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Abstract. Obtaining the ground truth labels from a video is challeng-
ing since the manual annotation of pixel-wise flow labels is prohibitively
expensive and laborious. Besides, existing approaches try to adapt the
trained model on synthetic datasets to authentic videos, which inevitably
suffers from domain discrepancy and hinders the performance for real-
world applications. To solve these problems, we propose RealFlow, an
Expectation-Maximization based framework that can create large-scale
optical flow datasets directly from any unlabeled realistic videos. Specif-
ically, we first estimate optical flow between a pair of video frames, and
then synthesize a new image from this pair based on the predicted flow.
Thus the new image pairs and their corresponding flows can be regarded
as a new training set. Besides, we design a Realistic Image Pair Ren-
dering (RIPR) module that adopts softmax splatting and bi-directional
hole filling techniques to alleviate the artifacts of the image synthesis.
In the E-step, RIPR renders new images to create a large quantity of
training data. In the M-step, we utilize the generated training data to
train an optical flow network, which can be used to estimate optical
flows in the next E-step. During the iterative learning steps, the capa-
bility of the flow network is gradually improved, so is the accuracy of
the flow, as well as the quality of the synthesized dataset. Experimen-
tal results show that RealFlow outperforms previous dataset generation
methods by a considerably large margin. Moreover, based on the gen-
erated dataset, our approach achieves state-of-the-art performance on
two standard benchmarks compared with both supervised and unsu-
pervised optical flow methods. Our code and dataset are available at
https://github.com/megvii-research/RealFlow.

1 Introduction

Deep optical flow methods [47,46] adopt large-scale datasets to train networks,
which have achieved good computational efficiency and state-of-the-art perfor-
mances in public benchmarks [34,3]. One key ingredient of these deep learning

https://github.com/megvii-research/RealFlow
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Fig. 1. Illustration of our motivation. Top: previous methods use synthetic motion to
produce training pairs. Bottom: we propose to construct training pairs with realistic
motion labels from the real-world video sequence. We estimate optical flow between
two frames as the training label and synthesize a ‘New Image 2’. Both the new view and
flow labels are refined iteratively in the EM-based framework for mutual improvements.

methods is the training dataset. We summarize four key characteristics of flow
datasets that have significant impacts on the success of deep learning algorithms:
1) the quantity of labeled pairs; 2) the quality of flow labels; 3) the image re-
alism; and 4) the motion realism. We refer to the first two as the label criteria
and the latter two as the realism criteria.

However, we find it is difficult for existing flow datasets to be satisfactory
in all aspects. For example, FlyingThings [31] synthesizes the flows by moving
a foreground object on top of a background image. Sintel [3] is purely rendered
from virtual 3D graphic animations. AutoFlow [44] presents a learning approach
searching for hyperparameters to render synthetic training pairs. As a result,
these methods can produce large amounts of training data with accurate flow
labels, satisfying the label criteria. However, they failed to meet the demand of
realism criteria, as both the scene objects and their motions are synthesized. If
flow networks are trained on these datasets, they may suffer from the domain
gap between the synthetic and authentic scenes [18], resulting in sub-optimal
performance on real-world images.

To achieve realism, some methods propose to manually annotate flow la-
bels using realistic videos [2,21]. Although these methods can naturally satisfy
the realism criteria, the process of manual labeling is time-consuming, and nei-
ther the quality nor the quantity can be guaranteed, potentially at odds with
the requirements for label criteria. Recently, Aleotti et al. [1] propose to create
training pairs from a single image. It randomly generates transformations as the
flow labels, based on which the image is warped to produce the other image,
yielding a pair of images together with the flow labels. In this way, the label
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Fig. 2. Illustration of the EM-based framework. In the E-step, we estimate flow labels
and synthesize new views to generate training data. In the M-step, we use the training
data to train a network, which can update flow labels for the next E-step.

criteria are satisfied. However, the realism criteria can only be satisfied partially.
Because, the synthesized images sometimes contain artifacts, and more impor-
tantly, the generated motions cannot resemble realistic object motion behaviors
of real-world scenarios.

To address these issues, we propose RealFlow, an iterative learning framework
to simultaneously generate the training pairs from realistic video frames and
obtain an enhanced flow network with the generated flow data, which can satisfy
both the label and realism criteria. Fig. 1 shows an illustration of our RealFlow in
comparison with existing methods. Previous work [44,5] (Fig. 1 top) synthesizes
the flows (motions) by pasting foreground objects on top of backgrounds at
different positions, where the motions are manually generated. In our approach
(Fig. 1 bottom), we first estimate the optical flows F between frame pairs (I1
and I2) from existing videos, and then exploit the predicted flows as labels to
synthesize I ′2, a set of new images of the ‘frame 2’. After that, we abandon the
original I2, and use the I1 and I ′2 as image pairs, together with the estimated F
as the flow labels to compose a sample (I1, I

′
2, F ) of the new optical flow dataset.

Note that the flow labels are naturally accurate for warping I1 to I ′2, since the
pixels in I ′2 are synthesized based on the F and I1.

This strategy faces two challenges: 1) image synthesis may introduce arti-
facts, e.g., disparity occlusions; 2) the motion realism is affected by the quality
of estimated flows. For the first challenge, we design Realistic Image Pair Render-
ing (RIPR) method to robustly render a new image I ′2. Specifically, we employ
softmax splatting and bi-directional hole filling techniques, based on the flow
and depth maps predicted from the image pairs I1 and I2, to generate the new
images, where most of the artifacts can be effectively alleviated. For the second
one, we design an Expectation-Maximization (EM) based learning framework,
as illustrated in Fig. 2. Specifically, during the E-step, RIPR renders new images
to create the training samples, and during M-step, we use the generated data
to train the optical flow network that will estimate optical flows for the next
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E-step. During the iterative learning steps, the capability of the flow network
is gradually improved, so is the accuracy of the flow, as well as the quality of
synthesized dataset. Upon the convergence of our EM-based framework, we can
obtain a new flow dataset generated from the input videos and a high-precision
optical flow network benefiting from the new training data.

By applying RealFlow, huge amounts of videos can be used to generate train-
ing datasets, which allows supervised optical flow networks to be generalized to
any scene. In summary, our main contributions are:

– We propose RealFLow, an EM-based iterative refinement framework, to
effectively generate large-scale optical flow datasets with realistic scene mo-
tions and reliable flow labels from real-world videos.

– We present Realistic Image Pair Rendering (RIPR) method for high-quality
new view synthesis, overcoming issues such as occlusions and holes.

– RealFlow leads to a significant performance improvement compared against
prior dataset generation methods. We generate a large real-world dataset,
with which we set new records on the public benchmarks using widely-used
optical flow estimation methods.

2 Related Work

Supervised Optical Flow Network. FlowNet [5] is the first work to estimate
optical flow by training a convolutional network on synthetic dataset. Follow-
ing FlowNet, early approaches [11,38,10,9] improve the flow accuracy with the
advanced modules and network architectures. Recent works [28,16,27] propose
graph and attention-based global motion refinement approaches in the recurrent
framework [47], making large progress on supervised learning. However, for the
existing supervised networks, the domain gap between synthetic datasets and
realistic datasets is non-negligible and inevitably degrades the performance. Our
work aims to generate datasets from realistic videos to solve this problem.
Unsupervised Optical Flow Network. The advantage of unsupervised meth-
ods is that no annotations are required for the training [15,40]. Existing works
[24,52,23,39,19,25] present multiple unsupervised losses and image alignment
constraints to achieve competitive results. However, there are many challenges
for unsupervised methods, including but not limited to, occlusions [48,13,26],
lack of textures [12], and illumination variations [33], all of which break the basic
hypothesis of brightness constancy assumption. Therefore, supervised networks
achieve better performance than unsupervised ones.
Dataset Generation for Optical Flow. Middlebury [2] records objects with
fluorescent texture under UV light illumination to obtain flow labels from real-
world scenes. Liu. et al. [21] propose a human-in-loop methodology to annotate
ground-truth motion for arbitrary real-world videos. KITTI [7,34] is a popular
autonomous driving dataset, which provides sophisticated training data through
complex device setups. However, the quantity of the above real-world datasets is
small, which is insufficient for deep supervised learning. Flyingchairs [5] makes
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Fig. 3. Illustration of Realistic Image Pair Rendering (RIPR). Given two frames I1
and I2 from real-world videos and their estimated flow fields F1→2 and F2→1, we first
obtain the depth D1 and D2 by the monocular depth network[36]. Then, we modify
the flow maps to F ′

1→2 and F ′
2→1 and use F ′

1→2 to check the hole mask M . Finally,
splatting method is used to generate new views Is1 and Is2 , which are further fused to
render ‘new image 2’ I ′2. The (I1,I

′
2,F ) serves as the new generated training pair.

the first attempt to show that synthesized training pairs can be used for super-
vised learning. Flyingthings [31] further improves the quantity. Virtual KITTI [6]
uses Unity game engine to create a large driving dataset. AutoFlow [44] presents
a learning approach to search the hyperparameter for rendering training data.
However, these datasets are all synthetic. There is a constant shift from syn-
thetic scene towards real-world scene. SlowFlow [14] attempts to collect large-
scale dataset using a high-speed video camera, but the flow labels are not totally
reliable. Efforts to tackle the above problem is Depthstillation [1], which synthe-
sizes a new image from a single real image. The motion labels are the sampled
parametric transformations for the foreground and background. However, the
sampled motions are not real, and the synthesis sometimes introduces artifacts.
In contrast, our method obtains reliable flow labels from real videos and synthe-
sizes the new view from two frames instead of a single image.

3 Method

3.1 RealFlow Framework

The pipeline of the proposed RealFlow framework is illustrated in Fig. 2. Given
a set of real-world videos, our goal is to generate a large-scale training dataset
and learn an optical flow estimation network at the same time. The key idea
behind RealFlow is that a better training dataset can help learn a better optical
flow network and inversely, a better network can provide better flow predictions
for dataset generation. Therefore, we integrate the dataset generation procedure
and optical flow network training procedure as a generative model, which can
be iteratively optimized by Expectation-Maximization (EM) algorithm [32].

As illustrated in Fig. 2, RealFlow is an iterative framework that contains
two main steps: E-step and M-step. In iteration t, we first conduct the E-step to
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generate a training dataset Xt = {xt}. Given a consecutive image pair (I1, I2)
sampled from the input videos, the training data generation procedure can be
formulated as follows:

xt = R(I1, I2, Θ
t−1), (1)

where Θt−1 is the learned optical flow network Θ in previous iteration t− 1, xt

is the generated training sample, and R represents our training pair rendering
method Realistic Image Pair Rendering (RIPR), illustrated in Sec. 3.2.

Then, in M-step, we use the newly generated dataset Xt to train and update
the optical flow estimation network in a fully supervised manner:

Θt = argmin
Θ

L(Xt, Θ), (2)

where L is the learning objective of the optical flow network. Finally, an opti-
cal flow dataset and a high-precision optical flow network can be obtained by
RealFlow with several EM iterations.

3.2 Realistic Image Pair Rendering

The pipeline of the proposed RIPR method is shown in Fig. 3. Given a pair of
consecutive images (I1, I2) and an optical flow estimation network Θ, our goal is
to generate an image pair with its flow label for network training. The main idea
is to render a new image I ′2 based on the image pair (I1, I2) and an estimated
flow F between (I1, I2), so that F can be used as the training label of the new
image pair (I1, I

′
2). Specifically, the reference image I1 is first forward-warped

to the target view I ′2. Then, in order to ensure the realism of the synthesized
view I ′2, we need to remove the occlusions and holes caused by dynamic moving
objects as well as depth disparities. Fig. 4 illustrates an example.

Here, we use the Splatting method to identify foreground and background
for these occlusion regions based on a monocular depth network [36]. Moreover,
we design a Bi-directional Hole Filling (BHF) method to fill these hole
regions using backward flow and image content from I2. Finally, after the target
view generation, the reference image, synthesized new view, and the estimated
flow (I1, I

′
2, F ) are chosen as a training pair for dataset construction.

As detailed in Fig. 3, we first estimate the forward flow, backward flow, and
the depth of I1 and I2 as follows:

F1→2 = Θ(I1, I2), F2→1 = Θ(I2, I1), (3)

D1 = Ψ(I1), D2 = Ψ(I2), (4)

where F1→2 and F2→1 are the estimated forward and backward flow, and D1

and D2 are the estimated depth results by the monocular depth network Ψ .
Note that D1 and D2 are the inverse depth maps so that the pixel with larger
value is closer to the camera.

In order to increase the diversity of the generated dataset, we use a factor
α to add a disturbance to the estimated flow, so that the generated view is not
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Fig. 4. Examples of the splatting results (top) and the hole filling results (bottom).
For the splatting, summation is a conventional approach that produces brightness
inconsistency results. Softmax leads to transparent artifacts. Max splatting renders a
natural image. After hole filling by our proposed BHF, a new view image with few
artifacts can be generated.

exactly the original I2 but a new view controlled by the factor α. Thus we obtain
new flow fields by the follows:

F ′
1→2 = αF1→2, F ′

2→1 = (1− α)F2→1. (5)

Then, we use flow fields F ′
1→2 and F ′

2→1 to render the new view by splatting
method, which can be represented as:

Is1 = S(I1, F ′
1→2, D1), Is2 = S(I2, F ′

2→1, D2), (6)

where S represents the splatting method, Is1 and Is2 are the same view rendered
from different directions. Note that the occlusion problem is addressed after the
splatting operation which we will introduce later. Finally, the result view can be
generated by our BHF method, which is formulated as:

I ′2 = B(Is1 , F ′
1→2, I

s
2), (7)

where B represents our BHF method, I ′2 is the new image and (I1, I
′
2, F

′
1→2) is

the training pair generated of RIPR.
Splatting. Splatting can be used to forward-warp the reference image I1

into a new view Is according to a given flow field F ′
1→2. As shown in Fig. 4

(top), the conventional sum operation for splatting often produces brightness
inconsistency results. The softmax splatting method[35] is proposed to ease this
problem. Assuming q is a coordinate in I1, and p is a coordinate in the target
view. The softmax splatting operation can be formulated as follows:

let u = p− (q + F ′
1→2(q)), (8)

b(u) = max(0, 1− |ux|) ·max(0, 1− |uy|), (9)

Is(p) =

∑
q expD1(q) · I1(q) · b(u)∑

q expD1(q) · b(u)
, (10)
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where b(u) is the bilinear kernel, D1 is the depth map of I1 and Is is the forward-
warp result. By applying Eq. 10, background pixels that are occluded in the
target view can be compressed by incorporating the depth map and the softmax
operation, compared with the original sum splatting operation as illustrated in
Fig. 4 (top). However, Softmax splatting in Eq. 10 may still cause unnatural
results in occlusion regions. To this end, we propose to use max splatting as an
alternative option of the splatting method:

let k =

{
1, if |q + F ′

1→2(q)− p| ≤
√
2
2

0, otherwise,
(11)

Is(p) = I1(r), where r = argmax
q

D(q) · k, (12)

where k is the nearest kernel. Eq. 12 means that when multiple pixels are located
to position p, we only assign the pixel with the largest depth value to the target
view. As such, the resulting image is more natural compared with the softmax
version as shown in Fig. 4 (top). However, we find that the dataset generated
by softmax splatting performs better than the max version in our experiments.
Detailed analysis will be discussed in our experiment Sec. 6.

Bi-directional Hole Filling. Apart from occlusions, there is another prob-
lem called holes, which are produced when no pixels from original image are
projected to these regions. Previous method [1] adopted an inpainting model to
solve this problem, which often introduces artifacts that reduce the quality of
the generated dataset. Here, we design a bi-directional hole filling method to
handle these empty regions. As in Eq. 7, the input of BHF is the forward flow
F ′
1→2, and the target views Is1 and Is2 generated by splatting with forward and

backward flows, respectively. We first check a hole mask M from F ′
1→2 using the

range map check method[48], which is formulated as follows:

M(p) = min (1,
∑
q

b(u)), (13)

where b(u) is the bilinear kernel described in Eq. 9. In the hole mask M , the
hole pixels are labeled as 0 and others as 1. Then, we can generate a novel view
image I ′2 by fusing Is1 and Is2 as follows:

I ′2 = Is1 + (1−M) · Is2 , (14)

which means that the hole regions in Is1 are filled with regions in Is2 . By applying
our BHF, realistic images can be generated, which is shown in Fig. 4 (bottom).

4 Experiments

4.1 Datasets

Flying Chairs [5] and Flying Things [50]: These two synthetic datasets are
generated by randomly moving foreground objects on top of a background image.
State-of-the-art supervised networks usually train on Chairs and Things.
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Fig. 5. Example training pairs from our generated RF-AB and RF-DAVIS. The first
sample contains large motion and complex scenes.

Virtual KITTI [6]: Virtual KITTI is a synthetic dataset, which contains videos
generated from different virtual urban environments.

DAVIS [4]: DVAIS dataset consists of high-quality video sequences under vari-
ous kinds of scenes. No optical flow label is provided. We use 10,581 images from
DAVIS challenge 2019 to generate RF-DAVIS.

ALOV [41] and BDD100K [51]: ALOV and BDD100K datasets are large-
scale real-world video databases. We capture 75,581 image pairs from ALOV
dataset and 86,128 image pairs from BDD100K dataset. There is no flow label
for these image pairs, so we use RealFlow to create a large diverse real-world
dataset with flow label, named RF-AB.

KITTI [7,34]: KITTI2012 and KITTI2015 are benchmarks for optical flow
estimation. There are multi-view extensions (4,000 training and 3,989 testing)
datasets with no ground truth. We use the multi-view extension videos (training
and testing) of KITTI 2015 to generate RF-Ktrain and RF-Ktest datasets.

Sintel [3]: Sintel is a synthetic flow benchmark derived from 3D animated film,
which contains 1,041 training pairs and 564 test pairs. We use the images from
the training set to generate our RF-Sintel.

4.2 Implementation Details

Our RIPR consists of a depth estimation module, a flow estimation module,
a splatting module, and a hole filling module. For the flow estimation module,
we select RAFT [47] which represents state-of-the-art architecture for supervised
optical flow. We train the RAFT using official implementation without any mod-
ifications. We initialized the RealFlow framework using RAFT pre-trained on
FlyingChairs and FlyingThings unless otherwise specified. For the depth esti-
mation module, we select DPT [36] monocular depth network, which represents
the state-of-the-art architecture. For the splatting module, softmax splatting [35]
is used due to the better performance. For the hole filling, our BHF uses the bi-
directional flow estimated from RAFT. We will show the performance of our
RIPR method affected by the different settings of above modules in Sec. 4.4.
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Table 1. Comparison with previous dataset generation method[1]. We use the same
source images to generate dataset and train the same network for comparison. The
best results are marked in red.

Model Dataset
KITTI12 KITTI15

EPE F1 EPE F1

RAFT dDAVIS[1] 1.78 6.85% 3.80 13.22%
RAFT RF-DAVIS 1.64 5.91% 3.54 9.23%

RAFT dKITTI[1] 1.76 5.91% 4.01 13.35%
RAFT RF-Ktest 1.32 5.41% 2.31 8.65%

Table 2. Comparison with Unsupervised Methods.The best results are marked in red
and the second best are in blue, ‘-’ indicates no results. End-point error (epe) is used
as the evaluation metric.

Method KITTI12 KITTI15 Sintel C. Sintel F.

ARFlow [22] 1.44 2.85 2.79 3.87
SimFlow [12] – 5.19 2.86 3.57
UFlow [17] 1.68 2.71 2.50 3.39
UpFlow [29] 1.27 2.45 2.33 2.67
SMURF [42] – 2.00 1.71 2.58

IRRPWC(C+T) [10] 3.49 10.21 1.87 3.39
IRRPWC(C+T)+UpFlow 1.87 2.62 1.79 3.31
Ours(IRRPWC) 1.83 2.39 1.74 3.20

RAFT(C+T)[47] 2.15 5.04 1.43 2.71
Ours(RAFT) 1.20 2.16 1.34 2.38

4.3 Comparison with Existing Methods

In this section, we evaluate the effectiveness of RealFlow generation framework
on the public benchmarks.

Comparison with Dataset Generation Methods. Due to the scarcity of
real-world dataset generation methods for optical flow, we only select the Depth-
stillation method [1] for comparison. Depthstillation generated optical flow dataset
dDAVIS and dKITTI from DAVIS and KITTI multi-view test. For fair compar-
ison, we also choose the DAVIS and KITTI multi-view test videos to generate
our RF-DAVIS and RF-Ktest. Fig. 5 shows our rendered training pairs. We eval-
uate our method on KITTI12-training and KITTI15-training sets. Quantitative
results are shown in Table 1, where our method outperforms Depthstillation [1],
proving the importance of realism of object motion behavior.

Comparison with Unsupervised Methods. When supervised optical flow
networks are trained on synthetic datasets, they are hard to be generalized to
real-world data due to the domain gap and motion discrepancy between synthetic
and authentic datasets. To some extent, the effectiveness of our method depends
on domain adaptation. Given the rich literature of unsupervised methods, we
compare our method with them to exclude the influence of the domain. We
train the RAFT [47] on RF-Ktrain and RF-Sintel by RealFlow framework. As
shown in Table 2, RealFlow outperforms all the unsupervised methods on Sintel-
training. We obtain a competitive result on KITTI15-training which surpass
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Table 3. Comparison of our method with supervised methods on KITTI2015 train set
and test set. ‘-’ indicates no results reported.

method
KITTI15(train) KITTI15(test)
EPE F1 F1

PWC-Net[45] 2.16 9.80% 9.60%
LiteFlowNet[9] 1.62 5.58% 9.38%
IRR-PWC[10] 1.63 5.32% 7.65%
RAFT[47] 0.63 1.50% 5.10%
RAFT-RVC[43] - - 5.56%
AutoFlow[44] - - 4.78%
Ours 0.58 1.35% 4.63%

all the unsupervised methods except SMURF[42]. One reason is that SMURF
adopted multiple frames for training, while RealFlow only uses two frames.

Since our method is based on a model pre-trained on C+T (FlyChairs and
FlyThings) in a supervised manner, we also provide the results of unsupervised
methods that are pre-trained with groundtruth on C+T for a fair comparison.
Because we cannot implement SMURF, we use IRRPWC [10] structure and Up-
Flow [29] for comparison. Specifically, we use IRRPWC pre-trained on C+T as a
baseline, which is ‘IRRPWC(C+T)’ in Table 2. Then we train IRRPWC from the
C+T pre-trained weights using unsupervised protocol provided by UpFlow on
KITTI 2015 multi-view videos and Sintel sequences and do evaluation on KITTI
2012/2015 train and Sintel train data sets, which is ‘IRRPWC(C+T)+UpFlow’.
Finally, we perform our method using IRRPWC(C+T), which is ‘Ours(IRRPWC)’.
As a result, Our method can achieve better performance than unsupervised
method trained from C+T pre-trained weights.

Comparison with Supervised Methods. To further prove the effectiveness of
RealFlow, we use KITTI15-training to fine-tune the RAFT model pre-trained by
our RF-Ktrain. Note that RF-Ktrain is generated without any sequence that con-
tains the frames in KITTI test set. The evaluation results on KITTI15-training
and KITTI15-testing are shown in Table 3. We achieve state-of-art performance
on KITTI 2015 test benchmark compared to previous supervised methods.

Comparison on Large Datasets. To make our trained networks general, we
collect a large-scale realistic dataset named RF-AB. We train the RAFT from
scratch using our RF-AB as official implementation. Because of the scarcity
of real-world evaluation benchmarks, we only evaluate our dataset on KITTI
and Sintel. As summarized in Table 4, RAFT trained on RF-AB is more accu-
rate than on other datasets when evaluated on KITTI12-training and KITTI15-
training, which demonstrates the generalization ability of our method on real-
world scenes. We also obtain comparable results on Sintel, which only surpass
dCOCO [1]. RF-AB and dCOCO are both real-world datasets. The networks
trained on them are hardly adapted to Sintel (synthetic data). So their per-
formance is worse than C+T and Autoflow. Moreover, AutoFlow [44] learns
the hyperparameters to render training data using the average end-point error
(AEPE) on Sintel as the learning metric. FlyChairs and FlyingThings are also
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Table 4. Comparison with large datasets. ‘-’ indicates no results. End-point error (epe)
is used as the evaluation metric.

Model Dataset KITTI12 KITTI15 Sintel C. Sintel F.

RAFT C+T[47] 2.15 5.04 1.43 2.71
RAFTAutoFlow[44] – 4.23 1.95 2.57
RAFT dCOCO[1] 1.82 3.81 2.63 3.90

RAFT RF-AB 1.80 3.48 1.80 3.28

rendered to match the displacement distribution of Sintel. Mayer et al. [30] shows
that matching the displacement statistics of the test data is important.
Impact on Different Optical Flow Networks. In Table 5, we also provide
experiment results to prove that our method can improve other supervised net-
works on real-world scenes not only on specific architecture such as RAFT. For
fair comparison, we trained IRR-PWC [10] and GMA [16] on RF-AB and RF-
Sintel with the official settings. Table 5 shows that RAFT and GMA trained
on RF-AB outperform the original variants trained on C+T when testing on
real-world data KITTI. Moreover, there is a significant improvement on IRR-
PWC which is effective as trained RAFT on C+T. This fact proves that a better
dataset is crucial to a supervised network.

4.4 Ablation Study

In this section, we conduct a series of ablation studies to analyze the impact of
different module choices of the RIPR method. We measure all the factors using
RF-Ktrain to train RAFT and evaluate on KITTI12-training and KITTI15-
training. Because there are multiple combinations of these factors, we only test
a specific component of our approach in isolation. As shown in Table 6, default
settings are underlined and detail experiment settings will be discussed below.
Render. We conduct an experiment named ‘Render Off’ where we use original
image pairs and their estimated flows to train the network. When applying our
RIPR method, as the ‘Render On’ in Table 6, the accuracy of the network can
be improved significantly. Moreover, our rendering method is also related to
the video interpolation methods [49,8]. We replace our rendering method with
QVI [49] for fair comparison. Note that ‘QVI(RAFT)’ uses RAFT pre-trained
on C+T for optical flow estimation, which is the same model as the initial model
of RealFlow. As a result, our method outperforms QVI for optical flow dataset
generation because the frame synthesis process in QVI may cause the content of
the generated frame to not match the optical flow label.
Depth. To measure the effectiveness of the depth estimation in the splatting
method, we conduct three different experiments: DPT[36], Midas[37], and ‘Occ-
bi’. The ‘Occ-bi’ means that the depth map is replaced by the occlusion map
produced by the bi-directional flow check method[33]. DPT is a state-of-art
method that outperforms Midas in the task of monocular depth estimation.
From Table 6, we can notice that with more accurate depth estimation results,
our RealFlow can generate better dataset for optical flow learning, which proves
that depth is a crucial cue in our framework.
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Table 5. Impact on different optical flow networks. The value in the bracket means
the percentage of improvement.End-point error (epe) is used as the evaluation metric.

Model Dataset KITTI12 KITTI15 Sintel C. Sintel F.

IRR-PWC[10] C+T 3.49 10.21 1.87 3.39
IRR-PWC RF-AB 2.13 5.09 3.68 4.72
IRR-PWC RF-Sintel 2.67 7.06 1.74 3.20

GMA[16] C+T 1.99 4.69 1.30 2.73
GMA RF-AB 1.82 3.64 1.93 3.45
GMA RF-Sintel 1.74 4.39 1.23 2.32

RAFT[47] C+T 2.15 5.04 1.43 2.71
RAFT RF-AB 1.80 3.48 1.80 3.28
RAFT RF-Sintel 1.76 4.36 1.34 2.38

Table 6. Ablation experiments. Settings used in our final framework are underlined.
Here we only perform one EM iteration for these experiments due to the limitation of
computational resources.

Experiment Method
KITTI12 KITTI15

EPE F1 EPE F1

Render

Off 1.80 7.78% 3.93 14.38%
QVI [49] 2.84 10.7% 7.27 20.36%

QVI(RAFT) 4.03 14.0% 9.03 24.70%
On 1.44 5.90% 2.79 10.66%

Depth
Occ-bi 1.51 6.22% 3.01 11.12%

MiDas[37] 1.49 6.25% 2.90 11.18%
DPT[36] 1.44 5.90% 2.79 10.66%

Splatting
Max 1.62 5.90% 3.03 11.04%

Softmax[35] 1.44 5.90% 2.79 10.66%

Hole Filling
w/o Filling 1.45 6.06% 2.95 10.80%
RFR[20] 1.53 6.07% 2.95 11.23%
BHF 1.44 5.90% 2.79 10.66%

Range of α
[ 1 ] 1.57 6.34% 3.38 12.30%
[-2,2] 1.45 5.92% 2.83 10.90%
[0,2] 1.44 5.90% 2.79 10.66%

Splatting. We compared two versions of splatting: Max and Softmax[35]. Max
splatting leads to the right rendering result of visual appearance. However, we
find that Softmax splatting outperforms Max splatting as in Table 6. The reason
is that max splatting may cause tearing of texture when the depth is incorrect,
while softmax splatting can alleviate this problem by generating a translucent
fusion result. Please refer to supplementary materials for more details.
Hole Filling. The optical flow network learns a per-pixel matching of two im-
ages. The hole in the newly generated image means that there is no pixel matched
to the reference image. Although it happens, the context information can also
help the network. For fair comparison, we use the RFR[20] fine-tuned on KITTI
dataset for inpainting these holes. As summarized in Table 6, our designed BHF
method achieves the best results. We also conduct an experiment without hole
filling which leads to a moderate improvement over RFR. It suggests that a
worse hole filling result may introduce negative effects.
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Table 7. Iteration times. The best iteration time is underlined. Our RealFlow can
converge to similar results with different initialization settings.

Model
Initialize Iteration KITTI12 KITTI15
Dataset Times EPE F1 EPE F1

RAFT C+T

init 2.15 9.29% 5.04 17.4%
Iter.1 1.44 5.90% 2.79 10.7%

Iter.1∗4 1.45 5.59% 2.86 10.4%
Iter.2 1.31 5.28% 2.36 8.46%
Iter.3 1.28 5.02% 2.20 8.27%
Iter.4 1.27 5.17% 2.16 8.45%

RAFT VKITTI
init 1.81 5.04% 3.13 8.63%
Iter.1 1.26 4.47% 2.11 7.50%

GMA C+T
init 1.99 9.28% 4.69 17.1%
Iter.1 1.46 5.56% 2.79 10.2%

Range of α. To increase the diversity of our generated dataset, we add a dis-
turbance to our RealFlow by α, which is introduced in Sec. 3.1. We use three
different settings in Table 6 ‘Range of α’. ‘[1]’ means that α is always set as
1. The other two settings mean that we randomly sample a value within that
range. As can be seen, factor α sampled from range [0, 2] achieves better result.

EM Iteration Times. In RealFlow framework, the generated dataset and the
optical flow network are gradually improved after iterations. However, a certain
upper limit exists in RealFlow and it will converge after several iterations. As
summarized in Table 7, after 4 iterations, RealFlow converges and the result
cannot be further improved. ‘Iter.1∗4’ means that the network is trained 4 times
longer (more training steps) with the data of ‘Iter.1’. As can be seen, simply
training 4 times longer cannot bring improvement compared with 4 EM iterations
of RealFlow (see ‘Iter.4’), which demonstrates the effectiveness of our approach.

Initial Model. It is well-known that the initialization is important for EM algo-
rithm. In Table 7, we implement RAFT pre-trained on Virtual KITTI (VKITTI)
and GMA pre-trained on C+T as the initial model of RealFlow. As can be seen,
the performance can be improved after learning with our RealFlow.

5 Conclusions

In this work, we have presented RealFlow, an EM-based framework for optical
flow dataset generation on realistic videos. We have proposed a Realistic Image
Pair Rendering (RIPR) method to render a new view from a pair of images,
according to the estimated optical flow. We have trained optical flow networks
on the synthesized dataset. Experiment results show that the trained networks
and the generated datasets can be improved iteratively, yielding a large-scale
high-quality flow dataset as well as a high-precision optical flow network. Exper-
iments show that the performance of existing methods can be largely improved
on widely-used benchmarks while using our RealFlow dataset for training.
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