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Abstract. Most of the currently existing vision and language pre-training
(VLP) methods have mainly focused on how to extract and align vision
and text features. In contrast to the mainstream VLP methods, we high-
light that two routinely applied steps during pre-training have crucial
impact on the performance of the pre-trained model: in-batch hard neg-
ative sampling for image-text matching (ITM) and assigning the large
masking probability for the masked language modeling (MLM). After
empirically showing the unexpected effectiveness of above two steps, we
systematically devise our GRIT-VLP, which adaptively samples mini-
batches for more effective mining of hard negative samples for ITM while
maintaining the computational cost for pre-training. Our method consists
of three components: 1) GRouped mIni-baTch sampling (GRIT) strat-
egy that collects similar examples in a mini-batch, 2) ITC consistency
loss for improving the mining ability, and 3) enlarged masking proba-
bility for MLM. Consequently, we show our GRIT-VLP achieves a new
state-of-the-art performance on various downstream tasks with much
less computational cost. Furthermore, we demonstrate that our model is
essentially in par with ALBEF, the previous state-of-the-art, only with
one-third of training epochs on the same training data. Code is available
at https://github.com/jaeseokbyun/GRIT-VLP.
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1 Introduction

Recently, the pre-training and fine-tuning approach of the Transformer [35] based
models have made exciting progress in natural-language-processing (NLP) [6]
and vision tasks [8]. Particularly, despite the huge computational cost, vision and
language pre-training (VLP) [20,33,13,27,4,17,22,31,21,9], which aims to learn
cross-modal representations from large-scale image-text pairs, enabled to achieve
the state-of-the-art results in various vision and language downstream tasks, e.g.,
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Fig. 1: A comparison of negative samples for ITM task selected by (a) Random,
(b) In-batch sampling by ALBEF [20], and (c) Our GRIT strategy.

image-text retrieval (IRTR), natural language for visual reasoning (NLVR) [32],
and visual question answering (VQA) [1], etc. For the joint understanding of
image and text, a multi-modal encoder used in VLP is typically trained with
the self-supervised learning objectives, such as image-text matching (ITM) and
masked language modeling (MLM).

Majority of the existing VLP methods have focused on how to make the vision
features to align with those of the text. The first popular approach [4,33,24,22]
is to utilize the salient region-based features extracted from a pre-trained object
detector. However, these region feature based VLP methods suffer from severe
computational inefficiency and heavy dependency on the pre-trained object
detectors. In order to overcome such drawbacks, recent approaches have replaced
the object detectors with CNN backbones [14,13] or linear embedding inspired
by the recently developed Vision Transformer (ViT) [8], which enables efficient
end-to-end training of the vision-language representation learning.

Recently, ALBEF [20] was proposed as another attempt to lift the dependency
on the object detectors. They designed a novel VLP architecture to integrate the
uni-modal encoder for each modality (i.e., an object-detector-free vision encoder
and a text encoder) by employing a multi-modal Transformer encoder that fuses
features from them. Additionally, ALBEF employed the image-text contrastive
(ITC) loss for uni-modal encoders to pre-align the features before fusing, the in-
batch hard negative sampling strategy for the ITM, and a momentum distillation
to further improve the performance. As a result, it achieved the state-of-the-art
performance for the multiple vision and language downstream tasks.

While the main emphasis of [20] was on the pre-aligning stage via ITC, we
double-check that proposition and carry out careful ablation analyses on ALBEF
and identify that the two routinely applied sampling steps in fact have crucial
impacts on the final downstream performance. Firstly, the hard negative sampling
for the ITM task, of which effect was described as marginal compared to the
pre-aligning in [20, Section 6], in fact turns out to be an essential component,
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even more than the ITC itself, for efficient VLP. Namely, when training for the
ITM task, rather than using the randomly selected negatives as shown in Fig. 1(a)
(for the text and image anchor, respectively), selecting hard negative samples as
in Fig. 1(b), which is sampled from the given mini-batch by using the contrastive
image-text similarity scores already computed for the ITC, becomes much more
useful for promoting a more fine-grained representation learning. Secondly, the
mask sampling probability for the MLM task, which typically is naively set to
15%, also is shown to have a significant impact on the VLP performance. Namely,
when the probability is enlarged up to 50%, the multi-modal encoder is enforced
to use more visual context features for predicting the masked token, hence, a more
consolidated multi-modal representations could be learned. A recent concurrent
work [37] also suggests the enlarging of the masking probability for MLM; however,
their focus was on the NLP domain, thus, they have not investigated the impact
of enlarging the probability on the multi-modal encoder.

Motivated by above analyses, in this paper, we make the following three
modifications on ALBEF to significantly improve the downstream performance
and computational efficiency of VLP. First, we devise GRIT (GRouped mIni-
baTch sampling) strategy that enables to select much more informative hard
negative samples (as shown in Fig. 1(c)) than those in [20] (Fig. 1(b)), without
introducing any significant memory and computational overhead. Note such
improvement is far from being straightforward since a naive extension of previous
approaches would require either additional GPU memory (when simply enlarging
the batch size) or forward pass computation (when utilizing additional queues
as in [36,12,40]). We elaborate on this point more in details in a later section.
Second, we devise a consistency loss between the image-text similarity scores
used for ITC such that the contrastive learning and pre-aligning become more
effective and, as a result, enables our GRIT to sample more exquisite negative
samples. Third, we use enlarged mask sampling probability (50%) for MLM such
that the visual features can be further integrated with the text features when
solving the downstream tasks.

Our final method that combines above modifications is dubbed as GRIT-VLP,
and we show that it can significantly improve the efficiency of VLP compared
to ALBEF. Namely, trained on the exact same training data, GRIT-VLP sig-
nificantly outperforms ALBEF on all of the downstream tasks we tested with
33% fewer number of epochs, 21% less training time per epoch. Furthermore,
our thorough analyses show that GRIT-VLP is model agnostic and can be easily
applied to existing VLP with different model architectures and objectives, which
demonstrates the potential of our method being an essential tool for VLP.

2 Preliminaries and Related Work

[Vision-language pre-training] Existing VLP methods, which can be catego-
rized into three frameworks, have mainly focused on the development of objectives
and architectures to learn multi-modal representations. The first approach is to
adopt dual uni-modal encoders which are composed of separate image and text
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encoder. CLIP [27] and ALIGN [15] pre-trained with contrastive learning have
been shown to be effective for IRTR, without object detectors. However, they
suffer from the performance degradation in other downstream tasks (e.g., VQA,
NLVR). The second approach [33,24,31,22,19] mainly utilizes a single multi-modal
encoder where concatenated text and image representations are used as input.
In contrast to the former approach, these works consistently show promising
results on various downstream tasks. However, these methods heavily depend
on the pre-trained object detectors which are computationally inefficient. Thus,
recent works [14,13,17,44] have struggled to replace object detectors with more
efficient ones. The last category [20,45] offsets the shortcomings of the previous
approaches by combining them, and achieves state-of-the-art performance. AL-
BEF [20] combines them by adding pre-alignmenet before fusing. Our method is
built upon this ALBEF [20], but, deviating from the mainstream of VLP, our
attention is on the sampling strategy for efficient pre-training.
[Hard negative mining] Most prior works on negative mining [38,11,29,42,43]
point out that hard negatives can help a training model to converge faster. Recent
approaches [28,5,39,3,46] mainly focus on the unsupervised contrastive learning
setting where true dissimilarity of pairs are not available. However, these methods
can not be applied to the VLP methods (second, third categories in the previous
paragraph) due to the inherent architecture and input of multi-modal encoder.

2.1 ALign BEfore Fuse (ALBEF) [20]

Since ALBEF is the base model on which we build our method, we review it
in details here. It consists of an image encoder fv, a text encoder ft, and a
multi-modal encoder h, all of which are based on the Transformer architecture.
Each input image V and sentence T is encoded into respective embedding
sequences: fv(V ) = {vcls, v1, v2, ..., vSV } and ft(T ) = {tcls, t1, t2, ..., tST }, in
which vcls and tcls denote the embedding of the [CLS] token for each modality,
and SV and ST denote the sequence length of image and text, respectively. Then,
vision and text representations are fused by a cross-attention module in the
multi-modal encoder which requires both vision and text features as input (i.e.,
h(fv(V ), ft(T )) = {wcls, w1, w2, ..., wST }). The three pre-training objectives of
ALBEF are briefly introduced below4.
(a) Image-text contrastive learning (ITC) focuses on the pre-alignment of
uni-modal representations before fusing them with a multi-modal encoder. Like
conventional contrastive learning, it promotes positive image-text pairs to have
similar representations and negative ones to be dissimilar. Inspired by MoCo
[12], ALBEF utilizes two queues for storing recent [CLS] embeddings from the
unimodal encoders, i.e., vcls and tcls, and use them as extra negatives for the
contrastive learning. More specifically, a similarity between V and T is defined
as s(V, T ) = gv(v

cls)T gt(t
cls) in which gv(·) and gt(·) are linear projections for

mapping [CLS] embeddings to the normalized lower dimensional features. Then,

4 Note the Momentum Distillation (MD), which utilizes the soft outputs from an
additional momentum model is omitted, since we do NOT use the momentum model.
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for each V and T , the normalized image-to-text and text-to-image similarities
for j = 1, . . . , N are defined as:

pv2tj (V ) =
exp(s(V, Tj)/τ)∑N
j=1 exp(s(V, Tj)/τ)

, pt2vj (T ) =
exp(s(Vj , T )/τ)∑N
j=1 exp(s(Vj , T )/τ)

, (1)

in which τ is a learnable temperature, and N is the size of the queue. The ITC
loss is then defined as:

LITC =
1

2
E(V,T )∼D[CE(yv2t(V ),pv2t(V )) + CE(yt2v(T ),pt2v(T ))], (2)

in which yv2t(V ) and yt2v(T ) denotes the ground-truth one-hot vector for the
true pair sample for V and T , respectively. Now, in the pre-training, we do not
use the queues for ITC but use the in-batch version, i.e., N in (1) is the size of the
mini-batch, to implement a lightweight version in terms of memory/computation.
(b) Image-text matching (ITM) is a binary classification task that predicts
whether a pair of image and text, (V, T ), is matched or not. The prediction
probability of the classifier, pITM(V, T ), is obtained by using the joint embedding
feature of [CLS] token (wcls) from the multi-modal encoder. Then, the ITM loss
is defined as

LITM = E(V,T )∼D[CE(yITM,pITM(V, T ))]. (3)

in which yITM is the ground truth one-hot vector, and CE(·, ·) stands for the
cross-entropy between the two probability vectors. The effectiveness of ITM is
determined by the quality of the negative pair, and, as outlined in the Introduction,
ALBEF proposes the in-batch hard negative sampling (ITMhard) by utilizing
pv2t(V ) and pt2v(T ) defined in (1) for sampling text and image that has high
similarity for given V and T , respectively, as a negative sample pair.
(c) Masked language modeling (MLM) is a task to predict the randomly
masked tokens in a text based on both contextual text and visual information.
ALBEF uses the masking probability of 15% following [6], and by denoting the
randomly masked text as T̃ and the prediction probability for the masked tokens
as pmask(V, T̃ ), the loss function of MLM becomes

LMLM = E(V,T̃ )∼D[CE(ỹ,pmask(V, T̃ ))], (4)

in which ỹ is a ground truth one-hot vector for the masked token.

3 Ablation Analyses on ALBEF

As mentioned in the Introduction, we carry out careful analyses on ALBEF to
verify the true effect of the training objectives described in the previous section.
To that end, we set the base model as “ALBEFBase”, which mostly follows the
model architecture and pre-training objectives of ALBEF, but does not use the
additional momentum encoder and momentum distillation5. Highlighting the
5 We defer describing the detailed model architecture to Section 5.1.
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Fig. 2: The ALBEFBase architecture and the overall process of GRIT-VLP.

training objectives, we can also denote “ALBEFBase” by MLM+ITMhard+ITC,
and we ablate each of those components and evaluate the performance of the
model variants on two downstream tasks (IRTR, NLVR). All models are pre-
trained with 4M dataset, and evaluated with MS-COCO [23] and NLVR2 dataset
[32]. Details on the tasks, datasets and additional results are described in Section
5 and the Supplementary Material (S.M.).

[Hard negative sampling on ITM] Table 1 compares the downstream task
performance of models that have the fixed MLM objective (with masking prob-
ability 15%) but varying ITM and ITC objectives of ALBEFBase. In the table,
“MLM+ITMhard” stands for the case in which only ITMhard is carried out without
the ITC objective — this case is missing in the analysis of the original ALBEF
paper [20, Table 1], but we believe it is necessary for showing the effect of ITMhard
alone without the pre-algining effect of ITC. The subtlety here is that, since
ITMhard utilizes the image-text similarity scores from ITC (1) for selecting the
in-batch hard negative samples, we use the scores obtained from the uni-modal
encoders of ALBEF (without the multi-modal encoder) that are pre-trained only
with the ITC loss. Moreover, “ITMrand” in Table 1 stands for the ITM loss with
randomly selected negative samples.

The original ALBEF essentially focuses on the effect of ITC by mainly com-
paring “MLM+ITMrand” and “MLM+ITMrand+ITC” and argues that “ITMhard”
only gives a marginal improvement when it replaces ITMrand. However, we ob-
serve a different story in Table 1. Namely, even without the pre-alignment of
the representations via ITC, “MLM+ITMhard” gives a significant performance
boost over “MLM+ITMrand”, which is substantially larger than the improvement
we get by “MLM+ITMrand+ITC”. Moreover, even with a shorter 10 epochs,
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Table 1: Ablation study on ITMhard and ITC for ALBEFBase.

Epochs Training tasks TR (COCO) IR NLVR
R@1 R@5 R@10 R@1 R@5 R@10 (val) (test)

10

MLM + ITMrand 61.6 86.1 92.5 47.8 75.4 84.8 77.02 78.44
MLM + ITMrand + ITC 66.8 88.8 94.5 51.1 78.4 86.8 76.59 78.69
MLM + ITMhard 68.6 89.4 94.9 52.1 79.0 87.1 79.18 79.32
ALBEFBase 72.3 91.3 96.0 55.1 81.0 88.5 79.21 79.78

20

MLM + ITMrand 66.5 88.3 94.0 51.3 78.3 86.5 78.02 79.43
MLM + ITMrand + ITC 69.6 90.9 95.3 53.8 80.0 87.8 77.61 79.43
MLM + ITMhard 72.0 91.5 96.6 57.5 81.2 88.4 80.44 80.83
ALBEFBase 73.8 92.3 96.5 57.7 82.5 89.6 79.22 80.37

Table 2: Ablation study on the masking probability for MLM for ALBEFBase.

Epochs Training tasks TR (COCO) IR NLVR
R@1 R@5 R@10 R@1 R@5 R@10 (val) (test)

10 ALBEFBase 72.3 91.3 96.0 55.1 81.0 88.5 79.21 79.78
ALBEFBase50 73.4 92.5 96.4 57.2 82.3 89.4 79.42 79.87

20 ALBEFBase 73.8 92.3 96.5 57.7 82.5 89.6 79.22 80.37
ALBEFBase50 75.6 93.2 96.7 58.8 83.2 90.1 80.41 80.54

“MLM+ITMhard” performs competitively or superior to “MLM+ITMrand+ITC”
trained for a longer 20 epochs. While the best performance is still obtained
by using ITMhard and ITC together, i.e., ALBEFBase, this result strongly mo-
tivates that further improving ITMhard could be central in attaining efficient VLP.

[Mask sampling probability for MLM] Table 2 now focuses on MLM by
varying the masking probability with fixed ITM and ITC. Namely, the original
ALBEFBase trains with the masking probability of 15%, and we also test the
model with the probability 50%, dubbed as ALBEFBase50 . In the table, we
observe that this simple change brings surprising performance gain; ALBEFBase50
always outperforms ALBEFBase for the same epoch and becomes comparable to
ALBEFBase even when trained with significantly smaller number of epochs. This
result clearly motivates using enlarged masking probability for MLM for VLP.

3.1 Motivation

The result in Table 1 suggests that improving the hard negative sampling strategy
for ITM could bring further performance gain for VLP. An obvious way for such
improvement is to enlarge the search space from which the negative samples are
selected, hence, the sample that contains the nuanced difference with respect to
the positive sample as in Figure 1(c) can be obtained. However, we note that
such enlargement in a memory- and computation-efficient way is far from being
straightforward, described as below.

The most naive way to enlarge the search space is to enlarge the size of
the mini-batch during training. While conceptually simple, it clearly is limited
by the GPU memory and high computational cost. An alternative is to utilize
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the additional queues to store the compressed representations of the samples
(i.e., the [CLS] tokens [vcls, tcls] from the uni-modal encoders), like MoCo [12]
or MemoryBank [40], and include those representations in the search space for
mining the hard negatives. While this queue-based solution is highly effective
in the ordinary contrastive learning, it causes additional complication for VLP
using the ITM loss. Namely, as described in Section 3, the ITM loss is calculated
with the [CLS] token from the multi-modal encoder (wcls), which needs the
entire sequence embeddings (fv(V ), ft(T )) to compute. Therefore, to employ
the queue-based solution for ITMhard, one should select between the following
two options. One is to store the entire embedding sequences for both modalities
in the queues, which is severely memory-inefficient due to the long sequence
lengths (typically, ST : 30 and SV : 200). The other is to only store [vcls, tcls]
tokens from each modality to compute (1) and (2) for ITC, but carry out the
additional forward passes for the samples that are not in the current mini-batch
to compute wcls and the ITM loss. Clearly, the second option would suffer from
the additional computation cost required for the forward passes.

To overcome the limitations of the above naive solutions, we propose a new
method that can enlarge the search space and select more informative negative
samples for ITM without any significant overheads on the memory/computation.

4 Main Method: GRIT-VLP

4.1 GRouped mIni-baTch sampling (GRIT)

In this section, we describe our main contribution, the GRouped mIni-baTch
sampling (GRIT) strategy. The basic idea is to compose each mini-batch of size
N with highly similar example groups such that the informative, hard negative
samples are likely to be chosen by the in-batch sampling of ALBEF. In order to
do that without significant memory/computation overhead, as described in Fig.
2 and Algorithm 1 in S.M, GRIT utilizes two additional queues of size L that
store the [CLS] tokens from the uni-modal encoders, an index queue I of size
M , and a full index array G of size D (the whole data size). The ordering of the
sizes is N ≪ M ≪ L ≪ D. Then, the procedure of constructing grouped mini-
batches for the next epoch is performed concurrently with the loss calculation
for pre-training at each epoch, and these grouped mini-batches are used for the
ordinary mini-batch training in the following epoch.

A subtle challenge of above simultaneous creation process for the grouped
mini-batches is that it removes the randomness of the mini-batches, which is an
essential ingredient for the stochastic gradient descent based learning. Therefore,
we add two-level shuffling phases for preserving the randomness among the
grouped mini-batches. As a result, our GRIT is composed of the following four
phases: 1) collecting, 2) example-level shuffling 3) grouping, and 4) mini-batch-
level shuffling. We note the first three phases are repeated whenever the queue of
size L is filled, and the last phase is repeated once every epoch.
[Phase 1 : Collecting] To construct mini-batches containing similar samples,
we first store the [CLS] tokens [vcls, tcls] (from uni-modal encoders) in the two
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Fig. 3: Grouped mini-batch sampling (GRIT) strategy.

additional queues of size L, which is much larger than the size of mini-batches
(N), until filled as shown in Figure 3.

[Phase 2 : Example-level shuffle] Once the queues are filled, all the samples in
the queues are randomly shuffled at the example-level, to secure the randomness
mentioned above. After shuffling, each queue is divided into L

M sub-queues of size
M , which is the size of the enlarged search space for the hard negative samples
for ITM. Then, the samples in each sub-queue are grouped based on similarity
via the grouping phase below, which is sequentially performed for each sub-queue.

[Phase 3 : Grouping] From the [vcls, tcls] stored in the sub-queue, we can
compute the image-to-text and text-to-image similarity scores, similarly as in (1),
among the examples in the sub-queue. Accordingly, for each pair (V, T ), those
scores can be denoted by qv2t(V ) ∈ ∆M and qt2v(T ) ∈ ∆M , respectively.

Based on the computed similarities, we aim group similar (V, T ) examples in
the sub-queue to each mini-batch as much as possible. To that end, as described in
Algorithm 2 in S.M, our grouping phase is summarized as: 1) randomly sample the
first pair (V1, T1) from the sub-queue, then 2) iteratively find and store the index
of the most similar example one by one until all examples inside the sub-queue
are visited once, and finally, 3) the index queue I ∈ {1, . . . ,M}M is generated.
Note both the negative text for an anchor image and the negative image for an
anchor text should be considered when constructing the negative samples for
ITM. Thus, rather than using a one-way similarity score, two similarity scores are
used alternatively; namely, as illustrated in Fig. 3 with a toy example of M = 5,
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at the (i+ 1)-th iteration, given a pair (Vk, Tk) with index k, Ii+1 is chosen as

Ii+1 =

{
argmaxj /∈I q

t2v
j (Tk) if Ii is chosen with qv2t

argmaxj /∈I q
v2t
j (Vk) if Ii is chosen with qt2v.

(5)

Thus, during above grouping process for the sub-queue, half of the pairs are
selected based on (V → T) direction, and the other half based on (T → V)
direction. Whenever the index queue I is full, we convert the indices into the
original data indices in {1, . . . , D} and append those to the full index array G.
[Phase 4 : Mini-batch-level shuffle] After each epoch, the full index array
G, which is a permutation of {1, . . . , D}, is generated. Then, G is divided into
multiple mini-batch-sized arrays, and these arrays are shuffled. Note this shuffling
is done at the mini-batch level, not at the example level. Finally, these shuffled
mini-batches are used for both training and GRIT for the next epoch.

Remark 1: We note the shuffling phases Phase 2/4 in GRIT are important to
secure the randomness among the mini-batches. Namely, since GRIT generates
the indices during the previous epoch, it omits the conventional data re-shuffling
performed at the start of each epoch. Hence, although the order of indices is
continuously changed to some extent in Phase 3, such re-ordering happens only
at the level of sub-queue of size M , hence the scope of shuffling is significantly
limited. In Table 4 (Section 5), we verify that the performance of GRIT without
shuffling is significantly degraded, justifying the proposed shuffling phases.
Remark 2: The naive implementation of GRIT would be to proceed Phase 1/3
and training separately, not concurrently. To be specific, at the beginning of
each epoch, the conventional re-shuffling of the whole data is done, followed
by additional forward passes on the uni-modal encoders, and Phase 1/3 are
performed to generate grouped mini-batch indices. Then, the training begins
with the generated indices. Since this naive version requires additional forward
passes, it clearly has high computational cost and requires longer training time.

4.2 ITC consistency loss and increased masking probability for MLM

GRIT encourages similar examples to be grouped within each mini-batch, hence,
the ITMhard can become more effective since the mini-batch may contain infor-
mative, hard negative samples. However, when GRIT is combined with ITC, one
potential drawback is that the representations for similar samples would move
away from each other unexpectedly, since all negatives will be equally penalized
during the contrastive learning regardless of the similarity.

To address this issue, we add a consistency loss that can reflect the similarity
among samples. Namely, when an image V and a text T form a positive pair
(V, T ), it is natural to assume that they share a similar semantic. Hence, we
would expect the similarity scores pv2t(V ) and pt2v(T ) to be similar to each
other. To this end, we define the soft pseudo-target p̃t2v(T ) as sg(pt2v(T )) and
p̃v2t(V ) as sg(pv2t(V )) for pv2t(V ) and pt2v(T ), respectively, in which sg(·) is
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the stop-gradient operator. Then, our ITC with consistency loss is defined as

LITCcons = LITC +
λcons

2
E(V,T )∼D[KL(p̃v2t(V ) ||pt2v(T )))+KL(p̃t2v(T ) ||pv2t(V ))],

(6)
in which λcons is the regularization parameter. We expect this loss refines similarity
scores which affect the quality of the grouping phase of GRIT. We set λcons as
0.2 for all cases for simplicity.

Finally, our model, dubbed as GRIT-VLP and illustrated in Fig 2, is obtained
as follows. We use ALBEFBase as our base model architecture, and combine
our GRIT, ITC consistency loss, and masking probability of 50% for MLM.
Consequently, the pre-training objective of GRIT-VLP is

L = LITMhard + LMLM50 + LITCcons , (7)

in which the mini-batches are generated by the GRIT strategy. The pseudo-code
for GRIT-VLP is given in Alg.1/2 in the S.M.

5 Experimental Results

5.1 Data and experimental settings

[Training data] Following ALBEF [20] and UNITER [4], we use four datasets
(MS-COCO [23], Visual Genome [18], Conceptual Captions [30] and SBU Captions
[25]) for training, which consist of 4M unique images and 5M image-text pairs.
[Implementation details] Here, we give the concrete model architecture of
ALBEFBase. We use a 12-layer vision transformer ViT-B/16 [8] with 86M param-
eters as the image encoder fv and initialize it with the weights pre-trained on
ImageNet-1k [34]. A 6-layer Transformer [35] is used for both the text encoder ft
and the multi-modal encoder h, which are initialized with the first 6 layers and
the last 6 layers of BERT-base with 123.7M parameters[6], respectively. We use
the same data augmentation technique of ALBEF, and our model is trained for 20
epochs. All experiments are performed on 4 NVIDIA A100 GPUs. Furthermore,
unless otherwise noted, we set N = 96, M = 960, and L = 48, 000. For all other
hyper-parameter settings, we follow ALBEF [20]. More details on the dataset,
software platform, training procedures, and hyper-parameters are in the S.M.

5.2 Downstream vision and language tasks

After the pre-training step, our model is fine-tuned on three well-established
downstream vision and language tasks, including image-text retrieval (IRTR),
visual question answering (VQA2 [10]), and natural language for visual reasoning
(NLVR2 [32]). For IRTR, we use MS-COCO [23] and Flickr30K (F30K) [26]
re-splited by [16]. We do not include SNLI-VE [41] in the evaluation, since the
data set is known to be noisy according to [7]. We mostly follow the fine-tuning
and evaluation process of ALBEF [20] except for using the momentum distillation.
We compare our method with various VLP methods trained on the same 4M
training set. More details on the downstream tasks including evaluation setting
are given in S.M.
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Table 3: Comparison with various methods on downstream vision-language tasks.
Bold denotes the best result among models trained with 4M dataset.

Method #Pre-train
Images

Flickr R@1 COCO R@1 VQA NLVR2
TR IR TR IR test-dev test-std dev test-P

UNITER [4] 4M 87.3 75.6 65.7 52.9 72.70 72.91 77.18 77.85
VILLA [9] 4M 87.9 76.3 - - 73.59 73.67 78.39 79.30
OSCAR [22] 4M - - 70.0 54.0 73.16 73.44 78.07 78.36
ViLT [17] 4M 83.5 64.4 61.5 42.7 71.26 - 75.70 76.13
ALBEF [20] 4M 94.3 82.8 73.1 56.8 74.54 74.70 80.24 80.50
GRIT-VLPE-10 4M 94.7 82.0 74.9 58.1 74.72 74.74 79.98 80.11
GRIT-VLP 4M 96.0 83.8 77.1 59.5 75.11 75.26 80.73 81.60
ALBEF 14M 95.9 85.6 77.6 60.7 75.84 76.04 82.55 83.14

Table 4: Ablation study on the proposed method.
GRIT

λcons
Masking
Prob(%)

TR (COCO) IR NLVR VQA Time
Collecting Shuffle R@1 R@5 R@10 R@1 R@5 R@10 (test) (test-std) per epoch

✗ ✗ 0 15 73.8 92.3 96.5 57.7 82.5 89.6 80.37 74.70 2h 27m
✗ ✗ 0 50 75.6 93.2 96.7 58.8 83.2 90.1 80.54 75.07 2h 27m
✓ ✓ 0 50 76.4 93.6 96.7 59.6 83.3 90.1 81.32 75.14 2h 30m

✓(naive) ✗ 0 50 76.8 93.6 96.8 59.6 83.4 90.0 80.63 75.16 3h
✓ ✗ 0 50 74.7 93.2 96.6 58.6 82.8 89.7 80.50 75.06 2h 30m
✓ ✓ 0.2 15 76.2 93.4 96.8 59.0 83.1 90.1 81.21 74.98 2h 30m
✓ ✓ 0.2 50 77.1 93.8 97.0 59.5 83.4 90.0 81.43 75.30 2h 30m

5.3 Comparison with the state-of-the-art VLP methods

Since we mainly build our method upon ALBEF, the previous state-of-the-art,
we mainly compare our method with it. Table 3 reports the results of GRIT-
VLP with N = 128 and M = 1920 on IRTR, VQA, and NLVR2. In S.M, we
present additional results on these hyper-parameters showing the robustness of
our method with respect to N .
On all downstream tasks (IRTR, VQA, NLVR2), GRIT-VLP outperforms other
methods trained on the same 4M dataset, including the previous best model
ALBEF (4M) by a large margin (+4% TR/R@1 on MS-COCO, +1.1% on NLVR
test-P ). Moreover, GRIT-VLP is even competitive with ALBEF (14M) on some
metrics, while being trained on a much smaller dataset. Furthermore, “GRIT-
VLPE-10”, denoting GRIT-VLP trained for only 10 epochs, achieves competitive
performance compared to ALBEF (4M) trained with 30 epochs, highlighting the
efficiency of our method. We believe the performance gains in Table 3 clearly
highlights effectiveness of GRIT-VLP.

5.4 Ablation studies on the proposed method

Table 4 shows the effectiveness of each proposed component: GRIT, ITC consis-
tency loss, and enlarged masking probability (15% → 50%) for MLM. First two
rows indicate ALBEFBase and ALBEFBase50 analyzed in Section 3, respectively.
By integrating the ALBEFBase50 with GRIT-variants (row 3, 4), we can verify
that the performance is significantly improved. However, in the case of “naive”
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Table 5: Effect of GRIT on ITC

Training tasks TR (COCO) IR
R@1 R@5 R@10 R@1 R@5 R@10

ITC 59.7 84.8 91.9 43.2 72.2 82.0
Queue-based ITC 60.3 85.2 92.2 43.5 72.3 82.3
ITC + GRIT 63.0 87.1 93.2 45.2 72.9 82.1
ITCcons + GRIT 64.3 87.4 93.2 46.3 73.7 82.6

Table 6: Results on top of TCL [45]
TR (COCO) IR NLVR2 VQA

Method R@1 R@5 R@10 R@1 R@5 R@10 (test-P) (test-std)
TCL 75.6 92.8 96.7 59.0 83.2 89.9 81.33 74.92
TCL+ours 77.3 94.1 97.2 60.2 83.7 90.0 81.52 75.36

Fig. 4: UoV results on COCO validation dataset.

implementation version of GRIT described in Section 4 (row 4), the training time
is significantly increased as expected. We believe that competitive results of row
3 and 4 clearly demonstrate the need of all components of GRIT. Moreover, if
the both shufflings are removed from GRIT while collecting the mini-batches
using the previous epoch (row 5), its performance is severely degraded due to the
vanishing randomness. The last row denotes our final GRIT-VLP (ALBEFBase50
+ GRIT + consistency); by adding the consistency loss from row 3, we verify that
the overall performance is increased. Furthermore, the gains of the last two rows
compared to the first two rows show the combined effect of “GRIT + consistency”
at two different mask sampling probabilities.

5.5 Experiments on the model-agnostic property

To investigate the model-agnostic property of GRIT, we report the results when
our method is integrated with different network architectures and objectives.
[Small model, ITC] Table 5 compares the IRTR results with several variants
that are pre-trained and fine-tuned with only ITC loss and dual uni-modal
encoders of ALBEF (without multi-modal encoder). “Queue-based ITC” denotes a
model pre-trained with ITC and queues for leveraging the stored features from the
momentum encoder (row 2), and the other two models denote models that adopt
our approach. While the performance gain of the Queue-based ITC is marginal, our
GRIT brings a significant gain when combined with ITC. Finally, ITCcons+GRIT
achieves the best result, demonstrating the standalone effectiveness of GRIT and
consistency loss on ITC. We believe this result shows that our method has a
potential to be easily integrated with existing contrastive learning based models.
[Large model, more objectives] In Table 6, we additionally measure the gains
of the recently proposed TCL [45] when it is combined with “ours” (GRIT and
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enlarged masking probability). TCL introduces additional objectives and adopts
almost the same but larger network architecture (additional momentum model)
than ours. We omit the consistency loss since TCL already uses MD which has a
similar role to it. Although the learning objectives and model sizes are different,
we verify that the combination of our method and TCL again brings significant
gains in Table 6, which clearly shows the model-agnostic property of our method.
Details about this combined approach can be found in S.M.

5.6 Analysis on the masking probabilities

We believe the enlarged masking probability for MLM enables more usage of the
visual features for predicting the masked token, resulting in a more effective multi-
modal representation learning. To demonstrate this point, we introduce a Usage
of Vision (UoV) metric like [2], which is defined as the difference between MLM
accuracy of a pre-trained model with and without the image input (Accuracy -
Accuracy w/o image). When evaluating the MLM Accuracy and Accuracy w/o
image of the pre-trained model, test input sentences are masked with the same
specific masking probability, and exactly the same tokens are masked for a fair
comparison. Then, a high UoV value means that the pre-trained model is highly
affected by visual information since it implies that the vision information is
important for the model to correctly predict the masked token.

In Fig. 4, two pre-trained networks (ALBEFBase, ALBEFBase50 ) are evaluated
with test input sentences masked with various masking probability. We calculate
the UoV@1 and UoV@5 by considering the top-1 and top-5 MLM accuracy,
respectively. Fig. 4 shows that ALBEFBase50 model always obtain higher UoV
demonstrating the high usage of vision information. In particular, when the
textual context almost disappears (75%), the difference in UoV becomes outright.
As a result, we verify that enlarging the masking probability enriches the usage
of visual information, which facilitates the alignment of image and text.

6 Concluding Remarks

We proposed GRIT-VLP, which effectively samples mini-batches for mining hard
negatives while maintaining the computational overhead. We showed our method
achieves state-of-the-art performance on various downstream tasks with much
less computational overhead and can be easily integrated with existing VLP.
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