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Abstract. Although current deep learning-based methods have gained
promising performance in the blind single image super-resolution (SISR)
task, most of them mainly focus on heuristically constructing diverse
network architectures and put less emphasis on the explicit embedding
of the physical generation mechanism between blur kernels and high-
resolution (HR) images. To alleviate this issue, we propose a model-
driven deep neural network, called KXNet, for blind SISR. Specifically,
to solve the classical SISR model, we propose a simple-yet-effective it-
erative algorithm. Then by unfolding the involved iterative steps into
the corresponding network module, we naturally construct the KXNet.
The main specificity of the proposed KXNet is that the entire learn-
ing process is fully and explicitly integrated with the inherent physical
mechanism underlying this SISR task. Thus, the learned blur kernel has
clear physical patterns and the mutually iterative process between blur
kernel and HR image can soundly guide the KXNet to be evolved in the
right direction. Extensive experiments on synthetic and real data finely
demonstrate the superior accuracy and generality of our method beyond
the current representative state-of-the-art blind SISR methods. Code is
available at: https://github.com/jiahong-fu/KXNet.
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1 Introduction

Single image super-resolution (SISR) has been widely adopted in various vision
applications, e.g. video surveillance, medical imaging, and video enhancement.
For this SISR task, the main goal is to reconstruct the high-resolution (HR)
image with high visual quality from an observed low-resolution (LR) image.
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Specifically, in traditional SISR framework, the degradation process for an
LR image Y can be mathematically expressed as [11,12]:

Y = (X ⊗K) ↓s +N , (1)

where X is the to-be-estimated HR image; K is a blur kernel; ⊗ denotes two-
dimensional (2D) convolution operation; ↓s represents the standard s-fold down-
sampler, i.e., only keeping the upper-left pixel for each distinct s× s patch [53];
N denotes the Additive White Gaussian Noise (AWGN) with noise level σ.
Clearly, estimating X and K from Y is an ill-posed inversion problem.

With the rapid development of deep neural networks (DNNs), in recent
years, many deep learning (DL)-methods have been proposed for this SISR
task [19,21,24,60,59,31,22]. Albeit achieving promising performance in some scenes,
the assumption that the blur kernel K is known, such as bicubic [7,19,24,59,60],
would make these methods tend to fail in real applications where the practical
degradation process is always complicated. To alleviate this issue, researchers
have focused on the more challenging blind super-resolution (SR) task where
the blur kernel K is unknown. Currently, blind SR methods can be mainly di-
vided into two categories: traditional-model-based ones and DL-based ones.

Specifically, conventional blind SR works [27,6] aim to formulate the hand-
crafted prior knowledge of blur kernel K and HR image X, into an optimiza-
tion algorithm to constrain the solution space of the ill-posed SISR problem.
Due to the involved iterative computations, these methods are generally time-
consuming. Besides, the manually-designed priors cannot always sufficiently rep-
resent the complicated and diverse images in real scenarios.

Recently, to flexibly deal with multi-degradation situations, some DL-based
blind SR methods [58,3,23] have been proposed, which are composed of two
successive steps, i.e., blur kernel estimation and non-blind super-resolver. Since
these two steps are independently handled, the estimated blur kernel and the re-
covered HR image are possibly not compatible well. To further boost the perfor-
mance, some works [14,25,43,54,44] directly utilized off-the-shelf network mod-
ules to recover HR images in an end-to-end manner without fully embedding the
physical generation mechanism underlying this SISR task.

Very recently, the end-to-end deep unfolding framework has achieved good
performance in this SISR task [16,5,53,25]. Typically, by alternately updating
the blur kernel K and the HR image X, the blind SR work [25] heuristically
constructs an optimization-inspired SR network. However, there are two main
limitations: 1) the inherent physical generation mechanism in Eq. (1) is still
not fully and explicitly embedded into the iterative computations of K and
X, and every network module has relatively weak physical meanings; 2) most
of these deep unfolding-based methods cannot finely extract blur kernels with
clear physical patterns, which is caused by weak interpretable operations on blur
kernels, such as concatenation and stretching [25] and spatial feature transform
(SFT) layer [14]. Hence, there is still room for further performance improvement.

To alleviate these issues, we propose a novel deep unfolding blind SR network
that explicitly embeds the physical mechanism in Eq. (1) into the mutual learning
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Fig. 1: Illustration of the proposed KXnet where K-net for blur kernel estima-
tion and X-net for HR image estimation are constructed based on the physical
generation mechanism in Eq. (1).

between blur kernel and HR image in a sufficient manner. Under the explicit
guidance of the degradation process Eq. (1), the updating of K and X finely
proceeds, and the learned blur kernel presents clear structural patterns with
specific physical meanings. In summary, our contributions are mainly three-fold:

– We propose a novel model-driven deep unfolding blind super-resolution net-
work (called KXNet) to jointly estimate the blur kernel K and the HR image
X, which is explicitly integrated with the physical generation mechanism in
Eq. (1), as shown in Fig. 1. Specifically, we propose an iterative algorithm to
solve the classical degradation model Eq. (1) and then construct the KXNet
by unfolding the iterative steps into the corresponding network modules.
Naturally, the mutually iterative learning process between blur kernel and
HR image fully complies with the inherent physical generation mechanism,
and every network module in KXNet has clear physical interpretability.

– Instead of heuristic operations (e.g. concatenation and affine transformation)
on blur kernel in most of the current SR methods, the learning and estimation
of blur kernel in our method is proceeding under the guidance of Eq. (1)
and thus has clearer physical meanings. As shown in Fig. 1, the K-net is
finely corresponding to the iterative steps for updating blur kernel and thus
the extracted blur kernel K has reasonable and clear physical structures.
Besides, attributed to the intrinsic embedding of the physical generation
mechanism, we maintain the essential convolution computation between blur
kernel and HR image, which is expected to achieve better SR performance.

– Extensive experiments executed on synthetic and real data comprehensively
demonstrate the superiority of the proposed KXNet in SR performance and
model generalizability beyond the current state-of-the-art (SOTA) methods.
Besides, more analysis and network visualization validate the rationality
and effectiveness of our method, and the extracted blur kernels with clear
structures would be helpful for other vision tasks in real applications.



4 Jiahong Fu et al.

2 Related Work

2.1 Non-Blind Single Image Super-Resolution

In recent years, deep learning (DL) has achieved great progress in SISR task.
Current SISR methods mainly focus on utilizing deep neural networks to learn
the mapping function from a low-resolution (LR) image to the corresponding
high-resolution (HR) image via paired training data. Since it is very time-
consuming and labor-intensive to pre-collect massive paired LR-HR images,
many researchers adopt the manually-designed degradation processes to gen-
erate the LR images, such as the classical bicubic interpolation (K in Eq. (1) is
set as the bicubic kernel). This setting has been widely adopted from the early
SRCNN [7] to the recent various SISR methods [24,59,31,22]. These methods
aim to design diverse network modules to improve the SISR performance.

Considering that in real scenes, the degradation process is always compli-
cated, there are some works [57,48,53] dealing with multiple degradation forms.
For example, SRMD [57] takes different degradation feature maps as additional
inputs for the SR task. Very recently, Zhang [53] constructs an optimization-
inspired non-blind SISR network for handling the multiple degradation scenes.

2.2 Blind Single Image Super-Resolution

To better represent the real degradation process and improve the SR perfor-
mance in real-world, blind single image super-resolution has been attracting the
attention of researchers in this field. In this case, the goal is to jointly estimate
the unknown blur kernel K and the expected HR image X. Currently, against
this task, the existing methods can be mainly categorized into two groups: two-
step methods and end-to-end methods.

Two-step Blind Super-Resolution. In this research line, researchers first
estimate the blur kernel based on different prior knowledge [32,49,34,23]. For
example, Michaeli [30] utilizes the inter-scale recurrence property of an image
to help extract the blur kernel. Then by inserting the estimated blur kernel
into non-blind SR methods[58], the corresponding SR results can be restored.
Recently, Kligler [3] have proposed an unsupervised KernelGAN to estimate the
blur kernel based on the recurrence property of the image patch, then utilized
the extracted kernel to help reconstruct SR images. Similarly, Liang [23] have
proposed a flow-based architecture to capture the prior knowledge of the blur
kernel which can be used for the subsequent non-blind SR task. Most of these
two-step methods have not fully considered the iterative and mutual learning
between blur kernels and HR images.

End-to-End Blind Super-Resolution. Very recently, some works begin to
emphasize how to merge the kernel estimation process with the non-blind SR
process and thus design an end-to-end blind SR framework. Gu [14] firstly de-
signed a single network architecture that contains a kernel estimation module
and a non-blind SR module. However, this method needs to separately train
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multiple modules. To alleviate this issue, Luo [25,26] proposed a complete end-
to-end network that can be trained in an end-to-end manner. Wang [43] proposed
an unsupervised degradation representation learning scheme and then utilized
it to help accomplish the blind SR task. Zhang [54] and Wang [44] design a
“high-order” degradation model to simulate the image degradation process.

Albeit achieving promising performance in some scenarios, most of these
methods have the following limitations: 1) The estimated degradation form has
relatively weak physical meanings or cannot fully reflect blur kernels with clear
and structural patterns; 2) The degradation representation is heuristically used,
such as simple concatenation with LR image, without explicitly reflecting the
inherent convolution operation between blur kernel and image; 3) The intrinsic
physical generation mechanism in Eq. (1) has not been fully embedded into
network design.To alleviate these issues, we adopt the deep unfolding technique
[46,42], with several novel designs, for better embedding the inherent mechanism
into network structure and improving the performance in blind SR restoration.

3 Blind Single Image Super-Resolution Model

In this section, for the blind SISR task, we formulate the corresponding mathe-
matical model and propose an optimization algorithm.

3.1 Model Formulation

From Eq. (1), given an observed LR image Y ∈ Rh×w, our goal is to estimate the
two unknown variables, i.e., blur kernel K ∈ Rp×p and HR image X ∈ RH×W .
Correspondingly, we can formulate the following optimization problem as:

min
K,X

∥∥∥Y − (X ⊗K) ↓s
∥∥∥2

F
+ λ1ϕ1(K) + λ2ϕ2(X)

s.t. Kj ≥ 0,
∑
j

Kj = 1, ∀j,
(2)

where ϕ1(K) and ϕ2(X) represent the regularizers for delivering the prior knowl-
edge of blur kernel and HR image, respectively; λ1 and λ2 are trade-off regu-
larization parameters. Similar to [33,37,34], we introduce the non-negative and
equality constraints for every element Kj in blur kernel K. Specifically, the data
fidelity term (i.e., the first term in the objective function of Eq. (2)) represents
the physical generation mechanism, which would provide the explicit guidance
during the iterative updating of K and X, and the prior terms ϕ1(K) and
ϕ2(X) enforce the expected structures of the solution for this ill-posed problem.

Instead of adopting hand-crafted prior functions as in conventional optimization-
based SR methods, we utilize a data-driven strategy to flexibly extract the im-
plicit prior knowledge underlyingX andK from data via DNNs in an end-to-end
manner. This operation has been fully validated to be effective in many diverse
vision tasks by extensive studies [55,46,42]. The details for learning ϕ1(K) and
ϕ2(X) are given in Sec. 4.
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3.2 Model Optimization

× 2

unfold

Fig. 2: Illustration of the operator Uf (·).

For this blind SISR task, our goal is to
build a deep unfolding network where
network modules are possibly corre-
sponding to iterative steps involved
in an optimization algorithm so as to
make the network interpretable and
easily controllable. Thus, it is neces-
sary to derive an iterative algorithm
for solving the SR problem in Eq. (2).
To this end, we adopt a proximal gra-
dient technique [2,13] to alternatively
update the blur kernel K and HR image X. Then, the derived optimization
algorithm contains only simple operators which makes it possible to be easily
unfolded into network modules, as shown in following.

Updating blur kernel K: The blur kernel K can be optimized by solving the
quadratic approximation [2] of the problem Eq. (2) with respect to the variable
K, expressed as:

min
K

∥∥∥K−
(
K(t−1)−δ1∇f

(
K(t−1)

))∥∥∥2

F
+ λ1δ1ϕ1(K)

s.t. Kj ≥ 0,
∑
j

Kj = 1, ∀j,
(3)

where K(t−1) denotes the updating result after the last iteration; δ1 denotes the

stepsize parameter; f(K(t−1)) =
∥∥Y −

(
X(t−1) ⊗K(t−1)

)
↓s
∥∥2
F
. For a general

regularizer ϕ1(·), the solution of Eq. (3) can be easily expressed as [8]:

K(t) = proxλ1δ1

(
K(t−1) − δ1∇f

(
K(t−1)

))
, (4)

where the specific form of ∇f
(
K(t−1)

)
is complicated. For ease of calculation,

by transforming the convolutional operation in f(K(t−1)) into matrix multipli-
cation, we can derive that:

f
(
k(t−1)

)
=vec

(∥∥∥Y −
(
X(t−1)⊗K(t−1)

)
↓s
∥∥∥2
F

)
=

∥∥∥y −DsUf

(
X(t−1)

)
k(t−1)

∥∥∥2
F
,

(5)

where y = vec (Y ) and k = vec (K) denote the vectorizations of Y and K,

respectively; y ∈ Rhw×1;k ∈ Rp2×1; Uf

(
X(t−1)

)
∈ RHW×p2

are the unfolded

result of X(t−1) (see Fig. 2); Ds denotes the downsampling operator which is
corresponding to the operator ↓s, and achieves the transformation from the size
HW to the size hw. Thus, the result DsUf

(
X(t−1)

)
4 has the size with hw× p2

4 More derivations are provided in the supplementary material.
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and ∇f(k(t−1)) is derived as:

∇f
(
k(t−1)

)
=
(
DsUf

(
X(t−1)

))T

vec
(
Y−

(
X(t−1)⊗K(t−1)

)
↓s
)
, (6)

where ∇f(k(t−1)) ∈ Rp2×1; ∇f(K(t−1)) = vec−1
(
∇f(k(t−1))

)
; vec−1(·) is the

reverse vectorization; proxλ1δ1(·) is the proximal operator dependent on the reg-
ularization term ϕ1(·) with respect to K. Different from the traditional methods
with hand-crafted regularization terms, we rely on the powerful fitting capabil-
ity of residual networks to automatically learn the implicit proximal operator
proxλ1δ1(·) via training data. Such operations have achieved great success in
other deep unfolding works [46,42]. The details are described in Sec. 4.

Updating HR image X: Similarly, the quadratic approximation of the prob-
lem in Eq. (2) with respect to X can be derived as:

min
X

∥∥∥X−
(
X(t−1)−δ2∇h

(
X(t−1)

))∥∥∥2

F
+λ2δ2ϕ2(X), (7)

where h
(
X(t−1)

)
=

∥∥Y −
(
X(t−1) ⊗K(t)

)
↓s
∥∥2
F
; With ∇h

(
X(t−1)

)
=

K(t) ⊗T
s

(
Y −

(
X(t−1) ⊗K(t)

)
↓s
)
, we can deduce the updating rule for X as:

X(t) = proxλ2δ2

(
X(t−1)−δ2K

(t)⊗T
s

(
Y −(X(t−1)⊗K(t)) ↓s

))
, (8)

where proxλ2δ2(·) is the proximal operator dependent on the regularization term
ϕ2(·) about X; ⊗T

s denotes the transposed convolution operation with stride as
s. Similar to proxλ1δ1(·), we adopt deep network to flexibly learn the proxλ2δ2(·).

As seen, the proposed optimization algorithm is composed of the iterative
rules Eq. (4) and Eq. (8). By unfolding every iterative step into the corresponding
network module, we can naturally build the deep unfolding network architecture
for solving the blind SISR task as given in Eq. (2).

4 Blind Super-Resolution Unfolding Network

Recently, deep unfolding techniques have achieved great progress in various com-
puter vision fields [51,50,39,40,41], such as spectral image fusion [46,47], de-
raining [42], and non-blind super-resolution [53]. Inspired by these methods, in
this section, we aim to build an end-to-end deep unfolding network for blind
super-resolution problem by unfolding each iterative step involved in Eq. (4)
and Eq. (8) as the corresponding network module.

As shown in Fig. 3(a), the proposed network consists of T stages, which
correspond to T iterations of the proposed optimization algorithm for solving
the problem in Eq. (2). At each stage, as illustrated in Fig. 3(b), the network
is subsequently composed of K-net and X-net. In specific, the K-net takes the
LR image Y , the estimated blur kernel K(t−1) and the estimated HR image
X(t−1) as inputs and outputs the updated K(t). Then, X-net takes Y , K(t),
and X(t−1) as inputs, and outputs the updated X(t). This alternative iterative
process complies with the proposed algorithm.
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(b) The network architecture of K-net and X-net at each stage.

Fig. 3: (a) The overall architecture of the proposed KXNet contains T stages.
It inputs the initialized HR image X(0) and initialized blur kernel K(0) , and
outputs the HR image X and the blur kernel K. (b) The network architecture
at the tth stage, which consists of K-net and X-net for updating the blur kernel
K and HR image X, respectively.

4.1 Network Module Design

By step-by-step decomposing the iterative rules of Eq. (4) and Eq. (8) into sub-
steps and then unfolding them as the fundamental network modules, we can eas-
ily construct the entire deep unfolding framework. However, the key problem is
how to deal with the implicit proximal operators proxλ1δ1(·) and proxλ2δ2(·). As
stated in Sec. 3.2, following the current other unfolding-based networks [46,42],
we can utilize ResNet [15] to construct proxλ1δ1(·) and proxλ2δ2(·). Thus, at the
tth stage, the network is built as:

K-net:



e
(t)
k = vec

(
Y −

(
X(t−1) ⊗K(t−1)

)
↓s
)

G
(t)
k = vec−1

((
DsUf

(
X(t−1)

))T

e
(t)
k

)
K(t) = proxNet

θ
(t)
k

(
K(t−1)−δ1

(
G

(t)
k

))
,

(9)

X-net:



E(t)
x = Y − (X(t−1) ⊗K(t)) ↓s

G(t)
x = K(t) ⊗T

s E(t)
x

Ĝ(t)
x = adjuster

(
G(t)

x

)
X(t) = proxNet

θ
(t)
x

(
X(t−1), Ĝ(t)

x

)
,

(10)

where proxNet
θ
(t)
k

and proxNet
θ
(t)
x

are two shallow ResNets with the parameters

θ
(t)
k and θ

(t)
x at the t-th stage, respectively; adjuster(·) is an operation for boost-

ing the gradient, whose details are discussed later. All these network parameters
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can be automatically learned from training data in an end-to-end manner. Note
that the proximal gradient descent algorithm usually needs lots of iterations for
convergence, which will lead to too many network stages when adopting the un-
folding technique. To avoid this issue, as shown in the last equation of Eq. (10),

instead of directly adopting the subtraction between X(t−1) and Ĝ
(t)
x , we con-

catenate X(t−1) and Ĝ
(t)
x as the input of the proximal network proxNet

θ
(t)
x

(·),
which introduces more flexibility to the combination of X(t−1) and Ĝ

(t)
x .

Remark for K-net. The proposed KXNet has clear physical interpretabil-
ity. Different from the current most deep blind SR methods which heuristically
adopt the concatenation or affine transformation operators on K(t−1) to help
the learning of HR images, the proposed K-net is constructed based on the it-
erative rule in Eq. (4) and every network sub-module has its specific physical
meanings as shown in Fig. 3(b). Specifically, following the degradation model,
X(t−1) is convolved with K(t−1) followed by the downsampling operator. Then

by subtracting the result from Y , we get the residual information e
(t)
k , which

is actually the key information for updating the current estimation. Then, we

regard e
(t)
k as a weight and adopt it to perform a weighted summation on the

corresponded patches in X(t−1) (i.e., row vectors in DsUf (X
(t−1)) ∈ Rhw×p2

, as

shown in Fig. 3(b)), and getG
(t)
k for updatingK(t−1). Actually, this is consistent

with the relationship between K(t−1) and X(t−1), since convolution operation
is executed based on the patch with p× p.

Gradient adjuster. For X-net, an adjuster is adopted to the gradient G
(t)
x

as shown in the third equation of Eq. (10). Specifically, the transposed con-

volution G
(t)
x in X-net can easily cause “uneven overlap”, putting more of the

metaphorical paint in some places than others [9,36], which is unfriendly to the
reconstruction of HR images. To alleviate the unevenness issue, we introduce the

operator K(t) ⊗T
s 1 and the adjusted gradient Ĝ

(t)
x is5:

Ĝ(t)
x =

G
(t)
x

K(t) ⊗T
s 1

, (11)

where 1 ∈ Rh×w is a matrix with all elements as 1.

4.2 Network Training

To train the proposed deep unfolding blind SR network, we utilize the L1 loss
[61] to supervise the predicted blur kernel K(t) and the estimated HR image
X(t) at each stage. Correspondingly, the total objective function is:

L =

T∑
t=1

αt

∥∥K −K(t)
∥∥
1
+

T∑
t=1

βt

∥∥X −X(t)
∥∥
1
, (12)

where K(t) and X(t) are obtained based on the updating process in Eq. (9)
and Eq. (10) at the tth stage, respectively; αt and βt are trade-off parameters
6. X(0) is initialized as the bicubic upsampling of the LR image Y , and K(0) is
initialized as a standard Gaussian kernel.
5 More analysis is provided in the supplementary material.
6 We set αt = βt = 0.1 at middle stages, αT = βT = 1 at the last stage, and T = 19.



10 Jiahong Fu et al.

5 Experimental Results
5.1 Details Descriptions

Synthesized Datasets. Following [14,25,43], we collect 800 HR images from
DIV2K [1] and 2650 HR images from Flickr2K [38] to synthesize the training
data, and adopt the four commonly-used benchmark datasets, i.e., Set5 [4], Set14
[52], BSD100 [28], and Urban100 [17], to synthesize the testing data. During the
synthesis process of training and testing pairs, we adopt the degradation process
in Eq. (1) with two different degradation settings: 1) isotropic Gaussian blur ker-
nel with noise free; 2) anisotropic Gaussian blur kernel with noise [10,35,53,23],
and set the s-fold downsampler as in [3,53,23]. Note that as stated in [35,53], the
later setting is very close to the real SISR scenario.

In setting 1), for training set, following [14,25,43], the blur kernel size p× p
is set as 21 × 21 for all scales s ∈ {2, 3, 4} and the corresponding kernel width
for different scales (×2, ×3, and ×4 SR) is uniformly sampled from the ranges
[0.2, 2.0], [0.2, 3.0], and [0.2, 4.0], respectively. For testing set, the blur kernel
is set as Gaussian8 [14], which uniformly samples 8 kernels from the ranges
[0.8, 1.6], [1.35, 2.40], and [1.8, 3.2] for the scale factors 2, 3, and 4, respectively.

In setting 2), for trainings set, we set the kernel size p as 11/15/21 for ×2/3/4
SR, respectively. Specifically, the kernel width at each axis are obtained by ran-
domly rotating the widths λ1 and λ2 with an angle θ ∼ U [−π, π], where λ1 and λ2

are uniformly distributed in U(0.6, 5.0). Besides, the range of noise level σ is set
to [0, 25]. For testing set, we separately set the kernel width as λ1 = 0.8, λ2 = 1.6
and λ1 = 2.0, λ2 = 4.0, and rotate them by θ ∈ {0, π

4 ,
π
2 ,

3π
4 }, respectively. This

means every HR testing image is degraded by 8 different blur kernels.
Real Dataset. To verify the performance of the proposed method in real sce-
narios, we use the dataset RealSRSet [54] for generalization evaluation, which
includes 20 real LR images collected from various sources [18,28,29,56].
Training Details. Based on the PyTorch framework executed on two RTX2080Ti
GPUs, we adopt the Adam solver [20] with the parameters as β1 = 0.9 and
β2 = 0.99 to optimize the proposed network with the batch size and patch size
set as 12 and 64 × 64, respectively. The learning rate is initialized as 2 × 10−4

and decays by multiplying a factor of 0.5 at every 2×105 iteration. The training
process ends when the learning rate decreases to 1.25× 10−5.
Comparison Methods. We comprehensively substantiate the superiority of
our method by comparing it with several recent SOTA methods, including the
non-blind SISR method RCAN [59], and blind SISR methods, including IKC [14],
DASR [43], and DAN [25]. For a fair comparison, we have retrained IKC, DASR,
and DAN based on the aforementioned two settings with the public codes.
Performance Evaluation. For synthetic data, we adopt the PSNR and SSIM
[45] computed on Y channel in YCbCr space. While for RealSRSet, we only
provide the visual results since there is no ground-truth (GT) image.

5.2 Experiments on Synthetic Data

Tab. 1 reports the average PSNR and SSIM of all the comparison methods on
four benchmark datasets with the first simple synthesis setting. From it, we
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Table 1: Average PSNR/SSIM of all the comparing methods (Setting 1).

Method Scale
Urban100 [17] BSD100 [28] Set14 [52] Set5 [4]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic

x2

24.23 0.7430 27.02 0.7472 27.13 0.7797 29.42 0.8666
RCAN [59] 24.69 0.7727 27.40 0.7710 27.54 0.8804 29.81 0.8797
IKC [14] 29.22 0.8752 30.51 0.8540 31.69 0.8789 34.31 0.9287
DASR [43] 30.63 0.9079 31.76 0.8901 32.93 0.9029 37.22 0.9515
DAN [25] 31.31 0.9165 31.93 0.8906 33.31 0.9085 37.54 0.9546
KXNet(ours) 31.48 0.9192 32.03 0.8941 33.36 0.9091 37.58 0.9552
Bicubic

x3

22.07 0.6216 24.93 0.6360 24.58 0.6671 26.19 0.7716
RCAN [59] 22.18 0.6366 25.06 0.6501 24.73 0.6800 26.37 0.7840
IKC [14] 26.85 0.8087 28.29 0.7724 29.41 0.8106 32.90 0.8997
DASR [43] 27.28 0.8307 28.85 0.7932 29.94 0.8266 33.78 0.9200
DAN [25] 27.94 0.8450 29.04 0.8001 30.24 0.8350 34.18 0.9237
KXNet(ours) 28.00 0.8457 29.06 0.8010 30.27 0.8340 34.22 0.9238
Bicubic

x4

20.96 0.5544 23.84 0.5780 23.25 0.6036 24.43 0.7045
RCAN [59] 20.96 0.5608 23.89 0.5865 23.30 0.6109 24.52 0.7148
IKC [14] 24.42 0.7112 26.55 0.6867 26.88 0.7301 29.83 0.8375
DASR [43] 25.49 0.7621 27.40 0.7238 28.26 0.7668 31.68 0.8854
DAN [25] 25.95 0.7787 27.53 0.7311 28.55 0.7749 31.96 0.8898
KXNet(ours) 26.18 0.7873 27.59 0.7330 28.67 0.7782 31.94 0.8912

GT Zoomed LR

PSNR/SSIM

IKC [14]

23.70/0.6281

DASR [43]

22.14/0.5794

DAN [25]

24.58/0.6567

KXNet(ours)

24.87/0.6636

PSNR/SSIM 26.54/0.7391 26.36/0.7280 26.39/0.7389 26.85/0.7524

Fig. 4: Performance comparison on img 14 in Set14 [52] and img 078 in Urban100
[17]. The scale factor is 4 and noise level is 5.

can easily find that the proposed KXNet is superior or at least comparable to
other comparison methods under different scales. This is mainly attributed to its
proper and full embedding of physical generation mechanism which finely helps
the KXNet to be trained in the right direction.

Tab. 2 provides the quantitative comparison where testing sets are synthe-
sized under the second complicated setting. Clearly, even in this hard case, our
proposed KXNet still achieves the most competing performance and consistently
outperforms other comparison methods on the four benchmark datasets with
different SR scales. This comprehensively substantiates the generality of the
proposed method and it potential usefulness in real-world scenarios.

Fig. 4 visually displays the SR results on img014 from Set14 and img078
from Urban100 where the corresponding LR images are synthesized based on
the second settings. As seen, almost all the blind comparison methods cannot
finely reconstruct the image details. However, our KXNet achieves superior SR
performance and the SR images contain more useful textures and sharper edges.
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Table 2: Average PSNR/SSIM of all the comparing methods (Setting 2).

Method Scale
Urban100 [17] BSD100 [28] Set14 [52] Set5 [4] Noise
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM Level

Bicubic

x2

23.00 0.6656 25.85 0.6769 25.74 0.7085 27.68 0.8047

0

RCAN [59] 23.22 0.6791 26.03 0.6896 25.92 0.7217 27.85 0.8095
IKC [14] 27.46 0.8401 29.85 0.8390 30.69 0.8614 33.99 0.9229
DASR [43] 26.65 0.8106 28.84 0.7965 29.44 0.8224 32.50 0.8961
DAN [25] 27.93 0.8497 30.09 0.8410 31.03 0.8647 34.40 0.9291
KXNet(ours) 28.33 0.8627 30.21 0.8456 31.14 0.8672 34.59 0.9315
Bicubic

x3

21.80 0.6084 24.68 0.6254 24.28 0.6546 25.78 0.7555
RCAN [59] 21.38 0.6042 24.47 0.6299 24.07 0.6606 25.63 0.7572
IKC [14] 25.36 0.7626 27.56 0.7475 28.19 0.7805 31.60 0.8853
DASR [43] 25.20 0.7575 27.39 0.7379 27.96 0.7727 30.91 0.8723
DAN [25] 25.82 0.7855 27.88 0.7603 28.69 0.7969 31.70 0.8940
KXNet(ours) 26.37 0.8035 28.15 0.7672 29.04 0.8036 32.53 0.9034
Bicubic

x4

20.88 0.5602 23.75 0.5827 23.17 0.6082 24.35 0.7086
RCAN [59] 19.84 0.5307 23.10 0.5729 22.38 0.5967 23.72 0.6973
IKC [14] 24.33 0.7241 26.49 0.6968 27.04 0.7398 29.60 0.8503
DASR [43] 24.20 0.7150 26.43 0.6903 26.89 0.7306 29.53 0.8455
DAN [25] 24.91 0.7491 26.92 0.7168 27.69 0.7600 30.53 0.8746
KXNet(ours) 25.30 0.7647 27.08 0.7221 27.98 0.7659 30.99 0.8815
Bicubic

x2

22.19 0.5159 24.44 0.5150 24.38 0.5497 25.72 0.6241

15

RCAN [59] 21.28 0.3884 22.98 0.3822 22.96 0.4155 23.76 0.4706
IKC [14] 24.69 0.7208 26.49 0.6828 26.93 0.7244 29.21 0.8260
DASR [43] 24.84 0.7273 26.63 0.6841 27.22 0.7283 29.44 0.8322
DAN [25] 25.32 0.7447 26.84 0.6932 27.56 0.7392 29.91 0.8430
KXNet(ours) 25.45 0.7500 26.87 0.6959 27.59 0.7422 29.93 0.8449
Bicubic

x3

21.18 0.4891 23.55 0.4961 23.28 0.5289 24.42 0.6119
RCAN [59] 20.22 0.3693 22.20 0.3726 21.99 0.4053 22.85 0.4745
IKC [14] 24.21 0.7019 25.93 0.6564 26.42 0.7018 28.61 0.8135
DASR [43] 23.93 0.6890 25.82 0.6484 26.27 0.6940 28.27 0.8047
DAN [25] 24.17 0.7013 25.93 0.6551 26.46 0.7014 28.52 0.8130
KXNet(ours) 24.42 0.7135 25.99 0.6585 26.56 0.7063 28.64 0.8178
Bicubic

x4

20.38 0.4690 22.83 0.4841 22.39 0.5120 23.33 0.5977
RCAN [59] 19.23 0.3515 21.47 0.3686 21.05 0.3960 21.77 0.4689
IKC [14] 23.35 0.6665 25.21 0.6238 25.58 0.6712 27.45 0.7867
DASR [43] 23.26 0.6620 25.20 0.6223 25.55 0.6683 27.32 0.7842
DAN [25] 23.48 0.6742 25.25 0.6283 25.72 0.6760 27.55 0.7938
KXNet(ours) 23.67 0.6844 25.30 0.6296 25.78 0.6792 27.66 0.7977

5.3 More Analysis and Verification

Number of Iterations for KXNet. To explore the effectiveness of KXNet, we
investigate the effect of the number of iterations on the performance of KXNet.
In Tab. 3, S = 0 means that the initialization X(0) and K(0) are directly used
as the recovery result. Taking S = 0 as a baseline, we can clearly see that when
S = 5, our method has been able to achieve a significant recovery performance
which strongly validates the effectiveness of K-net and X-net. Beside, since larger
stages would make gradient propagation more difficult, the case S = 21 has the
same PSNR to the case S = 19. Thus, we set S = 19 for this work.

Non-Blind Super-Resolution.We provide ground truth (GT) kernel to verify
the effectiveness of KXNet and other method on Set14 [52]. Providing blur kernel
for KXNet and DAN, namely KXNet(GT kernel) and DAN(GT kernel), the
PSNR of the results are 32.85 and 32.67, respectively. While the baseline KXNet
with unknown blur kernel is 31.97. This means that when we provide X-net with
an accurate blur kernel, the restoration accuracy can be further improved while
illustrating the rationality and superiority of X-net for image restoration.
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Fig. 5: (a) The estimated SR image and the extracted blur kernel at different
iterative stages of KXNet. (b) Performance comparison under different blur ker-
nel settings on Set14 [52] (scale = 4, noise = 0).

Table 3: Effect of stage number S on the performance of KXNet on Set14.

Stage No. S=0 S=5 S=10 S=17 S=19 S=21

PSNR 25.74 29.91 30.57 30.96 31.14 31.14
SSIM 0.7085 0.8400 0.8556 0.8631 0.8672 0.8665
Params(M) - 1.72 3.42 5.82 6.50 7.18
Speed(seconds) - 0.51 0.54 0.58 0.59 0.64

Stage Visualization. Owning to the full embedding of the physical genera-
tion mechanism, the proposed KXNet can facilitate us to easily understand the
iterative process via stage visualization. As shown in Fig. 5(a), it presents the
estimated SR images and the predicted blur kernel at different stages, where
the blur kernel is simply initialized as standard Gaussian kernel. Clearly, with
the increasing of the iterative stages, the extracted blur kernel has a better and
clearer pattern, which is getting closer to the GT kernel. Correspondingly, the SR
image is gradually ameliorated and achieves higher PSNR/SSIM scores. This in-
terpretable learning process is the inherent characteristic of the proposed KXNet
which is finely guided by the mutual promotion between K-net and X-net.

Robustness to Blur Kernel. To comprehensively validate the effectiveness of
the proposed method and its advantage over blur kernel extraction, we compare
the SR performance of different methods on synthesized Set14 [52] with different
blur kernel widths. As displayed in Fig. 5(b), as the structures of the testing blur
kernels become more complex, the performance of most comparison methods has
severely deteriorated. However, the proposed KXNet can consistently achieve the
most competing PSNR scores and the fluctuation is very small. This result fully
shows that our method has better robustness to the types of blur kernels and it
has better potential to deal with general and real scenes.

5.4 Inference Speed

Based on Set5 under setting2 (scale=2, noise=0), we evaluate the inference time
computed on an P100 GPU. For every image, the average testing time for IKC
[14], DAN [25], and our proposed KXNet are shown in Tab. 4. Clearly, compared
to these representative SOTA methods, our method has high inference speed and
better computation efficiency, which is meaningful for real applications.
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Table 4: Average inference speed of different methods on Set5.

Methods IKC [14] DAN [25] KXNet

Times (s) 2.15 0.52 0.38

IKC [14] DASR [43] DAN [25] Real-ESRGAN [44] KXNet

Fig. 6: Visual comparison on RealSRSet with scale factor as 4.

5.5 Experiments on Real Images

We further evaluate the effectiveness of our method for real-world image restora-
tion on RealSRSet [54]. As shown in Fig. 6, the proposed KXNet can recover
clearer edges and generate more useful information.

6 Conclusion

In this paper, we have proposed an end-to-end blind super-resolution network
for SISR, named as KXNet. In specific, we analyze the classical degradation pro-
cess of low-resolution (LR) images and utilize the proximal gradient technique to
derive an optimization algorithm. By unfolding the iterative steps into network
modules, we easily construct the entire framework which is composed of K-net
and X-net, and the explicit physical generation mechanism of blur kernels and
high-resolution (HR) images are fully incorporated into the entire learning pro-
cess. Besides, the proposed KXNet has better potential to finely extract different
types of blur kernels which should be useful for other related tasks. All these ad-
vantages have been fully substantiated by comprehensive experiments executed
on synthesized and real-world data under different degradation settings. This
also finely validates the effectiveness and generality of the proposed KXNet.
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