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Abstract. Between the imaging sensor and the image applications, the
hardware image signal processing (ISP) pipelines reconstruct an RGB
image from the sensor signal and feed it into downstream tasks. The
processing blocks in ISPs depend on a set of tunable hyperparameters
that have a complex interaction with the output. Manual setting by
image experts is the traditional way of hyperparameter tuning, which is
time-consuming and biased towards human perception. Recently, ISP has
been optimized by the feedback of the downstream tasks based on differ-
ent optimization algorithms. Unfortunately, these methods should keep
parameters fixed during the inference stage for arbitrary input without
considering that each image should have specific parameters based on its
feature. To this end, we propose an attention-aware learning method that
integrates the parameter prediction network into ISP tuning and utilizes
the multi-attention mechanism to generate the attentive mapping be-
tween the input RAW image and the parameter space. The proposed
method integrates downstream tasks end-to-end, predicting specific pa-
rameters for each image. We validate the proposed method on object
detection, image segmentation, and human viewing tasks.

1 Introduction

Hardware ISPs are low-level image processing pipelines that convert RAW sensor
data into images suitable for human viewing and downstream tasks. Hardware
ISPs introduce several processing blocks that are less programmable and operate
efficiently at real-time applications [43, 8]. ISPs are widely used in a variety of
devices like cameras [3], smartphones, self-driving vehicles, and surveillance [30].

Existing processing blocks in hardware ISPs are configurable and sensitive
with a set of user-tunable hyperparameters. These hyperparameters affect not
only the output images but also the downstream tasks [31, 13]. It is important
and still challenging to find optimal ISP hyperparameters for different specific
tasks. In general, the industries rely on image experts to manually tune the pa-
rameters on a small typical dataset [1]. This artificial process is time-consuming
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Fig. 1. Illustrations of different ISP tuning methods. (a) Previous methods leverage
a mapping between the parameter space and high-level evaluation metrics based on
differentiable approximations or hardware ISP. (b) Our proposed framework firstly
constructs an attention-aware prediction network between RAW sensor data and pa-
rameter space, and then follows the previous work to create the mapping function
between the parameter space and high-level evaluation metrics.

and biased toward human perception, and especially hard to subjectively find
task-specific optimal hyperparameters for various downstream tasks, such as ob-
ject detection and image segmentation [38, 39].

Hence, the potential of automated loss-based ISP hyperparameter optimiza-
tion [35, 40] comes into sight. A full grid search is not an alternative way due
to the large parameter space. Instead, several recent works reproduce the en-
tire ISP transformation with software approximations [20, 17], then implement
derivative-free methods [27] or gradient methods based on differentiable approx-
imation [36, 15, 33]. These methods leverage a relationship between high-level
evaluation metrics and the parameter space but ignore the mapping from the
input RAW images to the parameter space. In addition, some methods try to
directly optimize the hardware ISP with evolution strategy[11] in an end-to-end
way [26]. They chose reasonably reduced search spaces and let the evolutionary
algorithms do the exploration. However, during the inference stage, these meth-
ods should set fixed hyperparameters tuned in the training stage, which leads to
being eclectic, not discriminative for a wide variety of input images.

In this work, we tune the ISP based on the statistical relationship among
the input image, the parameter space, and the high-level evaluation metrics of
downstream tasks. The optimal ISP settings should have high relevance with raw
sensor data (low-level pixel-wise information [23], such as texture, exposure) and
the scenario of downstream tasks (high-level semantic information, such as object
location and object categories [9]). So we decouple the ISP pipelines into two
modules: attention-aware prediction network and differentiable proxy network.
The first module aims to construct a mapping function from RAW sensor data
to parameters space, and the second one tries to reveal the relationship between
the parameter space and high-level evaluation metrics, as shown in Figure 1.

To construct a mapping function from RAW sensor data to parameters space,
we propose an attention-aware prediction network for ISP hyperparameter pre-
diction, which is able to learn the natural information from the RAW low-level
feature through Parameter Prediction Path. Further on, it is important to attach
weights [24] to specific locations, which makes different hyperparameters distinc-
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tively contribute to the input image. Hence, we introduce a multi-scale attention
mechanism, named Multi-Attention Path, into the parameter prediction path,
which aims to better represent the discrimination of different processing blocks.
Multi-attention path enables the network exchange and aggregates the multi-
scale information, and highlights the activation map for each hyperparameter of
ISP by adaptively selecting multi-scale features. Meanwhile, to reveal the rela-
tionship between the parameter space and high-level evaluation metrics, we use
a differentiable proxy network to mimic hardware ISP and use the output of the
proxy network as the input for downstream tasks.

In our proposed framework, two differentiable networks, attention-aware pre-
diction network and differentiable proxy network based on fully convolutional
network(FCN) [36], are constructed and optimized end-to-end by using feed-
back from the high-level downstream task, and the predicted parameters of ISP
are task-specific. We validate the proposed method in a variety of applications,
including object detection, image segmentation, and human viewing. For these
applications, we demonstrate that our method has better results compared with
manual tuning methods and existing numerical optimization methods.

The contributions of this paper can be summarized as follows:

– We propose a novel framework for hyperparameter prediction in ISP that
directly infers parameters based on RAW images while integrating down-
stream tasks in an end-to-end manner. For inference, our method can give
distinctive results for each image suitable to the downstream task.

– We introduce a Multi-Attention structure for the parameter prediction net-
work. It enables the network exchange and aggregate the multi-scale infor-
mation, and highlight the activation map for hyperparameter of ISP.

– We validate the effectiveness of ISP hyperparameter prediction on 2D object
detection, image segmentation, and human observation tasks. In these appli-
cations, our method approach outperforms existing numerical optimization
methods and expert tuning.

Limitations: In the objective evaluation, such as object detection and image
segmentation, the performance of the proposed method is compared with recent
existing methods based on synthetic ISPs. However, the synthetic ISPs used have
similar processing pipelines but not exactly the same. Further on, the subjective
evaluation is compared with expert tuning methods, which bias towards hu-
man visual perception. Therefore, it is important to build a standard Synthetic
ISP and standard subjective evaluation metrics. We believe that the release of
relevant standard modules will be critical for future works on ISP tuning.

2 Related Work

There are several image processing components in the ISP pipelines. In tradi-
tional ISP, a specific algorithm is developed for each associated ISP component.
Such a divide-and-conquer strategy decomposes the complex ISP design problem
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into many sub-tasks. These sub-problems are always formed by tens to hundreds
of handcrafted parameters and tuned towards to perception of imaging experts.

Recently, to tackle this challenging optimization problem, several automatic
ISP tuning methods optimize the hyperparameters with downstream task feed-
back[5, 4, 44]. The impact of ISP hyperparameter on the performance of a down-
stream task is well explored in [2, 41, 7, 39]. Tseng et al. [36] optimizes ISP for
object detection and classification using IoU. Mosleh el al. [26] utilizes object
detection and object segmentation with mAP and PQ. Wu et al. [38] optimizes
a simple ISP with an object detection task.

With the high-level feedback information, recent works always leverage a
differentiable mapping between the parameter space and high-level evaluation
metrics. Some existing optimization methods explore the optimal parameters
from reasonably large reduced search spaces via an implicit end-to-end loss. For
instance, Pfister et al. [29] proposes to optimize sparsity regularization for de-
noising. Nishimura et al. [27] optimizes software ISP model with a 0-th order
Nelder-Mead method. However, it can only be used to optimize one ISP compo-
nent at a time. Mosleh et al. [26, 32] directly optimizes hardware ISP by a novel
CMA-ES strategy[12] with max-rank-based multi-objective scalarization and ini-
tial search space reduction. Robidoux et al. The other methods try to reproduce
the entire ISP transformation with a CNN-based differentiable proxy [15, 10,
42]. For instance, Tseng et al. [36] trained an approximate CNN proxy model to
mimic hardware ISP and optimized the differentiable CNN model with Stochas-
tic Gradient Descent. Kim et al. [19] utilize the objective function of multi-output
regression for modeling the relation between ISP parameter and IQM score. On-
zon et al. [28] propose a neural network for exposure selection that is jointly
end-to-end with an object detector and ISP pipeline. However, these methods
should set fixed hyperparameters during the inference, which lack diversity and
discrimination for various input RAW images.

Therefore, we believe that ISP tuning should require more knowledge to
reveal the relationship among the raw image, parameter space, and the high-level
evaluation metrics. The difference between our approach and the others is that
we both construct an attention-aware prediction network and the differentiable
proxy network. We not only train an ISP proxy to approximate the entire ISP
as a RAW-to-output RGB image transfer function, but we also construct the
parameter prediction network to explicitly joint optimized the trainable ISP
with the downstream vision tasks.

3 Image Processing Pipelines

ISPs are low-level pipelines composed of many processing stages, generally con-
verting RAW sensor pixels into human-viewing images. We briefly review the
most common ISP modules and their associated parameters. The ISP whose
parameters are optimized in this paper contains the following typical stages [6]:

(1) Optics and Sensor: The scene radiation is focused on the sensor through
an assembly of lenses. The color filter array on the camera filters the light into
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three sensor-specific RGB primaries, and the RAW pixel output of the sensor is
linearly related to the irradiance falling on the sensor.

(2) Noise Reduction: Denoising is applied after the A/D conversion, which is
done by blurring the image. Blurring will reduce noise but also remove details.

(3) DigitalGain and White Balance: After removing the black level bias and
correcting defective pixels, the imaging sensor signal is amplified and digitized.
The pixel values are color-corrected and gain-adjusted according to the white-
balance matrices for common or automatically estimated illuminations.

(4) Demosaicking: Convert the color filter array over pixel sensors to RGB
values for each pixel by performing interpolation.

(5) Color Space Transform: Map the white-balanced raw-RGB values to CIE
XYZ using a 3x3 color space transform matrix, where CIE XYZ is a canonical
color space definition.

(6) Sharpening: Compensate the outline of the image, enhance the edges and
the part of the grayscale jump, make the image details enhanced.

(7) Color and Tone Correction: This is the stage to improve overall image
appearance, including applying gamma curves and adjusting image contrast by
histogram operations.

(8) Compression: Pixels values compressed to JPEG and storage.
Our ISP model fISP takes RAW Pixel values as input and models stages (2)

to (8). This ISP converts the RAW image I into an RGB image OISP.

OISP = fISP(I;P), P ∈ RN
[0,1] (1)

where I ∈ RW×H , OISP ∈ RW×H×3. The conversion is modulated by the values
of N continuous hyperparameters P with a range of values normalized to [0, 1].
For the discrete parameters in ISP, mapping them to continuous values within
the range of values facilitates prediction [26].

4 Method

4.1 Framework

For a RAW image I from an imaging sensor, our aim is to predict N parameters
P = {p1, p2, . . . , pN} for the target ISP. The original image I generates an RGB
output image OISP = fISP(I;P) after the ISP processing under the parameter
P setting, and OISP is used as the RGB image input for the downstream task.
In this paper, we focus on downstream tasks that conform to human viewing
preferences and visual analysis tasks.

Our approach is to learn an approximation function P̂ = fpred(I;W) that
directly utilizes the raw sensor data to predict the parameter P, where W de-
notes the trainable weights. Then we utilize the feedback from the downstream
task, making OISP = fISP(I; P̂) favorable for it. The performance of fpred is
determined by the parameters W of the network, and then W is learned by
minimizing the high-level loss function.

Ltask(OISP) = Ltask(fISP(I; P̂)) = Ltask(fISP(I; fpred(I;W))) (2)
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Fig. 2. Proposed attention-aware Learning framework and proxy architecture. (a)
Attention-aware prediction network, each block consists of 3x3 conv, max pooling,
and ReLU unit ; (b) Training ISP differentiable CNN proxy for mimic the hardware
ISP; (c) Fixing learned parameters of the CNN-based ISP and the downstream task
model, and optimizing input parameters itself given a high-level loss function. (d) Run-
time execution using Hardware ISP architecture with predicted parameters.

where Ltask is defined as the loss function for the downstream task, e.g., L2 loss
with the reference image is used for conforming to human viewing preferences,
and loss with a combination of classification and location regression is used
for the object detection task. Since ISPs are non-differentiable black-box units,
in order to utilize feedback from downstream tasks for parameter prediction
network, a differentiable proxy network [36] based on FCN is built. The black-
box ISPs are modeled as shown in Eq. 1. The proxy ISP fPROXY(I,P;Wproxy)
consists of an fully connected network, taking I and hyperparameters P as inputs,
and Wproxy as fPROXY learnable CNN weights. The proxy should achieve such a
goal: OPROXY ≈ OISP. The optimal weights W∗

proxy are optimized by minimizing
the loss function and then froze for training the prediction network:

Lproxy = ||fPROXY(I,P;Wproxy)− fISP(I;P)||. (3)

After fpred predicts the parameters P̂ of I, P̂ with I are fed to the proxy ISP
fPROXY to produce an output image which is used as input for the downstream
task. Since the proxy function fPROXY is differentiable for W, we can achieve an
end-to-end learning process to jointly optimize the whole framework. The process
of optimizing W on M images can be performed on the parameter prediction
network fpred and FCN-based proxy network using the supervised information
from downstream tasks.

W∗
task = argmin

{W}

M∑
i=1

Ltask(fPROXY(Ii, fpred(Ii;W);W∗
proxy)). (4)

In the inference stage, the parameter prediction network fpred can estimate
the optimal parameters P∗

task for the downstream task based on the raw data I.

P∗
task = fpred(I;W

∗
task). (5)
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Further on, aiming to discriminate the effects of the parameters on input
images, we design a novel structure based on a multi-scale attention structure.
Figure 2 illustrates our network structure.

4.2 Attention-aware Parameter Prediction Network

Parameter Prediction Path The semantic information contained in the RAW
Image largely determines the parameter fetching, so we design a parameter pre-
diction network that generates a prediction path with multiple encoders to im-
plement the encoding from the RAW Image to the target parameters, which
is illustrated in Figure 2. For the input Bayer array, we split the input data
into three channels with RGB values respectively. Then, the formatted input is
fed into a fully convolutional neural network. Followed by several convolutional
blocks, the spatial resolution of the feature map is smaller than the size of the
input RAW Image, and the number of channels is the number N of parameters
P. The output feature maps are finally passed to a weighted pooling layer for
local-to-global aggregation:

pi =

m∑
j=1

ci(Rj)gi(Rj), i = 1, . . . , N (6)

where R = {R1, R2, . . . , Rm} is a set of overlapping perceptual field regions of
the original image I, m is the number of R. Meanwhile, different local regions
will generate different local parameter prediction gi(Rj) because they have dif-
ferent semantic information. The ci(Rj) represents the degree of attention of
the parameter pi for the local region Rj , which will be expressed in detail in
Multi-Attention Path.

For predicting the value gi(Rj) of the parameter pi on the local region R, we
utilize five encoders for extracting the higher-level features from the image. In
Parameter Prediction Path, different local regions in the image are progressively
abstracted into high-level representations. Each encoder contains a 3x3 convolu-
tion followed by a ReLU unit and a 2x2 maximum pooling operation for span-2
downsampling. During each encoder, the number of feature channels is doubled.
Subsequent convolution kernels with 1x1xN are used to downsample the feature
maps while generating parameter estimation maps for N channels.

Multi-Attention Path We believe that the parameter prediction network
should highly focus on the semantically informative parts while ignoring the
semantically ambiguous regions on the input image. For this purpose, we added
the attention path to the network, shown in Eq. 6. For the specific local region
R, the value of the function ci(R) will reflect the effectiveness of the parameter
pi to the image region R. If the semantic information on R is informative for the
setting of the parameter pi, the value of ci(R) will be large, which will make the
prediction pi on R, gi(R) have a greater influence.

Since different parameters p of ISP processing blocks have different functions,
the attentive regions are not the same for different p. Here, we combine the multi-
scale features from the parameter prediction path to generate Multi-level atten-
tion, and Figure 2 shows the structure. Specifically, we add one channel to each
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encoder. The feature maps on these five channels are named Multi-Level features
{F1,F2,F3,F4,F5}, which contains different levels of semantic information of the
input image. Then, we introduce a zoom-in-zoom-out attention module, which
utilizes interpolation (UpSampling) and max-pooling (DownSampling) opera-
tions to keep the same size as F3, and concatenates the feature maps separately.
Finally, the multi-scale features are downsampled twice, and undergo convolu-
tion of 3x3 and 1x1xN to generate the Multi-Attention Path. The size is the
same as the size of the parameter prediction path outputs, and the number of
channels for both maps is the number of parameters N. The ith channel are
corresponding to the parameter pi.

The prediction path G(R) generates the following set of parameter predic-
tions, which correspond to local regions R for different parameters p:

G(R) = {g1(R), g2(R), . . . gN (R)} (7)

At the same time, the multi-attention path C(R) can predict the attention
of the local region Rj for different parameters p:

C(R) = {c1(R), c2(R), . . . cN (R)} (8)

Finally, as in the Eq. 6, the results of the parameter prediction path and
multi-attention path are integrated to generate the global prediction results for
all parameters. In this process, each parameter can automatically select and fuse
the attention at different levels to obtain targeted regions.

5 Experiments

5.1 Settings

We validate the proposed ISP hyperparameter prediction method on the follow-
ing downstream tasks and datasets:

(1) 2D object detection using [31] on MS COCO [22]. Using a synthetic (sim-
ulated) ISP processing simulated RAW as the upstream module for the task. The
processing blocks of the ISP are described in Sec.3 with 20 ISP hyperparameters.

(2) Instance segmentation using [13] on COCO, which has the same ISP
settings as the 2D object detection task.

(3) Perceptual image quality for human viewing. The dataset was collected by
SONY IMX766 CMOS sensor. The reference images are obtained by Qualcomm
Spectra 580 ISP processing, with 32 expert-tuned ISP hyperparameters. The
synthetic ISP processing 4096x3072 RAW data from the sensor is the upstream
module for the task.

In the training stage, the RAW image is the input to the model and generates
the corresponding predicted hyperparameters. The predicted parameters and
the RAW image are used as input to the proxy ISP, which later outputs the
RGB image. The proxy ISP has fixed network weights as described in Sec.4.1.
We train the parameter prediction network from scratch using the loss of the
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Fig. 3. Image understanding evaluation: Object Detection on COCO (left), Image Seg-
mentation on COCO (right). Default ISP hyperparameters (top), expert-tuned hyper-
parameters (middle), and our method (bottom). Our prediction achieve better perfor-
mance for downstream tasks.

downstream task and the RMSprop optimizer. For the object detection and
image segmentation tasks, we use the loss with a combination of classification
and location regression; for the human viewing optimization task, we use the
L2 loss between the RGB output and the reference image. The learning rate is
initially set to 10−4 and reduced to 10−6 after 200 epochs. The training was
performed for 400 epochs. More details of the training procedure are described
in the supplementary material.

In the evaluation stage, we use the RAW image from the test set as model
input to predict the hyperparameters for each RAW image. The RAW image
and hyperparameter pairs are processed into the ISP to obtain the RGB output.
For the object detection and image segmentation tasks, the RGB outputs are
used as input, and the evaluation metric uses mean average precision(mAP) [22].
The PSNR and SSIM between the RGB outputs and the corresponding reference
images are used as evaluation metrics for the human viewing optimization task.

5.2 ISP Hyperparameter Prediction for Object Detection

In this task, we use an existing sRGB dataset and a synthetic ISP to evaluate our
hyperparametric prediction method. Since the input of the ISP is RAW data,
we processed sRGB images with RAW data simulation [18]. For the task of
object detection using [31] on the MS COCO dataset [22], we trained and tested
our hyperparameters prediction results. The results in Table 1 demonstrate that
our method has a greater improvement in the default parameters than the recent
methods and has the best final results. While the images produced by our expert-
tuned ISP are more consistent with human perception (see Figure 3), the images
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Table 1. Synthetic ISP optimization for Object Detection on COCO. It is important
to point out that our ISP has similar processing pipelines compared with the ISPs used
in other methods. So we borrow the results from [26].

ISP Model mAP0.5 mAP0.75 mAP0.5:0.95

Default Parameters
Synthetic
ISP [26]

0.15 - -
blockwise-tuned for Object Detection 0.20 - -
Expert-tuned for Image Quality 0.35 - -
Hardware-tuned for Object Detection 0.39 - -

Default Parameters
Synthetic
ISP Sec. 3

0.34 0.22 0.21
Expert-tuned for Image Quality 0.56 0.40 0.37
Predicted Parameters (Ours) 0.61 0.44 0.41

produced by our predicted parameters result in better performance for object
detection tasks. These images have emphasized texture details and color features
that are more in line with the preferences of the object detection compared to
the expert-tuned images.

5.3 ISP Hyperparameter Prediction for Image Segmentation

Table 2. Synthetic ISP optimization for Image Segmentation on COCO. It is important
to point out that our ISP has similar processing pipelines compared with the ISPs used
in other methods. So we borrow the results from [26].

ISP Model mAP0.5 mAP0.75 mAP0.5:0.95

Default Parameters
Synthetic
ISP [26]

0.12 - -
Expert-tuned for Image Quality 0.26 - -
Hardware-tuned for Segmentation 0.32 - -

Default Parameters
Synthetic
ISP Sec. 3

0.22 0.13 0.12
Expert-tuned for Image Quality 0.46 0.28 0.27
Predicted Parameters (Ours) 0.52 0.33 0.31

For the image segmentation task, we trained the prediction network end-
to-end with [13] a downstream task and validated the results on synthetic ISP
and simulated RAW COCO datasets. The results in Table 2 are shown that our
method has more significant improvement than other methods, and better final
results, especially better than the default parameters(baseline), Fig. 3 demon-
strates an example of our method with default parameters and expert-tuned
parameters for instance segmentation. It can be seen that our predicted param-
eters can adjust the texture and color of the image to match the preferences of
the image segmentation task. The parameters predicted by our model for each
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image achieve an improvement of 0.3 mAP0.5 compared to the default parame-
ters. Also, compared to the imaging experts tuned parameters for the task, the
parameters predicted by our model can achieve a mAP0.5 improvement of 0.1.

5.4 ISP Hyperparameter Prediction for Human Viewing

Expert-tuned ISP Hyperparameters Predicted Hyperparameters Expert-tuned ISP Hyperparameters Predicted Hyperparameters

Multi-scale activation attention

Fig. 4. Comparison of Expert-tuned hyperparameters and our method. These images
are processed by a synthetic ISP described in Sec. 3 to match the image quality of the
reference images generated by the Qualcomm Spectra580 ISP.

Unlike visual analysis tasks, subjective image quality is an attribute that
describes a preference for a particular image rendering [25]. This particular image
rendering should consider the visibility of the distortions in an image, such as
colour shifts, blurriness, noise, and blockiness [34]. Our goal is to predict the
hyperparameters on the synthetic ISP corresponding to the RAW image such
that the distance between the output of the synthetic ISP and the reference
image is minimized.

In this task, we train the hyperparameter prediction network using the L2

distance between the RGB output and the reference image as the loss function
described in the previous section. The proposed method predicts the hyperpa-
rameters of the synthetic ISP corresponding to the RAW image. We collected a
new dataset for training and testing the performance of the proposed method on
this task. To sufficiently validate the model, this dataset contains images from
108 different scenes. The RAW image is acquired by the IMX766 sensor, and
the corresponding reference image is generated by the Spectra 580 ISP, where
the hyperparameters of the ISP are set manually by our imaging experts. We
compared with the expert-tuned synthetic ISP output and the default hyper-
parameter settings, and the results are shown in Figure 5 (a). Compared with
the expert-tuned parameters, we have better PSNR and SSIM results between
the reference image and the RGB output produced by the predicted parameters.
This indicates that our predicted parameters are more consistent with human
preferences. Figure 4 shows our results on the human viewing task. It can be
seen that our predicted parameters produce images with clearer texture details,
better noise control, and human-adapted color features than the expert-tuned.
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Table A: Denoising experiments on SIDD dataset Figure A: Additional ablations

Encode block nums

PSNR with attention

W/O attention

Method ISP Module PSNR SSIM

Default

Proxy-opt. [36]

Pseudo-ISP [8]

Ours

BM3D

(Denoising)

25.65

34.34

34.91

38.42

0.685

0.911

-

0.937

Fig. 5. (a)Left: ISP tuning for Perceptual image quality using expert-tuned and the
proposed methods. (b)Middle: The scatter plot of the predicted hyperparameters on
different ISO ranges. (c)Right: The PSNR perfomance versus the number of encoding
blocks on the human viewing dataset.

5.5 Ablation Study

Parameter Prediction Path In general, the industries rely on image experts
to manually tune the parameters on a small typical dataset. The automatic ISP
methods set fixed hyperparameters tuned with downstream tasks in an end-to-
end way. In contrast, the proposed method can predict specific parameters for
each input image. We verify that this prediction method for RAW images has
better results than fixed parameters in this ablation study.

To demonstrate the diversity of the predicted parameters across images, we
chose several images based on different ISO ranges and plot scatter plots with
two parameters in the Noise Reduction module and the Sharpening module,
as shown in Fig. 5 (b). It shows that our method can self-adaptively optimize
the parameters on different lighting conditions. For noisy images in low light
conditions (high ISO), the predicted parameter is preferred to increase the noise
reduction level (filter strength) on the BM3D module. The results in Fig. 5 (a)
show that distinctive prediction parameters provide better performance than
fixed expert-tuned parameters. We also evaluate the performance and efficiency
of our network architecture design. We test the network performance by changing
the number of encoding blocks on the human viewing dataset. On this basis we
further validate our attention module, shown in Fig. 5 (c). Meanwhile, compared
with the previous methods [35, 26] which required hundreds of loops in the ISP
tuning process, our method is more efficient, a 4096x3072 RAW image with a 2x
down-sample can be processed in 0.5s by our method (on an NVIDIA RTX3090)
and 129.39 GFLOPS.

Also, we selected 300 representative images from the COCO [22] training
set and predict parameters by the proposed method. The mode of the discrete
predicted parameters and the mean of the continuous parameters as the fixed
hyperparameters, and fed into the synthetic ISP with the corresponding raw
image to generate sRGB output for detection and segmentation tasks. Table
3 demonstrate the value of diverse parameters for different images; averaging
and fixing the diverse parameters is a compromise process. It is important and
challenging to find optimal ISP hyperparameters for specific tasks.

Multi-Attention Path In Multi-Attention Path, the scoring map for each
parameter is multiplied by its corresponding attention map. The prediction re-
sults reflect the distinctive contributions of image patches to multi-target param-
eters. Figure 6 shows the attention maps created by our feature attention-based
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Table 3. Ablation study of evaluate the visual analysis results based on fixed pa-
rameters and diverse predicted parameters. And effectiveness analysis on proposed
multi-attention path. The first column is the results for object detection, and the sec-
ond is the results for image segmentation.

Detection Segmentation
mAP
0.5

mAP
0.75

mAP
0.5:0.95

mAP
0.5

mAP
0.75

mAP
0.5:0.95

Predicted P̂ (Fixed) 0.57 0.40 0.38 0.48 0.29 0.27

Predicted P̂ (W/O Attention) 0.57 0.41 0.38 0.47 0.30 0.28

Predicted P̂ (Single Attention) 0.58 0.43 0.40 0.50 0.31 0.30

Predicted P̂ (Self-attention [37]) 0.57 0.42 0.38 0.48 0.30 0.28

Diverse Predicted P̂ (Ours) 0.61 0.44 0.41 0.52 0.33 0.31

network. The Sharpening module (second row, prediction P̂1 ) does not signifi-
cantly affect texture-flat areas so that the attention map activates the features
in texture-rich areas in the image. The Noise Reduction module (third row,
prediction P̂2 ) is prone to remove noise in the background areas so that the
background with details in the image are activated via the attention map. For
P̂N (bottom row) in the WB module, a wider range of color features are activated
as reference areas for color prediction.

To verify the effectiveness of multi-attention, we replace the Multi-attention
Path with Single-Attention Path (the same attention map is used for all param-
eters predictions). We also test the results by removing the attention path and
only using Parameters Prediction Path for parameter prediction. It can be seen
from Table 3 that the methods with attention path have better performance
than those without attention module. The results indicate that it is a benefit for
learning the mapping between the raw input image and the parameter space by
highlighting high-value image regions. Meanwhile, the performance of uniform
single-attention for multi parameters is not well performed than Multi-Attention
scheme, which indicates that the effectiveness of the proposed multi-attention
path. In addition, in contrast to existing common designs, the attention structure
is specifically designed for ISP parameters prediction tasks, highlighting different
image details for various parameters predictions. To compare the multi-attention
structure with other common designs, we replace the multi-attention structure
by combining Parameters Prediction Path with Self-attention [37]. Experimen-
tal results show that the multi-attention structure that can combine features at
different scales and generate attention maps is more suitable for ISP hyperpa-
rameters prediction tasks and better performance.

6 Conclusions and future work

In this paper, we propose a novel ISP tuning framework named attention-aware
learning for hyperparameter prediction, compared with the existing CNN meth-
ods to simulate commercial ISPs, our method try to mimic the expert-tuning
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Fig. 6. Examples of attention map outputs by our network. It shows three attention
maps corresponding to different parameters for each image. P̂1 is in the sharpening
module, P̂2 is in the noise reduction module, and P̂N is in the WB module.

procedure via predicting the parameters for all ISP modules. It simultaneously
constructs the mapping functions between RAW input & parameter space and
the parameter space & high-level metrics. Considering that different hyperpa-
rameters make a distinctive contribution to the input image, we design a novel
multi-attention structure for jointly predicting the hyperparamter. Experimental
results demonstrate that the proposed method can improve the performance of
models.

The presented method needs to predict the hyperparameters directly while
the ISP processes the image and maintains the efficiency of ISP. The efficiency
of the proposed method is a crucial issue for deployment to ISPs for application.
The next step is to make the model lightweight through algorithms compression
and acceleration, including pruning policy [14, 21] and quantization policy [16],
can be an avenue of future research. Running the method efficiently on ISPs is
one of our future works.
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