used for Lhtmp. In the main paper, we’ve conducted ablations on the
TMOs used for the HTMP loss, here we show a visual example in Fig. 7. We can
see that Linear leads to globally dark results while losing the low-light details
as GT does. While µ-law leads to clear structures same as the input HDRTV,
it makes the network output containing too much information at the low-light
regions and under-saturated color due to its luminance stretching. Meanwhile,
Youtube will leads the network to generated over-saturated color, which is com-
plement with µ-law. With our HTMP loss integrating these prior tone mapping
results via a region-aware weighting scheme, our network can drop out the in-
formation from the input HDRTVs selectively and get more accurate color. This
indicates the effectiveness of our hybrid tone mapping prior loss again.

HDRTV S-Linear S-µ-law S-Youtube Ours GT

Fig. 7. Visual comparison for ablation on the TMOs used for Lhtmp. Zoom in the figure
for a better visual experience.
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6 Flowchart of our HTMP loss

In this section we provide a flowchart of our HTMP loss for a more intuitive
understanding of the loss function in Fig. 8.

Fig. 8. The detailed flowchart of our hybrid tone mapping prior (HTMP) loss.
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7 Implementation details

In this section we provide more implementation details for both our data syn-
thesis framework and the HDRTV reconstruction networks used for comparison
in Table 1 in the main paper.

7.1 Details of HA-conv

We use highlight-aware convolution blocks (HA-conv) [14] to build the local ad-
justment stream in our two-stream network, its structure is shown in Fig. 9.
It uses an extreme-light mask generation branch to enable the extreme-light
awareness of extracted features by element-wise product and exploits an Incep-
tion Block to get more non-local features. Such block has been validated effective
in SVBRDF estimation from a single image [14] which needs to be aware of the
high-light regions. In our work, we consider it as a better local transformation
filter than simple convolution. On SDRTV data synthesis task (our conditioned
two-stream network), we validate its effectiveness through ablation studies.

𝐸𝑙𝑒𝑚𝑒𝑛𝑡-w𝑖𝑠𝑒 𝑃𝑟𝑜𝑑𝑢𝑐𝑡

𝐶𝑜𝑛𝑐𝑎𝑡e

𝐸𝑙𝑒𝑚𝑒𝑛𝑡-w𝑖𝑠𝑒 𝑆𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛

c

Conv.
Sigmoid

LeakyReLU

Conv.IN

Inception Block

3x3

3x3

3x3

C

Inception Block

HA convolution block

Fig. 9. The detailed structure of highlight-aware convolution block (HA-conv) proposed
in [14] and used in the local adjustment stream in our two-stream network.

7.2 Implementation details of our data synthesis framework

To make the adversarial training more stable, we take a two-step training strat-
egy to train our data synthesis network. At first, we use the HDRTV dataset H
and our HTMP loss only to pre-train the network. For our HTMP loss, we follow
the previous works [7,35,29] and set the truncation hyper-parameters a and b as
95 and 30, respectively. During the training, we set the patch size as 512× 512
with random crop and set the initial learning rate as 2× 10−4. We decrease the
learning rate with a factor of 0.1 every 80 epochs and end the training after 200
epochs. After the pre-training, we add the adversarial loss with the loss weight
λ as 0.01 and finetune the generator network with a learning rate of 2 × 10−5

for another 200 epochs. Adam optimizer [24] and Kaiming initialization [17] are
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adopted for both stages. We implement the network with the Pytorch frame-
work. With two NVIDIA V100 GPUs, the pre-training and finetuning need 15
and 17 hours, respectively.

7.3 Implementation details of the baseline HDRTV reconstruction
networks

As for JSI-Net [23], we use the official code 11 provided by the authors and only
changes the training and testing data with tuning hyper-parameters for conver-
gence. Considering the perception-distortion trade-off [4], in order to make only
fidelity comparison, we do not show the results of JSI-GAN in our paper. How-
ever, as the significant performance gains in terms of both numerical and visual
comparisons shown in the paper, our data synthesis framework is expected to also
benefit the generalization ability of perception-oriented networks. As for CSR-
Net [16] and HDRTVNet [7], we implement them using the official codes 12 13

and tune the hyper-parameters to get the best performance on the validation
set. As for SpatialA3DLUT [40], because the authors do not share their codes,
we implement it by ourselves until we achieve the same performance shown in
their paper. After that, we train SpatialA3DLUT for our HDRTV reconstruction
task with different synthesized datasets.

11 https://github.com/JihyongOh/JSI-GAN
12 https://github.com/hejingwenhejingwen/CSRNet
13 https://github.com/chxy95/HDRTVNet

https://github.com/JihyongOh/JSI-GAN
https://github.com/hejingwenhejingwen/CSRNet
https://github.com/chxy95/HDRTVNet
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