
Supplementary Material for
GRIT-VLP: Grouped Mini-batch Sampling

for Efficient Vision and Language Pre-training

Jaeseok Byun1⋆, Taebaek Hwang2⋆, Jianlong Fu3, and Taesup Moon1⋆⋆

1 Department of ECE/ASRI/IPAI, Seoul National University
2 Department of ECE, Sungkyunkwan University

3 Microsoft Research Asia
wotjr3868@snu.ac.kr, gxq9106@gmail.com, jianf@microsoft.com,

tsmoon@snu.ac.kr

1 Data and Implementation Details

Here we describe the details of software platform and dataset. All experiments
are conducted with four NVIDIA A100 GPUs. We use Python 3.7 and Pytorch
[4] with CUDA 11.1 to implement GRIT-VLP. Table 1 summarizes the statistics
of pre-training dataset.

2 Details of Pre-training

2.1 Computation comparison

We note that GRIT-VLP does not use the momentum encoder and momentum
distillation in the pre-training phase. Table 2 shows the computational costs
when N = 96 and M = 960. As can be verified in Table 2, the model parameters,
time per training one epoch, and queue size of GRIT-VLP are much smaller than
the ALBEF, which clearly shows the efficiency of GRIT-VLP.

Table 1. Statistics of dataset

COCO VG SBU CC
images 113K 100K 851K 2.82M
texts 567K 769K 851K 2.82M

⋆ Equal contribution. This work was performed when Jaeseok Byun did an internship
at Microsoft Research Asia.

⋆⋆ Corresponding author (tsmoon@snu.ac.kr)

2 J.Byun et al.

Table 2. Computational costs

Model Time per epoch Parameters Queue
ALBEF 3h 10m 420M 65536

GRIT-VLP 2h 30m 210M 48000
2.2 Overall Process of GRIT-VLP

Here, we provide a pseudo-code of the overall process of GRIT-VLP, mainly
focusing on the GRIT we proposed. For simplicity, we omit the explanation about
functions that are not related to the GRIT when we describe Algorithms (1,2).
In Algorithm 1, note that in the example-level shuffling (Phase 2), all three
queues containing a queue for image features, a queue for text features, and a
queue for indices are shuffled in the same order to keep image-text pairs and their
corresponding indices unmixed. Likewise, the split procedure (Phase 2) applies
equally to all three queues. As described in Algorithm 2, in grouping phase (Phase
3), we exclude previously visited indices to avoid including duplicate examples.
After grouping phases are done for all the small sub-queues split from original
queue, we make the original queue empty. Thus, each example in the dataset
goes through the grouping phase only once per epoch.

2.3 First training epoch with GRIT

Since GRIT-VLP obtains the indices for the grouped mini-batches from the
previous epoch, randomized indices are given to the model at the first training
epoch, as expected. But, if we assume another pre-trained network for calculating
similarity is available, we can generate indices considering the grouped mini-
batches. Then, we can use indices for the grouped mini-batches at the first epoch
of the training. In our experiments, all GRIT-variant models use the generated
indices from ALBEFBase50 (pre-trained for one single epoch) at the first training
epoch. Note that the effect of using this simple indices generation procedure at
the first epoch is marginal in our experimental setting. But, we believe that the
impact of this simple trick can be large when the training epoch is set very small
(e.g., one or two epoch).

3 Details of Downstream Tasks

As described in Section 5 (manuscript), we mainly follow the implementation
details of ALBEF to fine-tune the pre-trained model. Unlike pre-training, we
use randomly cropped image of resolution 384× 384 in fine-tuning, and resize
the images without cropping in inference. The same RandAugment, optimizer,
cosine learning rate decay, and weight decay are applied to all downstream tasks.
However, unlike ALBEF, since we do not use a momentum encoder in the pre-
training phase, the momentum distillation (MD) is not utilized in all downstream
tasks except for the Table 6 (manuscript) to show the model-agnostic property

GRIT-VLP: Grouped Mini-batch Sampling for Efficient VLP 3

Algorithm 1 Entire process: Pseudocode, Pytorch-like
L_Q_v, L_Q_t - queues size of (L× d) for saving feature representations
L_Q_idx - queues size of L for saving unique indices
f_v, f_t - image encoder and text encoder
g_v, g_t - linear embbedings for image features and text features
I - index queue size of M
G - output index array size of D; (D = #(total examples))

example_shuffle(L_Q_v, L_Q_t, L_Q_idx) - a function that shuffles across the examples
divide(L_Q_v, L_Q_t, L_Q_idx) - a function for dividing each input queues
grouping(s_Q_v, s_Q_t, s_Q_idx) - a function for grouping (described in Algorithm 2)
cal_itc_cons_loss(v_feats, t_feats) - a function for calculating ITC and consistency loss
mini_batch_shuffle(G) - a function that shuffles across the mini-batches

for e in epoch:
loader ← initialize(G) # Initialize indices of loader with idxSete
for batch_i, (idx,V,T) in enumerate(loader): # idx denotes the unique index of example

ITC and contrastive loss
Forwarding for uni-modal encoders
v_embeds = f_v(V)
t_embeds = f_t(T)

Calculate [CLS] tokens for both image and text
v_feats = l2_normalize(g_v(v_embeds[0])) # dim(v_feats)= N × d
t_feats = l2_normalize(g_t(t_embeds[0])) # dim(t_feats)= N × d
loss_itc_cons = cal_itc_cons_loss(v_feats, t_feats) # using (6) in manuscript

with torch.no_grad():
Phase 1: Collection phase
L_Q_v.enqueue(v_feats)
L_Q_t.enqueue(t_feats)
L_Q_idx.enqueue(idx)

if is_full(L_Q_idx):
L features (indices) stored in queues
Phase 2: Example-level shuffle
example_shuffle(L_Q_v, L_Q_t, L_Q_idx)
Divide queues
div_Q_v, div_Q_t, div_Q_idx = divide(L_Q_v, L_Q_t, L_Q_idx)

Phase 3: Grouping phase (Repeat for (L//M) times)
for s_Q_v, s_Q_t, s_Q_idx in zip(div_Q_v, div_Q_t, div_Q_idx):

M features (indices) stored in small queues
I = grouping(s_Q_v, s_Q_t, s_Q_idx)
G.append(I)

Make all three queues empty
clear(L_Q_v, L_Q_t, L_Q_idx)

Calculate ITM and MLM loss (itm_loss, mlm_loss)
We omit the detailed procedures of ITM and MLM for simplicity
Note both losses require entire sequences of representations (v_embeds, t_embeds)

loss=loss_itc_cons+loss_itm+loss_mlm
loss.backward()

Phase 4: Mini-batch level shuffle
mini_batch_shuffle(G)

4 J.Byun et al.

Algorithm 2 Phase 3: Grouping phase: Pseudocode, Pytorch-like
s_Q_v, s_Q_t - queues size of (M × d) for saving feature representations
s_Q_idx - queues size of M for saving unique indices
I - output index queue size of M
cur_index, pre_index - index of current step, index of previous step

exclude_index(matrix,index) - a function that sets both row and column of matrix
corresponding to the index as 0

def grouping (s_Q_v, s_Q_t, s_Q_idx):

Calculate contrastive similarity
similarity = s_Q_v @ s_Q_t # dim(similarity)= M ×M
P_v2t = softmax(similarity, dim=1) # dim(P_v2t)= M ×M
P_t2v = softmax(similarity.t(), dim=1) # dim(P_t2v)= M ×M

Randomly sample one example
M = len(s_Q_idx)
pre_index = randint(0,M-1)
I.enqueue(s_Q_idx[pre_index])
use_v2t = True # For simplicity, we started with (image → text) direction

Iteratively find index
for i in range(M-1):

Use P_v2t, P_t2v alternatively
if (use_v2t):

cur_index=argmax(P_v2t[pre_index]) # dim(P_v2t[pre_index])= M
else:

cur_index=argmax(P_t2v[pre_index]) # dim(P_t2v[pre_index])= M

Exclude pre_index for both P_v2t and P_t2v whether use_v2t is True or not.
exclude_index(P_v2t,pre_index)
exclude_index(P_t2v,pre_index)

I.enqueue(s_Q_idx[cur_index])
pre_index = cur_index
use_v2t = not use_v2t

return I

of our method. The total mini-batch size in S.M refers to the overall mini-batch
size. Namely, it denotes “number of GPUs × mini-batch size per GPU” (4×N).

[Image-Text Retrieval (IRTR)] IRTR finds the most similar text to a given
image in a set of texts, or vice versa. In IRTR, with an updated momentum
encoder during the pre-training phase, ALBEF [3] fine-tunes the pre-trained
model using queue-based ITC, MD for ITC, and ITMhard. To fairly evaluate
the effectiveness of our method on the pre-training only, we mostly follow the
fine-tuning phase of ALBEF by adopting the queue-based ITC (queue size: 65280)
and ITMhard (but, not adopting the MD for ITC). Since we do not have an
updated momentum encoder during the pre-training, we use the initial model
(initialized with original BERT-base and ViT-B/16 pre-trained on ImageNet-1k)
for initializing the momentum encoder. As another option, the momentum encoder
can also be initialized with weights from the pre-trained model. We empirically
verify that the performance of these two variants is almost similar. Note that
we use the momentum encoder and the additional queue only for constructing
negative sets of queue-based ITC objective, not for the momentum distillation.
Although our method (GRIT and consistency loss) can also be incorporated into

GRIT-VLP: Grouped Mini-batch Sampling for Efficient VLP 5

fine-tuning step for IRTR, we do not include them for a fair comparison. Unless
otherwise noted, this fine-tuning setting for IRTR is applied in all experiments.

The train/validation/test set consists of 113k/5k/5k and 29k/1k/1k for COCO
and F30K, respectively. In fine-tuning, we set the total batch size as 256 and the
initial learning rate as 1e− 5 for both datasets, and fine-tune for 5 epochs for
COCO, and 10 epochs for F30K. In evaluation, we first get the top-k candidates
based on image-text contrastive similarity. Then, we re-rank these calculated
top-k candidates using ITM scores. k is set as 256 for COCO and 128 for F30K.

[Visual Reasoning (NLVR2)] NLVR classifies whether a textual description is
true based on two images. The multi-modal encoder is consecutively duplicated
to infer two images like [3]. Since the model architecture has changed, one more
pre-training is performed. Then, the pre-trained model is fine-tuned and evaluated
on the NLVR2 dataset.

We use the original train/val/test split of NLVR2[5] for evaluating visual
reasoning. Since NLVR tries to classify whether a textual description is true based
on two images, the multi-modal encoder is duplicated to consider two images.
As we mentioned above, since the overall structure of the model is changed,
one more pre-training is performed with text-assignment task like ALBEF [3].
Text-assignment task assigns the text to one of three choices: the first image, the
second image, or none of them (three-way classification task). For an additional
1 epoch NLVR pre-training step, we use images of size 256 × 256 on the 4M
dataset with a total batch size of 256 and a learning rate of 2e− 5. After that,
we fine-tune for 10 epochs with a total batch size of 64 and an initial learning
rate of 2e− 5. We measure the performance on dev and test-P splits.

[Visual Question Answering (VQA)] VQA aims to derive an answer given
an image and a relevant question. Following [3], an auto-regressive transformer
decoder is added to generate answers. The decoder is initialized with weights of
the pre-trained multi-modal encoder and fine-tuned with conditional language
modeling loss. For VQA, we conduct experiment on the VQA2.0 dataset [1],
where train/val/test split set is composed of 83k/41k/81k. Both training and
validation sets are used for training, and also include additional question-answer
pairs from Visual Genome, following previous works [6,3]. We fine-tune for 8
epochs with a total batch size of 128 and an initial learning rate of 2e− 5. During
inference, the decoder is constrained to only generate from the 3192 candidate
answers [2] for a fair comparison. We measure performance on the test-dev (t-dev)
and test-std (t-std) splits.

4 Detailed explanations on Section 5.5 (manuscript)

4.1 Small model, ITC

Note that all the models in Table 5 (manustript) are trained with dual uni-modal
encoders. Thus, other losses like MLM and ITM can not be used. For the Queue-
based ITC, queue size for storing extra negatives is set as 65280. All other models

6 J.Byun et al.

are trained with in-batch ITC. We verified that adding ITCcons and GRIT has
considerable gain. We believe these results demonstrate the effectiveness of our
method.

4.2 Large model, more objectives

We also further measure the gains when another type of VLP model, TCL [7],
is combined with our method. TCL extends ALBEF with two complementary
objectives in the pre-alignment step. They utilize the momentum encoder to
design a informative pseudo-target of loss functions in the pre-training. Thus, TCL
has a larger network architecture than ours (which do not contain momentum
encoders in the pre-training) and is pre-trained with additional objectives. Despite
these differences, we verify that the combination of our method and TCL again
brings significant gains in Table 6 (manuscript).

For a fair comparison, we mostly follow the pre-training and fine-tuning
settings of TCL. Namely, we maintain the original architecture and objectives of
TCL, and then additionally apply our grouped mini-batch sampling strategy and
enlarged masking probability. Note that we do not employ the consistency loss,
since TCL already has objectives for elaborating contrastive learning. Since TCL
uses a momentum encoder and distillation in the pre-training, for fine-tuning, we
use an updated momentum encoder in the pre-training phase and MD in this
experiment.

5 Detailed Experimental Results

Here we report additional results about analysis on sampling for VLP in Section 3
(manuscript). We include VQA results in both Table 3 and Table 4. Moreover, we
report models trained with various masking probabilities (15%, 35%, 50%, 75%)
in Table 4.

Table 3. Ablation study on pre-training objectives of ALBEF on two V+L downstream
tasks. MLM: masked language modeling with 15% masking probability.

Epochs Training tasks TR (COCO) IR NLVR VQA
R@1 R@5 R@10 R@1 R@5 R@10 (dev) (test-P) (t-dev) (t-std)

10

MLM + ITMrand 61.6 86.1 92.5 47.8 75.4 84.8 77.02 78.44 72.82 73.11
MLM + ITMrand + ITC 66.8 88.8 94.5 51.1 78.4 86.8 76.59 78.69 73.24 73.44
MLM + ITMhard 68.6 89.4 94.9 52.1 79.0 87.1 79.18 79.32 73.55 73.67
ALBEFBase 72.3 91.3 96.0 55.1 81.0 88.5 79.21 79.78 73.97 74.10

20

MLM + ITMrand 66.5 88.3 94.0 51.3 78.3 86.5 78.02 79.43 73.59 73.80
MLM + ITMrand + ITC 69.6 90.9 95.3 53.8 80.0 87.8 77.61 79.43 73.68 73.98
MLM + ITMhard 72.0 91.5 96.6 57.5 81.2 88.4 80.44 80.83 74.19 74.43
ALBEFBase 73.8 92.3 96.5 57.7 82.5 89.6 79.22 80.37 74.62 74.70

GRIT-VLP: Grouped Mini-batch Sampling for Efficient VLP 7

5.1 Analysis on hard negative sampling

Table 3 shows three downstream task performances (including VQA) of models
with and without each objective of ALBEFBase. As mentioned in Section 3
(manuscript), the bottom two rows of each epoch in the Table 3 reaffirm that the
ITMhard is the most essential component for achieving great performance quickly
in all downstream tasks including VQA.

5.2 Analysis on masking probabilities

Table 4. Evaluation of the various masking probability methods on two downstream
V+L tasks. Basen: model with n% masking probability.

Epochs Training tasks TR (COCO) IR NLVR VQA
R@1 R@5 R@10 R@1 R@5 R@10 (dev) (test-P) (t-dev) (t-std)

10

ALBEFBase 72.3 91.3 96.0 55.1 81.0 88.5 79.21 79.78 73.97 74.10
ALBEFBase35 73.1 91.6 96.2 56.7 81.9 89.2 79.42 79.78 74.42 74.42
ALBEFBase50 73.4 92.5 96.4 57.2 82.3 89.4 79.42 79.87 74.42 74.61
ALBEFBase75 72.6 91.5 96.1 56.3 81.4 89.0 79.24 79.33 74.38 74.42

20

ALBEFBase 73.8 92.3 96.5 57.7 82.5 89.6 79.22 80.37 74.62 74.70
ALBEFBase35 75.2 93.1 96.6 58.7 82.9 89.8 80.56 80.47 74.79 75.00
ALBEFBase50 75.6 93.2 96.7 58.8 83.2 90.1 80.41 80.54 74.94 75.07
ALBEFBase75 75.1 92.9 96.8 58.1 82.7 89.6 79.30 79.69 74.86 74.85

Fig. 1. Results of the four pre-trained models: (a) UoV (Usage of Vision), (b) Accuracy
and (c) Accuracy w/o image.

Table 4 shows the results of models trained with various masking probabilities
(15%, 35%, 50%, 75%) on three downstream tasks including VQA. We verify
that moderately enlarging the masking probability (50%) enhances the final
performance with a considerable gain. However, in Table 4, we observe that if
the masking probability is too high (75%), the performance is rather degraded.
In this section, we scrutinize the reasons behind theses results with the MLM
accuracy and UoV (Usage of Vision).

8 J.Byun et al.

From the Fig. 1(a), we observe that the UoV of the model trained with
75% masking probability is significantly higher than that of other models. It
means that the ALBEFBase75 is the model that most reflects image information
for prediction. However, as shown in the Table 4, the final performance of
ALBEFBase75 is lower than the ALBEFBase50 . This result suggests that simply
continuously increasing the usage of image information does not always lead
to final performance improvement. To properly explain about this somewhat
counter-intuitive result, it is necessary to consider the Accuracy w/o image metric
which indicates the MLM accuracy based only on the text information without
image (Fig. 1(c)), as well as the UoV metric (Fig. 1(a)).

Since the Accuracy w/o image measures the MLM accuracy by using only
text (without image) as input to the pre-trained model, it shows the ability of
the pre-trained model to derive the correct answer for the masked word from
the only textual information. In Fig. 1(a) and Fig. 1(c), we observe that the
model pre-trained with sparse sentence (75%) highly use the visual information,
but its Accuracy w/o image is relatively low compared to other models, which
means that ALBEFBase75 lacks the ability to leverage textual information. We
can observe more clearly that ALBEFBase75 lacks the ability to utilize textual
information in the NLVR2 task, which requires complex reasoning over sentences.
As shown in the Table 4, the results of the ALBEFBase75 on NLVR2 is even
lower than the ALBEFBase. In conclusion, we verify that the moderately enlarged
masking probability (50%), which can utilize both visual and textual information
in a balanced way, is more suitable for vision and language pre-training.

Table 5. Ablation studies on mini-batch size and search space

TR (COCO) IR NLVR
N M R@1 R@5 R@10 R@1 R@5 R@10 (dev) (test-P)

48 480 76.4 93.5 96.7 59.6 83.4 90.1 80.28 80.50
48 960 76.9 94.0 97.1 59.7 83.6 90.1 81.23 81.07
48 1920 76.8 93.7 96.9 60.0 83.3 89.9 81.29 81.34

96 480 76.5 93.9 97.0 59.4 83.4 90.0 80.68 80.68
96 960 77.1 93.8 97.0 59.5 83.4 90.0 81.30 81.43
96 1920 77.1 93.5 96.9 59.6 83.5 90.0 80.53 81.01

128 480 76.3 93.7 96.9 59.1 83.1 89.7 80.73 80.88
128 960 77.0 93.5 97.1 59.6 83.3 90.0 80.54 81.47
128 1920 77.1 93.6 96.7 59.5 83.3 89.9 80.73 81.60

5.3 Ablation study on hyper-parameters

Regarding the batch size (N) and search space size (M), we carry out an additional
ablation study in Table 5 (with other hyper-parameters fixed). We experiment

GRIT-VLP: Grouped Mini-batch Sampling for Efficient VLP 9

with three mini-batch sizes (48, 96, 128) and search space sizes (480, 960, 1920).
In all search space sizes, we verify that our method is generally robust with batch
size. However, if the search space is small (480), the performance is degraded
compared to the other search space size. If the search space is sufficiently large
(more than 960), the performance gap is marginal. Namely, N does not have a
crucial impact on performance but M does. In Table 3 (manuscript), we select
N = 128 and M = 1920 since the total batch size (128 × 4 = 512) is same
as ALBEF (64 × 8 = 512) and it shows consistently great performance on all
downstream tasks.

Table 6. Fine-tuned results image-text retrieval on Flickr30K and MSCOCO datasets

Method
#Pre-train

Images
MSCOCO (5K test set) Flickr30K (1K test set)
TR IR TR IR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
UNITER 4M 65.7 88.6 93.8 52.9 79.9 88.0 87.3 98.0 99.2 75.6 94.1 96.8
VILLA 4M - - - - - - 87.9 97.5 98.8 76.3 94.2 96.8
OSCAR 4M 70.0 91.1 95.5 54.0 80.8 88.5 - - - - - -
ALBEF 4M 73.1 91.4 96.0 56.8 81.5 89.2 94.3 99.4 99.8 82.8 96.7 98.4

GRIT-VLPE-10 4M 74.9 93.0 97.0 58.1 82.7 89.6 94.7 99.6 99.9 82.0 95.3 97.7
GRIT-VLP 4M 77.1 93.6 96.7 59.5 83.3 89.9 96.0 99.6 99.9 83.8 96.2 97.8

ALBEF 14M 77.6 94.3 97.2 60.7 84.3 90.5 95.9 99.8 100.0 85.6 97.5 98.9
ALIGN 1.8B 77.0 93.5 96.9 59.9 83.3 89.8 95.3 99.8 100.0 84.9 97.4 98.6

5.4 Additional results on IRTR

Table 6 shows the full IRTR results including R@5 and R@10 accuracy on both
COCO and Flickr30K dataset. As we mentioned in the Section 5 (manuscript),
GRIT-VLP (4M) outperforms other methods including ALBEF by a considerable
gain, except for the IR results (R@5 and R@10) that are slightly lower than
ALBEF in the Flickr30K dataset. In particular, in the COCO dataset, we verify
that our GRIT-VLP (4M) shows competitive results with ALBEF (14M) and
ALIGN (1.8B) trained on much larger datasets. Moreover, when using the exact
same dataset (4M), we observe that “GRIT-VLPE-10” (4M) trained with only 10
epochs shows superior performance to the ALBEF (4M) trained with 30 epochs,
in the COCO dataset. Note that our GRIT-VLP also obtains faster training
time per epoch and smaller model parameters in the pre-training compared to
ALBEF.

10 J.Byun et al.

References

1. Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the v in vqa
matter: Elevating the role of image understanding in visual question answering. In:
CVPR (2017)

2. Kim, J.H., Jun, J., Zhang, B.T.: Bilinear attention networks. In: NeurIPS (2018)
3. Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., Hoi, S.C.H.: Align before

fuse: Vision and language representation learning with momentum distillation. In:
NeurIPS (2021)

4. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. In:
NeurIPS Workshops (2017)

5. Suhr, A., Zhou, S., Zhang, A., Zhang, I., Bai, H., Artzi, Y.: A corpus for reasoning
about natural language grounded in photographs. arXiv preprint arXiv:1811.00491
(2018)

6. Tan, H., Bansal, M.: Lxmert: Learning cross-modality encoder representations from
transformers. arXiv preprint arXiv:1908.07490 (2019)

7. Yang, J., Duan, J., Tran, S., Xu, Y., Chanda, S., Chen, L., Zeng, B., Chilimbi, T.,
Huang, J.: Vision-language pre-training with triple contrastive learning. In: CVPR
(2022)

	Supplementary Material for GRIT-VLP: Grouped Mini-batch Sampling for Efficient Vision and Language Pre-training

