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1 More Ablation Studies

1.1 Effect of η in Eq. (5)

Recall that in Eq. (5), η is a manually set hyper-parameter used to balance
the numerical difference between the calculated cost and the PSNR estimate
in the inference stage. A larger η leads to a preference to the subnet with a
larger estimated PSNR p̄j

k̂
. To better illustrate the process of subnet selection in

Eq. (5), we plot the Edge-to-PSNR lookup tables of different subnets as well as
the interpolation branch (denoted as NW [0:0]) using different η in Fig. 1.

Fig. 1. The impact of η in Eq. (5). The background color indicates the selected subnet
or interpolation branch according to the edge score.

As shown in Fig. 1 (a), when the available computation is close to zero,
we take a small value for η and then ARM automatically selects the branch
with the highest PSNR, i.e., interpolation branch (green background), for all
edge score patches to satisfy the computational constraint. When there are more
calculations available, we can set η to a larger value (such as Fig. 1 (b)(c)). In
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Fig. 1 (b), for example, when the edge score of the patches is small (e.g., edge
score < 10), ARM will select the interpolation branch (green background) for
these patches; when the edge score is moderate (e.g., edge score ∈ (10, 180)),
ARM will select subnet1 (blue background) for these patches; For larger edge
scores, subnet2 (yellow background) will be selected. Finally, we set η to a large
value when there are many computation resources available. In this case, ARM
selects the largest subnet3 to super-resolution almost all patches. It is worth
noting that for very “easy” patches, ARM still chooses interpolation rather than
always selecting the subnets, since for these patches, interpolation outperforms
all sizes of subnets.

We use some images from Test2K as examples to illustrate how ARM auto-
matically adjusts the calculation based on the same pre-trained ARM supernet
with different η settings at inference time. The results are shown in Fig. 3. As
the η increases, more and more patches are selected to use a larger subnet for
super-resolution, thus gradually improving the PSNR. It can also be seen that
in Fig 3, the ARM achieves better performance with fewer FLOPs than the
backbone network and the previous SOTA dynamic SISR method [1].

1.2 Effect of K subintervals
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Fig. 2. Effect of different values of K.

Our Edge-to-PSNR Lookup Tables
are constructed by splitting the edge
score interval into a total of K subin-
tervals and then averaging over all
PSNR values within each interval as
the estimated PSNR. Fig. 2 analyzes
the impact of K. For a small value
of K, the estimated PSNR is loosely
scattered, which causes an inaccu-
rate PSNR estimation. Increasing the
value of K leads to a more well-fitted
edge-psnr mapping. Though a larger
K may result in a better estimation,
more parameters from the lookup ta-
bles are introduced. In our experi-
ment, we set K = 30 across all the
experiments for a better tradeoff and
observe high-performing results as well.

2 The inference speed

We measure the average inference time per image on Test2K dataset on a single
core of Intel Xeon Platinum 8255C CPU. The results are listed in Table 1. Due to
limited rebuttal time, no further speed optimization was conducted for hardware,
so the actual speedup ratio was somewhat different from the theoretical speedup
ratio. Despite, ARM still has some speed advantage over backbone and ClassSR.
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Test2K 1226 Test2K 1257

ARM-FSRCNN: 30.33dB / 102MB (22%) 
ClassSR-FSRCNN: 30.29dB / 221MB (47%)
FSRCNN: 30.29dB / 468M (100%)

ARM-FSRCNN: 24.19dB / 228MB (49%) 
ClassSR-FSRCNN: 24.18dB / 319MB (68%)
FSRCNN: 24.18dB / 468M (100%)

ARM-FSRCNN: 30.33dB / 107MB (23%) 
ClassSR-FSRCNN: 30.29dB / 221MB (47%)
FSRCNN: 30.29dB / 468M (100%)

ARM-FSRCNN: 24.20dB / 237MB (51%) 
ClassSR-FSRCNN: 24.18dB / 319MB (68%)
FSRCNN: 24.18dB / 468M (100%)

ARM-FSRCNN: 30.35dB / 127MB (27%) 
ClassSR-FSRCNN: 30.29dB / 221MB (47%)
FSRCNN: 30.29dB / 468M (100%)

ARM-FSRCNN: 24.21dB / 264MB (56%) 
ClassSR-FSRCNN: 24.18dB / 319MB (68%)
FSRCNN: 24.18dB / 468M (100%)

ARM-FSRCNN: 30.35dB / 132MB (28%) 
ClassSR-FSRCNN: 30.29dB / 221MB (47%)
FSRCNN: 30.29dB / 468M (100%)

ARM-FSRCNN: 24.22dB / 264MB (62%) 
ClassSR-FSRCNN: 24.18dB / 319MB (68%)
FSRCNN: 24.18dB / 468M (100%)

Fig. 3. Examples of super-resolution visualization of ARM-FSRCNN with different η.
The green, blue, yellow and red masks on the patch indicate that ARM uses interpo-
lation, subnet1, subnet2 and subnet3 for super-resolution of the patch, respectively.
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Table 1. The results of latency (Lat.) of Test2K with FSRCNN as the backbone. The
latency is the average of five trials.

Model FSRCNN ClassSR ARM-L ARM-M ARM-S

FLOPs/M 468 (100%) 311 (66%) 366 (78%) 289 (62%) 245 (52%)
Lat./ms 542.25 549.48 540.55 531.36 518.96
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