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Abstract. Shadow removal is an important topic in image restoration,
and it can benefit many computer vision tasks. State-of-the-art shadow-
removal methods typically employ deep learning by minimizing a pixel-
level difference between the de-shadowed region and their corresponding
(pseudo) shadow-free version. After shadow removal, the shadow and
non-shadow regions may exhibit inconsistent appearance, leading to a
visually disharmonious image. To address this problem, we propose a
style-guided shadow removal network (SG-ShadowNet) for better image-
style consistency after shadow removal. In SG-ShadowNet, we first learn
the style representation of the non-shadow region via a simple region
style estimator. Then we propose a novel effective normalization strategy
with the region-level style to adjust the coarsely re-covered shadow re-
gion to be more harmonized with the rest of the image. Extensive exper-
iments show that our proposed SG-ShadowNet outperforms all the exist-
ing competitive models and achieves a new state-of-the-art performance
on ISTD+, SRD, and Video Shadow Removal benchmark datasets. Code
is available at: https://github.com/jinwan1994/SG-ShadowNet.
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1 Introduction

Shadows are widespread in real-world images. In many computer-vision applica-
tions, shadows can be regarded as a kind of image degradation that undermines
the information to be conveyed by the images and usually increases the difficulty
of the downstream tasks [8,45,9,34,3,14,44]. In response to this problem, many
shadow-removal approaches [12,10,32,40,15,21,22,23,7,29] have been developed
in recent years, aiming to restore images to shadow-free ones. Shadow removal
is still considered to be a very challenging problem due to various and complex
shadow formation environments [1,26,46,10].

Shadow removal has been well studied from different perspectives, such as fea-
ture extraction [32,5,4], multi-task learning [40,15], image generation [49,28,29],
image decomposition [22,23], and auto-exposure fusion [7]. The shadow-removal
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Fig. 1. De-shadowed images produced by the existing method of Fu et al. [7] and our
proposed method. The color clustering results of each image are shown below it, by
setting the number of clusters to 6, (a)∼(f). Compared with the clusters from Fu et al.,
ours are more consistent with those from the shadow-free image, without separating
out the shadow region, as shown by the cluster (d).

performance has been significantly improved in recent years by employing var-
ious advanced deep neural networks [22,5,23,29,7]. However, most of existing
methods try to minimize certain pixel-level differences between the de-shadowed
region and their corresponding (pseudo) shadow-free version, without explicitly
considering the style consistency of de-shadowed and non-shadow regions. As a
results, the image appearance of the de-shadowed and non-shadow regions may
be inharmonious after shadow removal. An example is shown in Fig. 1, where
the shadow region, after shadow removal using an existing method [7], is still
visually distinguishable from the rest of image. In Fig. 1, we also use the color-
based clustering to show the harmony of the de-shadowed results since color is
an important cue in describing the image style [41] and style consistency [25].
We can see that the six clusters obtained from the image de-shadowed by the
existing method are more aligned with those obtained from the original image
with shadow, while the six clusters obtained from the image de-shadowed by our
proposed method are more aligned with those obtained from the corresponding
ground-truth shadow-free image.

In this paper, we reformulate shadow removal as an intra-image style transfer
problem by explicitly considering the style consistency between shadow regions
and non-shadow regions after shadow removal. Based on this formulation, we
propose a new style-guided shadow removal network, namely SG-ShadowNet,
which consists of a coarse deshadow network (CDNet) and a style-guided re-
deshadow network (SRNet) by taking the whole model scale into account. The
former employs a simple U-net structure to obtain a coarse de-shadowed result.
The latter estimates the style representation of non-shadow regions and then uses
it to help further refine the shadow removal, which is achieved by a new learnable
spatially region-aware prototypical normalization (SRPNorm) layer for aligning
the pixel-wise mean and variance between the de-shadowed and non-shadow re-
gions. SRNet can also perform shadow removal without CDNet and achieve com-
parable shadow removal performance. To evaluate the proposed SG-ShadowNet,
we conduct extensive experiments on the ISTD+ and SRD datasets and assess
the generalization ability of the proposed method on the Video Shadow Removal
dataset. In summary, the contributions of this work are as follows:
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– To the best of our knowledge, this paper is the first work to study the problem
of shadow removal from the perspective of intra-image style transfer and
tackle it by preserving the whole image harmonization through the region
style guidance.

– We propose a novel SG-ShadowNet, with a newly designed SRPNorm layer,
to remove shadows while maintaining the style consistency between de-
shadowed and non-shadow regions.

– The proposed SG-ShadowNet achieves new state-of-the-art performances on
three public datasets, and it also exhibits strong generalization ability with
fewer parameters.

2 Related Work

Before the deep learning era, shadow removal is usually achieved by extracting
hand-crafted features and leveraging physical models of shadows [35,12,33] with
limited performance. In this section, we mainly review state-of-the-art deep-
learning approaches for shadow removal. We also go over existing works on the
usage of normalization layers.
Shadow removal. Using deep learning, shadows can be removed by learn-
ing a complex mapping between shadow images/regions and the corresponding
shadow-free images/regions with large-scale annotated training datasets [22,32].

The existing works formulate the shadow removal using different models,
resulting in different algorithms. 1) From the feature extraction perspective,
Qu et al. [32] proposed DeshadowNet to extract multi-context information and
predict a shadow matte layer for removing shadows. Cun et al. [5] designed
a dual hierarchically aggregation network (DHAN) to eliminate boundary ar-
tifacts by aggregating the dilated multi-context features and attentions. Most
recently, Chen et al. [4] presented to remove shadows based on patch-level fea-
ture matching and transferring which cannot guarantee the global harmony of
the whole image. 2) From the multi-task learning perspective, Wang et al. [40]
employed a stacked conditional GAN to combine shadow detection and removal.
Hu et al. [15] proposed to utilize direction-aware context to further improve
the ability of shadow detection and removal. 3) From the image decomposition
perspective, Le et al. [22], [23] and [24] employed a physical shadow illumina-
tion model to decompose the shadow images into different learnable parame-
ters for generating shadow-free images, which implicitly considers image harmo-
nization very roughly without adequately exploring the underlying relationship
between shadow and non-shadow regions. 4) From the image generation per-
spective, Mask-shadowGAN [16] and LG-ShadowNet [28] leveraged GAN-based
models to perform unsupervised shadow removal by learning a map between
shadow domain and non-shadow domain. Recently, Liu et al. [29] developed a
shadow generation model with shadow mask to construct pseudo shadows and
shadow-free image pairs for weakly-supervised shadow removal. 5) From the
auto-exposure fusion perspective, Fu et al. [7] proposed an auto-exposure fu-
sion network, which utilizes shadow-aware fusion network to adaptively fuse the
estimated multiple over-exposure images to generate the shadow-free image.
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As mentioned earlier, these methods do not explicitly consider the style con-
sistency between shadow and non-shadow regions after shadow removal, and
therefore may lead to an image disharmony. In this paper, we focus on address-
ing this problem by developing a new SG-ShadowNet with explicit consideration
of the style consistency in the same image.
Normalization layers. Normalization of the training data can improve the
similarity of data distribution and facilitate the network optimization [36]. Nor-
malizing the intermediate representation of deep networks can also improve the
network prediction performance, which has led to many studies on the use of
normalization layers in deep learning. Two kinds of normalization have been used
for network layers: unconditional normalization [18,37,2,43,36] and conditional
normalization [39,6,17,31,47,27,25]. The former does not use external data to
provide affine parameters, which is irrelevant to our work. The latter normalizes
the mean and deviation of feature maps and then uses external data to learn
the affine transformation parameters to denormalize the feature map. Huang et
al. [17] proposed an adaptive instance normalization (AdaIN) for real-time image
stylization, which uses a pre-trained VGG network to extract the style repre-
sentation of other images. This is not applicable to our task, because the style
representation of the non-shadow region cannot be extracted by a pre-trained
network. Ling et al. [25] proposed a region-aware adaptive instance normalization
(RAIN) for image harmonization where the foreground feature is normalized with
the channel-wise affine parameters predicted by the background feature in the
same intermediate feature map. This inspires us to take the non-shadow region
as external data to generate the style representation for adjusting the shadow
region. Different from [25], 1) we adopt a coarse-to-fine network to mitigate the
difficulty of style transfer directly from shadow to non-shadow version, 2) we
employ a region style estimator to accurately learn the style representation of
the non-shadow region which later provides guidance for shadow removal, and
3) we design a spatially region-aware normalization layer, which can estimate
pixel-wise affine parameters to capture the spatial-variant property of shadows.

3 Methodology

3.1 Problem formulation

In this work, we propose to reformulate the shadow removal as an intra-image
style transfer problem, i.e., the style representation learned from the non-shadow
region is applied to the shadow removal of the shadow region, so that the de-
shadowed region holds the similar style, such as color and lighting, as the non-
shadow region. Specifically, we render the shadow region of the original shadow
image IS by using the style of the non-shadow region of the same image to achieve
a de-shadowed image Î with consistent visual styles. It can be formulated as:

Î = ψ(IS,M |P ), (1)

where ψ(·, ·) represents a style transfer function, P denotes the non-shadow
prototype, and M indicates the shadow mask (region) in IS. Meanwhile, consid-



Style-Guided Shadow Removal 5

𝐼𝑆

𝑀

𝐼C

𝐼𝑆

𝑀

Coarse Deshadow Network
Style-guided Re-deshadow Network

~

𝐼𝐼

 P 

Fig. 2. An illustration of the proposed SG-ShadowNet. It sets the non-shadow proto-
type P as prior information to adjust the shadow region of the coarsely de-shadowed
results IC, resulting in a visual consistent shadow-free image Î.

ering the difficulty in stylizing directly from shadow to non-shadow version, we
achieve the image stylization on a coarsely de-shadowed result IC, by reformu-
lating Eq. (1) as

Î = ψ(IC,M |P ) = ψ(G(IS,M),M |P ), (2)

where G(·, ·) represents the coarse deshadow network which takes the original
shadow image IS and the corresponding shadow mask M as inputs.

Fig. 2 shows the overall framework of the proposed shadow-removal network,
which consists of two stages. In the first stage, a coarse deshadow network (CD-
Net) is utilized to obtain IC for alleviating the difficulty of style transfer. We
use the U-net structure in [13] as its backbone and remove all skip connections
and half of the filters to reduce computational complexity. In the second stage,
we propose a style-guided re-deshadow network (SRNet) in Section 3.2, which
uses the estimated style representation of the non-shadow region to adaptively
adjust the style of the shadow region in the same image. In addition, given that
shadows present spatial-variant property, i.e., the color and illumination distor-
tion across shadow region are variant, we propose a novel spatially region-aware
prototypical normalization (SRPNorm) in Section 3.3 to adjust the coarsely re-
covered shadow region in IC to be more harmonious with the rest of the image.
Note that we can also perform SRNet without CDNet by using IS and M as
inputs for shadow removal, and the results are shown in Table 4.

3.2 Style-guided re-deshadow network

In this section, we elaborate on the style-guided re-deshadow network (SRNet),
which is composed of a light-weight region style estimator and a re-deshadow
network, as shown in Fig. 3. To accurately obtain the style representation of the
realistic non-shadow region, we composite the coarsely predicted result IC and
the shadow image IS using shadow mask M as one of the inputs of the region
style estimator and the re-deshadow network, which can be calculated as

I in = IC ⊗M + IS ⊗ M̄ (3)

where ⊗ is the Hadamard product, and M̄ = 1 − M represents the mask of
non-shadow region. The region style estimator takes I in and M̄ as inputs to
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Fig. 3. An illustration of the proposed style-guided re-deshadow network.

get non-shadow prototype P . The re-deshadow network takes I in, M and P as
inputs to generate the final shadow-free image Î.

Region style estimator. To incorporate the style information of the non-
shadow region, a newly designed region style estimator is proposed to learn the
non-shadow prototype P for the re-deshadow network, which consists of three
convolution layers and a global pooling layer. Note that: 1) To avoid interference
of non-shadow and shadow regions in the same image, we restrict the receptive
field of the estimator by using 1× 1 kernels for all the convolution layers. 2) To
obtain the accurate style representation of the non-shadow region, we perform
the Hadamard product on the M̄ and the unpooled features to ensure that the
output prototype P is only related to the non-shadow region. The details of the
estimator are depicted in Fig. 3 (bottom).

Re-deshadow network. As shown in Fig. 3 (top), the architecture of the re-
deshadow network follows the U-Net [28] and includes 9 residual blocks in the
middle. One unique trait of the re-deshadow network is that we embed the
proposed spatial region prototypical normalization (SRPNorm) in each resid-
ual block, called SRPNorm-ResBlock. The SRPNorm-ResBlock consists of two
convolutions and two SRPNorm modules, as shown in Fig. 4.

3.3 Spatially Region-aware Prototypical Normalization (SRPNorm)

In each SRPNorm-ResBlock, the proposed SRPNorm module utilizes the non-
shadow prototype P ∈ R1×1×C and the resized shadow mask M ∈ RH×W×1 as
conditional inputs to perform affine transformation on the input feature map
F in ∈ RH×W×C , where H, W , C are the height, width, and channel number of
the feature maps.

There are two options for the affine parameters here. One is to learn channel-
wise affine parameters, i.e., the pixels on each channel are affinely transformed
with the same scale and bias. The other is to learn pixel-wise affine parameters,
i.e., each pixel has its own individually adapted scale and bias for affine trans-
formation. Considering the spatial-variant property of the shadows, we adopt
the latter to perform a pixel-wise affine transformation on shadow regions.
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Fig. 4. An illustration of the proposed SRPNorm-ResBlock.

Specifically, we first perform a region normalization on F in to obtain the
normalized features FNorm, which can be calculated by

FNorm
h,w,c =

F in
h,w,c ⊗Mh,w − µM,c√

δ2M,c + ϵ
+
F in
h,w,c ⊗ M̄h,w − µM̄,c√

δ2
M̄,c

+ ϵ
,

µM,c =
1∑

h,w

Mh,w

∑
h,w

(F in
h,w,c ⊗Mh,w),

µM̄,c =
1∑

h,w

M̄h,w

∑
h,w

(F in
h,w,c ⊗ M̄h,w),

δM,c =

√√√√ 1∑
h,w

Mh,w

∑
h,w

(
Mh,w ⊗ (F in

h,w,c − µM,c)2
)
,

δM̄,c =

√√√√ 1∑
h,w

M̄h,w

∑
h,w

(
M̄h,w ⊗ (F in

h,w,c − µM̄,c)2
)
,

(4)

where µM , δM and µM̄ , δM̄ are channel-wise average and standard deviation of
shadow and non-shadow regions in F in. ϵ is set to 1e-5.

Since shadows present spatial-variant property, each pixel in the shadow re-
gion is subject to different affine parameters. We further utilize P to modulate
FNorm and compute the spatial prior information FP of the non-shadow region.
This is achieved by sending P to two MLPs and generating two channel-wise
modulated parameters λc(P ) and νc(P ) for F

Norm. FP can be expressed by

FP
h,w,c = λc(P )⊗ FNorm

h,w,c + νc(P ). (5)

Then we learn the pixel-wise affine parameters γh,w,c(F
P,M) and βh,w,c(F

P,M)
by using three convolution layers and taking FP and M as input. Finally, we
perform affine processing on the normalized features FNorm based on the scale
(γ) and bias (β) learned from non-shadow regions. The output of SRPNorm is
defined as:

F out
h,w,c = γh,w,c(F

P,M)⊗ FNorm
h,w,c + βh,w,c(F

P,M). (6)
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3.4 Loss function

For the coarse deshadow network, the pixel-level reconstruction loss Lr1 is used
to optimize the distance between the ground truth shadow-free image ISF and
the coarsely de-shadowed image IC:

Lr1 = ∥IC − ISF∥1. (7)

Moreover, we use area loss La1 to strengthen the constraint of the shadow region
as in previous work [29]. Formally, the area loss is defined as

La1 = ∥ϕ(M)⊗ IC − ϕ(M)⊗ ISF∥1, (8)

where ϕ(·) denotes the image dilation function with a kernel size of 50 and ⊗ is
the Hadamard product.

For the style-guided re-deshadow network (SRNet), the output of SRNet is
the final de-shadowed result Î. We also calculate the reconstruction loss Lr2 and
the area loss La2 between Î and ISF as

Lr2 = ∥Î − ISF∥1,

La2 = ∥ϕ(M)⊗ Î − ϕ(M)⊗ ISF∥1.
(9)

To ensure the spatial consistency of Î, we apply the spatial consistency loss [11]:

Ls =
1

K

K∑
i=1

∑
j∈Ω(i)

(|(Yi, Yj)| − |(Vi, Vj)|)2, (10)

where K denotes the number of local areas, Ω(i) represents four adjacent areas
centered at area i, and Y and V are the average intensity values of the local
areas of Î and ISF, respectively. Finally, we define the total loss function L as

L = La1 + Lr1 + La2 + Lr2 + ζLs, (11)

where ζ denotes the weight term of spatial consistency loss and is empirically
set to 10. In our experiments, we set the weights of reconstruction losses and
area losses to 1 by following [29].

4 Experiments

4.1 Experimental setup

Datasets. We train and evaluate the proposed method on the ISTD+ [22] and
SRD [32] datasets and verify the generalization of our model on the Video
Shadow Removal dataset [23]. 1) The ISTD+ dataset has 1,870 triplets of
shadow, shadow-free, and shadow mask images, where 1,330 triplets are used
for training and the remaining 540 triplets are used for testing. We use the pro-
vided ground-truth shadow mask in the training phase, while for the test, the
corresponding shadow mask of the test shadow image is calculated by a pre-
trained BDRAR shadow detector [50] that trained on the SBU [38] and ISTD+



Style-Guided Shadow Removal 9

datasets. The Balanced Error Rate of the model in the ISTD+ testing set is 2.4.
2) SRD dataset contains 2,680 training pairs of shadow and shadow-free images
and 408 testing pairs. Same as [7], we utilize Otsu’s algorithm [30] to extract
the shadow mask from the difference between shadow-free and shadow images
during training, and we exploit the shadow masks detected by DHAN [5] for
testing. 3) Video Shadow Removal dataset consists of 8 videos captured in the
static scene, i.e., there are no moving objects in each video. As [23], we employ
a threshold of 40 to get the moving shadow mask for evaluation which divides
shadow and non-shadow pixels according to intensity difference. In addition, we
utilize a pre-trained BDRAR [50] to generate shadow masks for testing.
Evaluation metrics. We employ the root mean square error (RMSE 4) in the
LAB color space, and we adopt the learned perceptual image patch similarity
(LPIPS) [48] to evaluate the perceptual quality of the de-shadowed results.
Implementation details. We implement the proposed network using PyTorch
with a single NVIDIA GeForce GTX 2080Ti GPU card. In our experiments,
the coarse deshadow network (CDNet) and style-guided re-deshadow network
(SRNet) are jointly trained to obtain the final shadow-free image. For data
augmentation, we exploit random flipping and random cropping with a crop
size of 400×400. During training, our model is optimized by Adam [20] with the
first and the second momentum being set to 0.50 and 0.99, respectively, and the
batch size is set to 1. The basic learning rate is set to 2× 10−4 and halved every
50 epochs with 200 epochs in total.

4.2 Comparison with state-of-the-arts

We compare our SG-ShadowNet with 14 state-of-the-art shadow removal algo-
rithms, including unsupervised methods of Mask-ShadowGAN [40], LG-Shadow-
Net [28], and DC-shadowNet [19], weakly supervised methods of Gong & Cosk-
er [10], Param+M+D-Net [23], and G2R-ShadowNet [29], and fully supervised
methods of ST-CGAN [40], DeshadowNet [32], SP+M-Net [22], DSC [15], DH-
AN [5], CANet [4], Fu et al. [7], and SP+M+I-Net [24]. For a fair comparison,
all results are taken from their original papers or generated by their official code.
Quantitative evaluation. Tables 1 and 2 quantitatively show the test results of
different shadow-removal methods on the ISTD+ and SRD datasets. Compared
with unsupervised, weakly-supervised and supervised methods, SG-ShadowNet
performs the best on both shadow regions and the whole image. Specifically,
on the ISTD+ dataset, our method outperforms Fu et al. [7] by decreasing the
RMSE of the shadow region and entire image by 9.2% and 19.0%, respectively.
Our method also outperforms SP+M+I-Net [24] by a small margin in shadow
regions. Meanwhile, our method obtains a lower LPIPS score than other existing
methods, which verifies that our de-shadowed results show a more consistent
style with the shadow-free images, and further proves the effectiveness of the
style guidance strategy. On the SRD dataset, the public shadow masks generated
by [5] are employed for evaluation. Our method outperforms the fully-supervised

4 The RMSE is actually calculated by the mean absolute error (MAE) as [22].
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Table 1. Shadow removal results of the proposed method compared to state-of-the-art
shadow removal methods on ISTD+ [22]. RMSE and LPIPS are the lower the better.

Scheme Method
Shadow Non-Shadow All
RMSE↓ RMSE↓ RMSE↓ LPIPS↓

Un-
supervised

Mask-ShadowGAN [40] 9.9 3.8 4.8 0.095
LG-ShadowNet [28] 9.7 3.4 4.4 0.103
DC-ShadowNet [19] 10.4 3.6 4.7 0.170

Weakly-
supervised

Gong & Cosker [10] 13.3 2.6 4.3 0.086
Param+M+D-Net [23] 9.7 2.9 4.1 0.086
G2R-ShadowNet [29] 8.8 2.9 3.9 0.096

Fully-
supervised

ST-CGAN [40] 13.4 7.9 8.6 0.150
SP+M-Net [22] 7.9 2.8 3.6 0.085
Fu et al. [7] 6.5 3.8 4.2 0.106

SP+M+I-Net [24] 6.0 3.1 3.6 0.092
SG-ShadowNet (Ours) 5.9 2.9 3.4 0.070

Table 2. Shadow removal results of the proposed method compared to state-of-the-art
shadow removal methods on SRD [32]. ‘*’ indicates that the result is directly cited
from the original paper.

Method
Shadow Non-Shadow All
RMSE↓ RMSE↓ RMSE↓ LPIPS↓

DeshadowNet [32] 11.78 4.84 6.64 0.165
DSC [15] 10.89 4.99 6.23 0.147
DHAN [5] 8.94 4.80 5.67 0.104
Fu et al. [7] 8.56 5.75 6.51 0.153
CANet* [4] 7.82 5.88 5.98 -
DC-ShadowNet [19] 8.26 3.68 4.94 0.167
SG-ShadowNet (Ours) 7.53 2.97 4.23 0.099

Fu et al. [7] and unsupervised DC-ShadowNet [19] in shadow regions, reducing
RMSE by 12.0% and 8.8%, respectively. It also decreases the RMSE from 7.82
to 7.53, compared to CANet [4]. Moreover, it can be seen from Table 3 that
SG-ShadowNet has only 6.2M parameters, which is less than 4.4% and 3.2% of
the shadow removal network parameters in [7] and [24], respectively.
Qualitative evaluation. Fig. 5 provides the visual comparisons of shadow-
removal results produced by different methods. It can be easily observed that
the existing methods suffer inconsistent appearance between the shadow and
non-shadow regions after shadow removal. On the contrary, our SG-ShadowNet
can produce visually more harmonious de-shadowed images.

4.3 Ablation study

Effectiveness of SRPNorm. To investigate the effect of SRPNorm, we con-
duct the following ablations: 1) replacing all SRPNorms with other normalization
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Table 3. Number of parameters and flops of SG-ShadowNet and other comparison
methods, with input size of 256 × 256.

Method #Params. Flops

SP+M-Net [22] 141.2 M 39.8 G
G2R-ShadowNet [29] 22.8 M 113.9 G
Fu et al. [7] 142.2 M 104.8 G
SP+M+I-Net [24] 195.6 M 58.0 G

SG-ShadowNet(Ours) 6.2 M 39.7 G

Input SPM [22] PMD [23] G2R [29] Fu et al.[7] Ours GT

Input DN [32] DSC [15] Fu et al. [7] DC [19] Ours GT

Fig. 5. Visualisation comparisons on the ISTD+ [22] (top two rows) and SRD [32]
(bottom row) datasets.

layers (i.e., BN [18], IN [37], RN [47], and RAIN [25]); 2) using SRPNorm to
provide different style-guided affine parameters (channel- and pixel- wise) for the
normalization layer; and 3) adding k SRPNorm into the innermost ResBlocks
of the SRNet (SRPNorm-k) with different k values. The results are reported in
the Table 4.

We first apply the classic BN and IN as the normalization layer of the net-
work. We can see that their performances are limited since they do not use
additional conditions to de-normalize the features of shadow regions. Then we
deploy RN and RAIN into our network. Although RN can use external con-
ditions to de-normalize shadow and non-shadow regions separately, it strictly
distinguishes the features of shadow and non-shadow regions, preventing the in-
formation of non-shadow regions from spreading to shadow regions. The RAIN,
an enhanced version of RN, utilize the non-shadow region information within the
feature maps to de-normalize features of shadow regions, where the information
between shadow and non-shadow regions would interfere with each other in the
middle feature maps, so it cannot accurately reflect the style of non-shadow re-
gions. Moreover, RAIN adopts channel-wise normalization, i.e., the same mean
and variance are used to de-normalize the features of shadow regions. This obvi-
ously does not consider the spatial-variant property of shadows, which makes it
unable to generalize well to the shadow removal task. As shown in Fig. 6, without
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Table 4. Ablation study of the proposed SRPNorm on ISTD+ [22]

.

Model
Shadow Non-Shadow All
RMSE↓ RMSE↓ RMSE↓ LPIPS↓

BN [18] 7.5 3.8 4.0 0.099
IN [42] 7.3 2.9 3.7 0.076
RN [47] 6.7 3.0 3.6 0.073
RAIN [25] 6.6 2.9 3.5 0.074

SRPNorm w/o S 6.3 2.9 3.4 0.072
SRPNorm w/o P 6.7 2.9 3.5 0.073
SRPNorm w/o M 6.2 2.9 3.4 0.072
SRPNorm-3 6.3 2.9 3.5 0.071
SRPNorm-5 6.1 2.9 3.4 0.071
SRPNorm-7 6.0 2.9 3.4 0.070
SRPNorm-All 5.9 2.9 3.4 0.070

1

Input IN [37] RN [47] RAIN [25] Ours

Fig. 6. Visualisation comparisons of different normalization methods.

the style guidance of the non-shadow region, the de-shadowed results of IN and
RN show obvious color and lighting distinction with the original non-shadowed
part of this image. In addition, the color of de-shadowed results from RAIN is
not consistent with the neighbor regions since it’s hard to accurately extract the
non-shadow region style. Obviously, our method achieves more visual consistent
results than other normalization-based methods. The numerical performance on
the ISTD+ dataset in Table 4 also verifies our observation.

Besides, SRPNorm can also provide channel-wise normalization (SRPNorm
w/o S), i.e., the results of Eq. (5) is the output of SRPNorm. It can be found
in Table 4 that SRPNorm w/o S leads to a performance drop, which verifies
the effectiveness of performing the pixel-wise (spatial) affine transformation on
de-shadowed regions. Note that even if SRPNorm degenerates to a channel-wise
normalization, it still outperforms the above-mentioned normalization methods,
by benefiting from accurately extracting the style of the non-shadow region via
the region style estimator. We also try to replace the non-shadow prototype
in SRPNorm (SRPNorm w/o P ) by only using the shadow mask as the prior
information of SRPNorm. The decreased performance further verifies the effec-
tiveness of the proposed style guidance from the non-shadow region. We then
remove the shadow mask in Eq. (6) (SRPNorm w/o M) –we can see a slight
drop in performance, which motivates us to focus on shadow regions during de-
normalization. Finally, we try to insert different numbers of SRPNorms into the
innermost ResBlocks of SRnet. It is obvious that shadow-removal performance
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Table 5. Ablation study on the effectiveness of network architecture and loss functions
on ISTD+ [22].

Model
Shadow Non-Shadow All
RMSE↓ RMSE↓ RMSE↓ LPIPS↓

w/o CDNet 6.5 2.9 3.5 0.076
w/o SRNet 7.0 2.9 3.5 0.072
w/o La1, La2 6.0 2.8 3.3 0.068
w/o Ls 6.2 3.0 3.5 0.073
SG-ShadowNet (Ours) 5.9 2.9 3.4 0.070

1

PSNR=26.10 PSNR=31.47

Input Style-1 Result-1 Style-2 Result-2

Fig. 7. Visualisation comparisons of the intra- vs. inter- image region style guidance
capability for shadow removal.

is improved with the increase of the number of SRPNorm-ResBlocks (involving
more layers for style transfer), which shows the superiority of SPRNorm.
Effectiveness of network architecture and loss function. We also pro-
vide ablation experiments to verify the contribution of the designed network
architecture and loss function. From the first two rows of Table 5, we can see
that the coarse deshadow network and style-guided re-deshadow network well
complement each other – the shadow-removal performance drops by removing
any one of these two networks. Note that the shadow removal performance on
ISTD+ achieved by SRNet alone, i.e., a one-stage processing, is comparable to
Fu et al. [7], which is an impressive result. The remaining rows of Table 5 show
the effectiveness of the area loss and the spatial consistency loss, without which
RMSE of the shadow region increases by 0.1 and 0.3, respectively.
Intra- vs. inter- image style transfer. With the region style estimator,
we are able to perform style transfer not only with the region style of the de-
sired image (Style-2 ), but also with the region style of an irrelevant reference
image (Style-1 ). From Fig. 7, it is obvious that Result-1 by performing the
style transfer with the latter is less harmonious and exists detailed style-related
(i.e., color) traces, which verifies the superiority of intra-image style transfer for
shadow removal.

4.4 Generalization ability

To verify the generalization ability of our method, we compare it with sev-
eral state-of-the-art methods, including SP+M-Net [22], Param+M+D-Net [23],
Mask-ShadowGAN [16], LG-ShadowNet [28], G2R-ShadowNet [29], and DC-
ShadowNet [19] on the Video Shadow Removal dataset [23]. All compared meth-
ods are pre-trained on ISTD+ [22] and tested directly on the video dataset.
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Table 6. Shadow removal results on Video Shadow Removal dataset [23].

Method RMSE↓ PSNR↓ SSIM↓
SP+M-Net [22] 22.2 - -
Param+M+D-Net [23] 20.9 - -
Mask-ShadowGAN [16] 19.6 19.47 0.850
LG-ShadowNet [28] 18.3 19.90 0.843
G2R-ShadowNet [29] 18.8 20.00 0.838
DC-ShadowNet [19] 18.9 19.92 0.848

SG-ShadowNet (Ours) 16.5 21.65 0.852

1

Input Mask-ShadowGAN G2R-ShadowNet DC-ShadowNet Ours

Fig. 8. Visual comparisons on the Video Shadow Removal dataset [23].

From Table 6, we see that our method performs best on all evaluation metrics,
and outperforms the fully-supervised method SP+M-Net with RMSE decreased
by 25.7% in the shaded region, and also outperforms the recent weakly super-
vised G2R-ShadowNet and unsupervised DC-ShadowNet. By using the style of
non-shadow regions in an image as guidance for shadow removal, our proposed
SG-ShadowNet exhibits better generalization ability in unknown environments,
which also can be seen in the comparison of the qualitative results in Fig. 8.

5 Conclusion

In this paper, we proposed a style-guided shadow removal network (SG-Shadow-
Net) to achieve better image-style consistency after shadow removal. SG-Shadow-
Net can accurately learn the style representation of the non-shadow region using
the regional style estimator, and employ the proposed spatially region-aware pro-
totypical normalization (SRPNorm) to render the non-shadow region style to the
shadow region on a coarsely de-shadowed image. Experimental results showed
that the proposed SG-ShadowNet achieves the new state-of-the-art shadow re-
moval performance on the ISTD+, SRD, and Video Shadow Removal datasets.
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