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Abstract. Most existing methods usually formulate the non-blind de-
convolution problem into a maximum-a-posteriori framework and ad-
dress it by manually designing a variety of regularization terms and data
terms of the latent clear images. However, explicitly designing these two
terms is quite challenging and usually leads to complex optimization
problems which are difficult to solve. This paper proposes an effective
non-blind deconvolution approach by learning discriminative shrinkage
functions to model these terms implicitly. Most existing methods use
deep convolutional neural networks (CNNs) or radial basis functions to
learn the regularization term simply. In contrast, we formulate both the
data term and regularization term and split the deconvolution model
into data-related and regularization-related sub-problems according to
the alternating direction method of multipliers. We explore the proper-
ties of the Maxout function and develop a deep CNN model with Max-
out layers to learn discriminative shrinkage functions, which directly ap-
proximates the solutions of these two sub-problems. Moreover, the fast-
Fourier-transform-based image restoration usually leads to ringing arti-
facts. At the same time, the conjugate-gradient-based approach is time-
consuming; we develop the Conjugate Gradient Network to restore the
latent clear images effectively and efficiently. Experimental results show
that the proposed method performs favorably against the state-of-the-
art methods in terms of efficiency and accuracy. Source codes, models,
and more results are available at https://github.com/setsunil/DSDNet.

1 Introduction

The single image deconvolution, or deblurring, aims to restore a clear and sharp
image from a single blurry input image. Blind image deblurring has attracted
interest from many researchers [31,24,49,43]. With the rapid development of deep
learning, tremendous progress has been made in blind image deblurring recently
[26,62,74,13,59]. Since the kernel is available via blind methods, how to utilize
these kernels well is still an important issue. Therefore, non-blind deconvolution
has never lost the attention of researchers over the past decades [50,14,8,10].
Due to the deconvolution problem’s ill-posedness, numerous methods explore the
statistical properties of clear images as the image priors (e.g., hyper-Laplacian
prior [23,30]) to make this problem tractable. Although using the hand-crafted
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image priors facilitates ringing artifacts removal, the fine details are not restored
well, as these limited priors may not model the inherent properties of various
latent images sufficiently.

To overcome this problem, discriminative image priors are learned from train-
ing examples [58,56,9,48]. These methods usually leverage radial basis functions
(RBFs) as the shrinkage functions of the image prior. However, the RBFs contain
many parameters, leading to complex optimization problems.

Deep convolutional neural network (CNN) has been developed to learn more
effective regularization terms for the deconvolution problem [70]. These methods
are motivated by [56] and directly estimate the solution to the regularization-
related sub-problem by deep CNN models. As analyzed by [56], we can ob-
tain the solution to the regularization-related sub-problem by combining the
shrinkage functions. However, as the shrinkage functions are complex (e.g., non-
Monotonic), simply using the convolution operation followed by the common
activation functions, e.g., ReLU, cannot model the property of the shrinkage
functions. Given the effectiveness of the deep features, it is of great interest to
learn discriminative shrinkage functions. Therefore, if we can learn more com-
plex shrinkage functions corresponding to the deep features, they shall surpass
the hand-crafted ones in solving the regularization-related sub-problem.

We note that image restoration involves an image deconvolution step, usually
taking advantage of fast Fourier transform (FFT) [56,43,73] or the Conjugate
Gradient (CG) method [2,28,10]. However, the FFT-based approaches usually
lead to ringing artifacts, while the CG-based ones are time-consuming. Besides,
these two methods suffer from information loss: for FFT, we lose little informa-
tion when we discard the imaginary parts in the inverse real FFT; for the CG
method, the iterations we execute are usually far less than the upper bound.
Therefore, developing an effective yet efficient image restoration method is also
necessary.

In this paper, we develop a simple and effective model to discriminatively
learn the shrinkage functions for non-blind deconvolution, which is called Dis-
criminative Shrinkage Deep Network (DSDNet). We formulate the data and
regularization terms as learnable and split the image deconvolution model into
the data-related and regularization-related sub-problems. As shrinkage functions
can solve both sub-problems, and the learnable Maxout functions can efficiently
approximate any complex functions, we directly learn the shrinkage functions of
sub-problems via a deep CNN model with Maxout layers [16]. To effectively and
efficiently generate clear images from the output of the learned functions, we
develop a fully convolutional Conjugate Gradient Network (CGNet) motivated
by the mathematical concept of the CG method. Finally, to solve the problem,
we formulate our method into an end-to-end network based on the Alternating
Direction Method of Multipliers (ADMM) [44]. Experimental results show that
the proposed method performs favorably against the state-of-the-art ones.

The main contributions of this work are:
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– We propose a simple yet effective non-blind deconvolution model to directly
learn discriminative shrinkage functions to implicitly model the data and
regularization terms for image deconvolution.

– We develop an efficient and effective CGNet to restore clear images without
the problems of CG and FFT.

– The architecture of DSDNet is designed elaborately, which makes it flexible
in model size and easy to be trained. Even the smallest DSDNet performs
favorably against the state-of-the-art methods in speed and accuracy.

2 Related Work

Because numerous image deconvolution methods have been proposed, we discuss
those most relevant to this work.

Statistical Image Prior-Based Methods. Since non-blind deconvolution is
an ill-posed problem, conventional methods usually develop image priors based
on the statistical properties of clear images. Representative methods include
total variation [52,6,65,46], hyper-Laplacian prior [28,23], and patch-based prior
[61,17,75], to name a few. However, these hand-crafted priors may not model
the inherent properties of the latent image well; thus, these methods do not
effectively restore realistic images.

Learning-Based Methods. To overcome the above limitations of the hand-
crafted priors, researchers have proposed learning-based approaches, e.g., Markov
random fields [51,54], Gaussian mixture models [75], conditional random fields
[63,19,57,55], and radial basis functions [56,9].

The learning-based non-blind deconvolution also gets deeper with the de-
velopment of neural networks. Many methods use deep CNNs to model the
regularization term and solve image restoration problems by unrolling existing
optimization algorithms. For example, Iterative Shrinkage-Thresholding algo-
rithm [69,67], Douglas-Rachford method [1], Half-Quadratic Splitting algorithm
[33,71,21,70,4,32,7,22], gradient descend [15,47] and ADMM [68]. These meth-
ods use deep CNN models to estimate the solution to the regularization-related
sub-problem. As demonstrated by [56], the solutions are the combinations of the
shrinkage functions. Simply using deep CNN models does not model the shrink-
age functions well since most activation functions are too simple. Besides, most
of them focus on the regularization terms yet ignore the importance of data
terms. In addition, the image restoration step in these methods usually depends
on an FFT-based solution. However, using FFT may lead to results with ring-
ing artifacts. Even though the edge taper [25] alleviates artifacts, they are still
inevitable in many scenes.

To overcome these problems, we leverage Maxout layers to learn discrimi-
native shrinkage functions for regularization and data terms and develop the
CGNet to restore images better. Furthermore, we adopt average pooling for
noise level estimation and residual block for re-weights computation. In other
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Fig. 1: Overview of the proposed method. The blue blocks and lines are the layers
and flow of the regularization terms; the yellow ones are that of data terms. The
HypNet is responsible for the reweighted maps the NLNet learns to control the
weights of regularization and data terms according to the local noise level.

words, we design each component according to the mathematical characteris-
tics rather than stacking as many convolutional layers as possible, as in most
previous works.

Blind Deblurring Methods. Numerous end-to-end deep networks [60,40,62,26]
have been developed to restore clear images from blurry images directly. How-
ever, as demonstrated in [10], when the blur kernels are given, these methods
do not perform well compared to the non-blind deconvolution methods. As non-
blind deconvolution is vital for image restoration, we focus on this problem and
develop a simple and effective approach to restoring high-quality images.

3 Revisiting Deep Unrolling-Based Methods

We first revisit deep unrolling-based methods for image deconvolution to mo-
tivate our work. Mathematically, the degradation process of the image blur is
usually formulated as:

y = k ∗ x+ n, (1)

where ∗ denotes the convolution operator; y, k, x and n denote the blurry image,
the blur kernel, the latent image and noise, respectively. With the known kernel
k, we usually use formulate the deconvolution as a maximum-a-posteriori (MAP)
problem:

x = argmax
x

p(x|y, k) = argmax
x

p(y|x, k)p(x), (2)
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Fig. 2: Network architecture of the proposed CGNet. The residual vector r0 =
b−Axt is the input feature map, the operation A, the convolution Ae and the
transposed convolution Ad are composed of the input filters Fi, Gj and H. The
reweighted maps mp, md are multiplied between Ae and Ad as the IRLS.

where p(y|x, k) is the likelihood of the observation (blurry) y, while p(x) denotes
an image prior of the latent image x. This equation is equivalent to

min
x

R(x) +D(y − k ∗ x), (3)

where R(x) and D(y − k ∗ x) denote the regularization term and data term. In
addition, the data term is usually modeled in the form of ℓ2-norm, then (3) can
be rewritten as

min
x

1

2
∥y −Hx∥22 +R(x), (4)

where x, y denote the vector forms of x and y, respectively; H denotes the
Toeplitz matrix of the blur kernel k. The ADMM method for image deconvolu-
tion is usually achieved by solving:

min
x,u

1

2
∥y −Hx∥22 +R(v) + u⊤(v − x) +

ρ

2
∥v − x∥22, (5)

where v is an auxiliary variable, u is a Lagrangian multiplier, ρ is a weight
parameter.

The solution of (5) can be obtained by alternatively solving:

xt+1 = min
x

∥y −Hx∥22 + ρ∥vt − x+
ut

ρ
∥22, (6a)

vt+1 = min
v

ρ

2
∥v − xt+1 +

ut

ρ
∥22 +R(v), (6b)

ut+1 = ut + ρ(vt+1 − xt+1). (6c)

Existing methods [70,73,72] usually solve (6a) via fast Fourier transform (FFT)
or Conjugate Gradient methods. For (6b), its solution can be represented as a
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proximal operator:

proxλR(x
t+1 − u′t) = argmin

v

1

2
∥v − xt+1 + u′t∥22 + λR(v), (7)

where λ = 1/ρ. With u′t = λut, the multiplier in the (6) and (7) can be absorbed
[44]. As demonstrated in [56], (7) can be approximated by shrinkage functions.
Existing methods usually use deep CNN model to approximate the solution
of (7). However, simply using the convolution operation followed by the fixed
activation functions (e.g., ReLU) cannot model the shrinkage functions well as
they are far more complex (e.g., non-monotonic) [56]. To better approximate
the solution of (6b), we develop a deep CNN model with the Maxout function
[16], which can effectively approximate proximal functions. In addition, we note
that using FFT to solve (6a) does not obtain better results than the CG method
demonstrated by [28,29]. However, the CG method is time-consuming and unsta-
ble in deep networks (see Section 5.4 for more detail). To overcome this problem,
we learn a differentiable CG network to restore a clear image more efficiently
and effectively.

4 Proposed Method

Different from existing methods that simply learn the regularization term or the
data term [70,4,32], we formulate both the data term and the regularization term
as the learnable ones:

min
u,v,x,z

N∑
i=1

Ri(vi) +

M+N∑
j=1+N

Rj(zj)

s.t. Fix = vi, Gj(y −Hx) = zj ,

(8)

where Ri denotes the i-th learnable function; vi and zj are auxiliary variables
that correspond to the regularization and data terms; Fi and Gj are the i-th
and j-th learnable filters for regularization and data, respectively.

By introducing the Lagrangian multipliers ui and uj corresponding to the
regularization and data terms, we can solve (8) using the ADMM method by:

vt+1
i = proxλiRi

(Fix
t + ut

i), (9a)

zt+1
j = proxλjRj

(Gj(y −Hxt) + ut
j), (9b) N∑

i=1

ρiF
⊤
i Fi +

N+M∑
j=N+1

ρjH
⊤G⊤

j GjH

xt+1

=

(
N∑
i=1

ρiF
⊤
i (v

t+1
i − ut

i) +

N+M∑
j=N+1

ρjH
⊤G⊤

j (Gjy − zt+1
j + ut

j)

)
(9c)

ut+1
i = ut

i + Fix
t+1 − vt+1

i , (9d)

ut+1
j = ut

j +Gj(y −Hxt+1)− zt+1
j . (9e)
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In the following, we will develop deep CNN models with a Maxout layer to
approximate the functions of (9a) and (9b). Moreover, we design a simple and
effective deep CG network to solve (9c).

4.1 Network Architecture

This section describes how to design our deep CNNmodels to effectively solve(9a)
-(9c) .

Learning Filters Fi and Gj. To learn filters Fi and Gj , we develop two
networks (NF and NG), each containing one convolutional layer. The convolu-
tional layer of NF has N filters of 7 × 7 pixels, and the convolutional layer of
NG contains M filters of the same size. The NF and NG are applied to xt and
y −Hxt to learn the filters Fi and Gj , respectively.

Learning Discriminative Shrinkage Functions for (9a) and (9b). To
better learn the unknown discriminative shrinkage functions of (9a) and (9b),
we take advantage of Maxout layers [16]. Specifically, the convolutional Maxout
layer consists of two Maxout units. Each Maxout unit contains one convolutional
layer followed by a channel-wise Max-pooling layer. Given an input feature map
X ∈ RH×W×C and the output feature mapXo ∈ RH×W×KC of the convolutional
layer, a Maxout unit is achieved by:

oh,w,c(X) = max
j∈[0,K)

xo
h,w,c×K+j , (10)

where h ∈ [0, H), w ∈ [0,W ) and c ∈ [0, C); the xo
h,w,c is the element of Xo

at the position (h,w, c), and the oh,w,c is the function to output the (h,w, c)-th
element of the output tensor O. In our implementation, we have O ∈ RH×W×C

is of the same size as the input X and K = 4.
With two Maxout units, we acquire two output features, O1 and O2; the final

output tensor of the Maxout layer is their difference, O1 − O2. We note that
Maxout networks are universal approximators that can effectively approximate
functions. Thus, we use it to obtain the solutions of (9a) and (9b).

Learning a Differentiable CG Network for (9c). As stated in Section 3,
although using FFT with boundary processing operations (e.g., edge taper and
Laplacian smoothing [35]) can efficiently solve (9c), the results are not better
than the CG-based solver, which can be observed in Table 5. However, using a
CG-based solver is time-consuming. To generate latent clear images better, we
develop a differentiable CG network to solve (9c). The CG method is used to
solve the linear equation:

Axt+1 = b, (11)

where A corresponds to the first term in (9c) and b to the last term in (9c).
Given x ∈ Rd, the CG method recursively computes conjugate vectors pl and
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find the difference between desired xt+1 and initial input xt as

xt+1 − xt = sL =

L∑
l=0

αlpl,

where L is the iteration number upper-bounded by d, and αl is the weight
calculated with pl.

However, if the size of matrix A is large, using CG to solve (11) needs high
computational costs. To overcome this problem, we develop a differentiable CG
network based on a U-Net to compute the sL. The network design is motivated
by the following reasons:
– As one of Krylov subspace methods [2], the solution sL can be found in

the Krylov subspace KL(A, r0) = span{r0,Ar0, . . . ,A
L−1r0}, where r0 =

b−Axt is the residual vector. In other words, the CG method is a function
of A and r0. Our CGNet takes r0 as input and A as parts of the network.
Its output is sL, which behaves as the CG method.

– For a typical deconvolution problem, A is composed of convolution Ae and
transpose convolution Ad pairs as the first term in (9c). Ae stands for the
operation of GjH and Fi, and Ad for H⊤G⊤

j and F⊤
i . This observation can

be intuitively connected to an encoder-decoder architecture, so we integrate
Ae into the encoder and Ad into the decoder.

– The Conjugate Gradient method is sensitive to noise [34,53]. With an encoder-
decoder architecture, U-Net is robust to noise.

– As the Conjugate Gradient method is a recursive algorithm, U-Net computes
feature maps in a recursive fashion.
In the practical CG iterations, Ae and Ad are usually updated with iterative

reweighted least squares (IRLS) to utilize the sparsity of priors [29]. We design
a simple HypNet to estimate these weights. The network architecture of the
HypNet is shown in Fig. 1. In addition, we note that the values of ρi and ρj in
(9c) depend on the noise level. We design a simple NLNet to estimate the noise
map mn, which plays a role similar to ρi and ρj (see Fig. 1). In contrast to most
conventional methods, the NLNet computes the weight for each pixel, which is
locally adaptive.

5 Experimental Results

5.1 Datasets and Implementation Details

Training Dataset. Similar to [10,11], the training data is composed of 4,744
images from the Waterloo Exploration dataset [36] and 400 images from the
Berkeley segmentation dataset (BSD) [38]. To synthesize blurry images, we first
generate 33,333 blur kernels by [55], where the sizes of these generated blur ker-
nels range from 13× 13 pixels to 35× 35 pixels. We first crop image patches of
128×128 pixels from each image, and then we randomly use generated blur ker-
nels to generate blurry images. Each blurry image is randomly added Gaussian
noise with noise levels from 1% to 5%.
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Test Datasets. We evaluate our method on both synthetic datasets and real
ones. For the synthetic case, we use the 100 images from BSD100 and 100 kernels
by [55] to generate blurry images, similar to training data. We also use the Set5
[3] dataset with the kernels generated by [5] as our test dataset. In addition, we
use the datasets by Levin [30] and Lai [27] for evaluation.

For the real-world dataset, we evaluate our model on the data of Pan [43],
where 23 blurry images and 23 kernels estimated by their method are contained.

Table 1: Configuration of four models. T is the number of stages, i.e., how many
duplicates are in the whole model. M and N denote the number of filters Fiand
Gi, respectively. The PSNR (dB) and execution time are tested on Set5.

Feather Light Heavy Full

T 2 3 3 4
M,N 24 24 49 49

PSNR 32.51 32.78 33.11 33.43
Second 1.893 2.191 2.672 3.065

Implementation Details. We train the networks using the ADAM [20] opti-
mizer with default parameter settings. The batch size is 8. The total training
iterations is 1 million, and the learning rate is from 1 × 10−4 to 1 × 10−7. We
gradually decay the learning rate to 1× 10−7 every 250,000 iterations and reset
it to 1× 10−4, 5× 10−5 and 2.5× 10−5 at the iteration of 250,001, 500,001 and
750,001, respectively. To constrain the network training, we apply the commonly
used ℓ1-norm loss to the ground truth and the network output xT . The data aug-
mentation (including ±90°and 180°rotations, vertical and horizontal flipping) is
used. In this paper, we train 4 models of different sizes, i.e., Feather, Light,
Heavy and Full, whose configurations and simple results on Set5 are shown in
Table 1.

It is worth noting that all the stages contain their own parameters and are
end-to-end trained rather than share weights [71] or progressively trained [70].
We implement the networks in Pytorch [45] and train on one NVIDIA RTX 3090
GPU.

5.2 Quantitative Evaluation

We compare the proposed DSDNet with the state-of-the-art methods including
IRCNN [73], SARFL [48], ADM UDM [21], CPCR [12], KerUNC [41], VEM [42],
DWDN [10], SVMAP [9] and DRUNet [72]. These methods are fine-tuned using
the same training dataset as Section 5.1 and choose the better ones from the
fine-tuned and the original models for comparison.
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Table 2: Average PSNR(dB)/SSIM of the deblurring results with Gaussian noise
using different methods. We highlight the best and second best results. Our Full
DSDNet wins first place, while our Light one also performs favorably against
these state-of-the-art methods.
Dataset noise

IRCNN [73] SFARL[48] ADM UDM [21] CPCR [12] KerUNC [41] VEM [42] DWDN [10] SVMAP [11] DRUNet [72] DSDNet(Light) DSDNet(Full)
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

Levin
[30]

1% 30.61 / 0.883 25.41 / 0.600 31.48 / 0.922 28.43 / 0.858 32.02 / 0.928 32.05 / 0.927 34.89 / 0.957 35.24 / 0.962 31.94 / 0.922 35.48 / 0.960 36.62 / 0.965
3% 29.70 / 0.864 16.82 / 0.255 28.61 / 0.812 25.61 / 0.765 21.72 / 0.416 29.47 / 0.867 31.94 / 0.916 31.20 / 0.893 30.86 / 0.905 32.13 / 0.918 32.89 / 0.925
5% 28.98 / 0.854 13.07 / 0.157 27.83 / 0.827 23.68 / 0.703 18.25 / 0.272 27.79 / 0.819 30.21 / 0.883 30.12 / 0.876 29.79 / 0.880 30.24 / 0.883 30.94 / 0.893

BSD100
[38]

1% 29.20 / 0.817 24.21 / 0.568 29.39 / 0.836 28.77 / 0.829 29.23 / 0.829 29.54 / 0.848 31.10 / 0.881 31.52 / 0.888 30.36 / 0.872 31.50 / 0.892 32.01 / 0.898
3% 27.54 / 0.762 15.80 / 0.245 26.92 / 0.722 25.96 / 0.712 22.10 / 0.430 27.09 / 0.746 28.47 / 0.797 27.94 / 0.762 28.10 / 0.798 28.73 / 0.812 29.08 / 0.820
5% 27.04 / 0.756 12.56 / 0.146 26.04 / 0.697 25.75 / 0.688 18.99 / 0.297 26.11 / 0.698 27.50 / 0.762 27.59 / 0.763 27.19 / 0.767 27.64 / 0.774 27.96 / 0.782

Set5
[3]

1% 30.15 / 0.853 26.21 / 0.632 30.52 / 0.868 30.59 / 0.875 30.45 / 0.864 31.00 / 0.875 32.18 / 0.893 32.31 / 0.892 30.84 / 0.881 32.78 / 0.899 33.43 / 0.905
3% 28.66 / 0.813 15.50 / 0.211 27.64 / 0.709 27.94 / 0.799 21.39 / 0.376 28.40 / 0.804 29.54 / 0.838 28.78 / 0.812 29.21 / 0.841 29.94 / 0.843 30.40 / 0.851
5% 27.55 / 0.789 11.91 / 0.122 26.75 / 0.756 26.64 / 0.754 17.74 / 0.241 26.46 / 0.732 28.13 / 0.806 28.02 / 0.793 27.85 / 0.805 28.46 / 0.804 28.89 / 0.814

Table 3: Evaluation on the dataset Lai [27]. The best and second best results are
highlighted as Table 2. The Saturation results of SVMAP [11] are obtained
by the model specifically trained for saturation scenes.

Subset
IRCNN [73] ADM UDM [21] KerUNC [41] VEM [42] DWDN [10] SVMAP [11] DRUNet [72] DSDNet

PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

Manmade 20.47 / 0.604 22.43 / 0.724 22.19 / 0.725 22.71 / 0.780 24.02 / 0.836 23.75 / 0.776 20.62 /0.613 25.44 / 0.859
Natural 23.26 / 0.636 25.04 / 0.733 25.42 / 0.757 25.29 / 0.752 25.91 / 0.814 26.23 / 0.778 23.25 /0.630 27.01 / 0.837
People 28.04 / 0.843 28.81 / 0.866 28.80 / 0.848 27.19 / 0.723 30.02 / 0.905 30.88 / 0.899 28.04 /0.838 30.95 / 0.908
Saturation 16.99 / 0.642 17.57 / 0.627 17.70 / 0.640 17.65 / 0.600 17.90 / 0.695 18.75 / 0.733 17.14 /0.658 18.38 / 0.734
Text 21.37 / 0.828 25.13 / 0.883 23.32 / 0.855 24.92 / 0.853 25.40 / 0.877 25.60 / 0.894 21.79 /0.829 28.13 / 0.920

Overall 22.03 / 0.710 23.80 / 0.767 23.49 / 0.765 23.55 / 0.742 24.65 / 0.825 25.04 / 0.816 22.17 /0.714 25.98 / 0.852

PSNR and SSIM [66] are used for quantitative evaluation. All the quantitative
evaluations are conducted without border cropping for fair comparisons.

Table 2 shows quantitative evaluation results on the synthetic datasets. The
proposed method generates results with higher PSNR and SSIM values. In addi-
tion, we note that the proposed light-weighted model generates favorable results
against the state-of-the-art, showing the effectiveness of the proposed algorithm.
Due to the space limit, we only present the evaluation results of the Full DSDNet
hereafter.

We then evaluate our method on the Lai [27] dataset. Because it contains
Manmade, Natural, People, Saturation, and Text subsets, we present
the evaluation accordingly. Table 3 shows that our method performs better than
the evaluated methods. Similar to Table 2, our method also achieves the highest
PSNR and SSIM in most tests, except for the Saturation subset. We note that
Dong et al. [11] specifically train a model for saturation scenes; thus, this method
performs slightly better. However, our model is only trained with common scenes
but comparable in terms of PSNR on the Saturation images. Moreover, the
SSIM values of our method are better than SVMAP [11], demonstrating the
efficiency and robustness of our approach.

We also quantitatively evaluate our method on real-world blurry images and
estimated kernels from Pan [43]. Since the ground truth images are unavailable,
we use the no-reference BRISQUE [39] and PIQE [65] metrics for evaluation.
Our model achieves the best score in BRISQUE and second place in PIQE, as
shown in Table 4. As BRISQUE is a metric based on subject scoring, Table 4
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Table 4: Quantitative evaluation of real cases Pan [43]. Non-reference image
quality metrics BRISQUE [39] and PIQE [64] are used.

IRCNN [73] ADM UDM [21] KerUNC [41] VEM [42] DWDN [10] SVMAP [11] DRUNet [72] DSDNet

BRISQUE 43.484 36.598 37.816 33.663 34.027 35.508 46.774 33.129
PIQE 78.700 67.605 65.674 44.942 51.348 56.032 81.074 49.788

shows that our model generates more subjectively satisfying results than other
state-of-the-art methods.

5.3 Qualitative Evaluation

We show visual comparisons of a synthesized and a real-world case in Fig. 3
Fig. 4, respectively.

Fig. 3 shows the results of Manmade from the dataset Lai [27]. The evalu-
ated methods generate blur results. In contrast, our method reconstructs better
images (e.g., the wood texture is better restored, as shown in both red and green
boxes).

(a) Blurry input (b) IRCNN [73] (c) ADM UDM [21] (d) KerUNC [41] (e) VEM [42]

(f) DWDN [10] (g) SVMAP [11] (h) DRUNet [72] (i) DSDNet (ours) (j) Ground truth

Fig. 3: A synthetic case comes from Lai [27]. Our method restores clearer images
with finer details (e.g., the wood texture).

Fig. 4 shows the deblurred results of a pair of real-world blurry images and
estimated kernel [43]. Our method restores the text to sharpness in the red boxes
and the blackest and sharpest eyebrow in the green boxes. In contrast, other
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(a) Blurry input (b) IRCNN [73] (c) ADM UDM [21] (d) KerUNC [41]

(e) DWDN [10] (f) SVMAP [11] (g) DRUNet [72] (h) DSDNet (ours)

Fig. 4: A real-world case whose kernel is estimated by [43]. Our method generates
a better image with clearer text and a sharper eyebrow. In the olive background,
our method produces the sharpest result without noise.

methods cannot restore the text well and mix the eyebrow with the skin color.
Furthermore, they also generate artifacts and noise in the olive background.

5.4 Ablation Study

In this section, we design experiments to show the efficiency of the proposed
discriminative shrinkage functions and the differentiable CGNet. Table 5 shows
the ablation results w.r.t. different baselines. In this study, we train 7 models
based on the architecture of the Heavy DSDNet. We compare the number of
floating point operations (FLOPs) and the parameters in this study.

To validate the effects of the Fi and Gj , we train a model without estimating
these two filters, denoted by “w/o F,G”. Without the feature maps coming from
them, we can only learn the shrinkage functions from RGB inputs. Table 5 shows
that the PSNR value of the results by the baseline method without Fi and Gj

is at least 6.45dB lower than that of our approach.

We also evaluate the effect of the Maxout layers by replacing them with
ReLU. Table 5 shows that the method using ReLU does not generate better
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Table 5: Ablation study on Set5. “w/o F, G” is out of the convolutional lay-
ers before the Maxout layers; “ReLU” and “RBF” replace the Maxout layers
with ReLU and RBF layers, respectively; “CG” performs conventional Conju-
gate Gradient method for deconvolution rather than CGNet, “FFT” performs
FFT deconvolution with edge taper [25], and the superscript † means the input
is denoised by DRUNet [72] first.

w/o F, G ReLU RBF CG CG† FFT FFT† DSDNet

PSNR(dB) 26.66 32.78 32.98 29.07 32.39 31.30 32.03 33.11
FLOPs(G) 136.26 464.94 468.03 470.73 559.97 288.89 391.57 466.32
Parameters(M) 1.04 237.85 237.85 0.31 32.95 0.27 32.09 237.87

Gain(dB) -6.45 -0.33 -0.13 -4.04 -0.72 -1.81 -1.08 -/-

results than the proposed method, suggesting the effectiveness of the Maxout
layers.

As RBFs are usually used to approximate shrinkage functions, one may won-
der whether using them generates better results or not. To answer this question,
we replace the Maxout layers with the commonly-used Gaussian RBFs. Table 5
shows that the PSNR value of the method using RBFs is at least 0.13dB lower
than that of our method, indicating the effectiveness of the proposed method.

Finally, to demonstrate the efficiency of the proposed CGNet, we train 2
models with the conventional CG method and 2 models with FFT deconvolution.
The CG method is unstable with respect to even small perturbations [37,18].
Each optimization step in training and the existence of noise may cause the
divergence of the CG method. Hence we have to reduce the learning rate and
apply gradient clipping to avoid the gradient exploding during the training.
However, it still performs poorly even if the training can be finished. To make
the training more feasible, we denoise the inputs first by DRUNet [72], and this
model is denoted as “CG†”. The training of “CG†” is smoother, the learning
rate can be set as that of the DSDNet, and the performance is much better than
generic “CG”. With another model to denoise, the computational cost is about
26% more FLOPs, and it takes more than twice the time for training compared
to the DSDNet.

Similar to CG ones, we also provide results of deconvolution via FFT with
the artifact processing operation by [25], i.e., “FFT” and “FFT†”. Although
FFT ones are much faster than CG ones, the gap between “CG†” and “FFT†”
is considerable, as mentioned in Section 3. As for the test time on Set5, “CG”
is 5.6001 seconds, “CG†” is 5.8252 seconds, “FFT” is 3.6941 seconds, “FFT†” is
4.0330 seconds, and DSDNet is 2.6717 seconds. These result show the efficiency
of the proposed CGNet. We include the ablation study on HypNet and NLNet
in the supplementary material.
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Fig. 5: Speed and accuracy trade-off. The results are evaluated on the Set5
dataset with 1% Gaussian noise. Results of this work are shown in red points;
the fastest Feather DSDNet still performs favorably against the state-of-the-art
methods (blue points) in PSNR.

5.5 Execution Time Analysis

We analyze the execution time of the proposed methods and state-of-the-art
ones. All the execution times are evaluated on one nVidia RTX 2080Ti GPU.
Fig. 5 shows that our models are faster and more accurate than the state-of-the-
art methods. Among these methods, our Feather model is a little bit faster than
DWDN by 0.0052 seconds yet outperforms all other methods in PSNR.

5.6 Limitations

Although better performance on various datasets has been achieved, our method
has some limitations. Our model cannot deal with blurry images containing
significant saturation regions, which may lead to overflow. More analysis can be
found in the supplementary material.

6 Conclusion

In this paper, we present a fully learnable MAP model for non-blind deconvo-
lution. We formulate the data and regularization terms as the learnable ones
and split the deconvolution model into data-related and regularization-related
sub-problems in the ADMM framework. Maxout layers are used to learn the
discriminative shrinkage functions, which directly approximate the solutions of
these two sub-problems. We have further developed a CGNet to restore the im-
ages effectively and efficiently. With a reasonable design, the size of our model is
flexibly adjustable while keeping competitive in performance. Extensive evalua-
tions on the benchmark datasets demonstrate that the proposed model performs
favorably against the state-of-the-art non-blind deconvolution methods in terms
of quantitative metrics, visual quality, and computational efficiency.
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