
Contextformer: A Transformer with
Spatio-Channel Attention for Context Modeling

in Learned Image Compression

Supplementary Material

A. Burakhan Koyuncu1,2 , Han Gao3 , Atanas Boev2 , Georgii Gaikov2 ,
Elena Alshina2 , and Eckehard Steinbach1

1 Technical University of Munich, Munich, Germany
burakhan.koyuncu@tum.de

2 Huawei Munich Research Center, Munich, Germany
3 Huawei Moscow Research Center, Moscow, Russia

4 Tencent America, Palo Alto, USA

A1 Illustration of the Runtime Optimization Methods

This section gives further details about the proposed runtime optimization meth-
ods; skip intermediate channel segments (SCS) and batched dynamic sequence
processing (BDS). Fig. A1 illustrates a few of the processing steps of a Context-
former (cfo). Since the transformers are sequence-to-sequence models, processing
step n+3 also calculates the output for step n. The provided mask allows using
of subsequent elements for calculating the attention for each element. Thus, the
calculation of the output for step n can be skipped during the encoding without
harming the causality (SCS). In the figure, one can see that steps n + 3 and
n+7 contain equal number of latent elements used for context modeling, which
enables processing them in batches efficiently (BDS). Our algorithm searches for
latent elements, which can be grouped into a batch, and then models the con-
text accordingly (see Alg. A1). Fig. A2 illustrates the wavefront processing for
the decoding runtime optimization. Since latent tensor elements with the same
processing order can be encoded and decoded independently, we process them in
batches. The only requirement for using wavefront processing in the decoder is
that the latent tensor elements are coded into the bitstream in the same order as
in the encoder. That way, the entropy parameters can be computed regardless of
the algorithm optimizing the encoding and ordered according to the wavefront
processing index prior to bitstream coding.

A2 Architectural Details

Table A1 outlines the architectural details of the compression model with the
Contextformer.

https://orcid.org/0000-0002-6291-3476
https://orcid.org/0000-0001-6547-1557
https://orcid.org/0000-0003-0863-4000
https://orcid.org/0000-0002-3803-5159
https://orcid.org/0000-0001-7099-5371
https://orcid.org/0000-0001-8853-2703

2 A. B. Koyuncu et al.

(a) Step n (b) Step n+3 (c) Step n+7

Fig.A1. Illustration of the context modeling in a Contextformer(cfo) with channel-
first-order processing and sliding window attention for various processing steps n. The
latent tensors are displayed in different colors: () the current latent elements to be
coded; () the latent elements used by the context model; () previously coded
elements; and () elements yet to be coded.

Fig.A2. Illustration of the context modeling in a Contextformer with sliding window
attention and wavefront processing for an arbitrary processing step n. The processing
order of each latent element is n + N , where N is the number given in the figure for
each latent. Simultaneously processed windows for step n+ 29 are framed in different
colors. For simplicity, the channel dimension is omitted.

Contextformer 3

Algorithm A1: Runtime optimization for Contextformer

Input: Seq. Latent Tensor ŷs, Contextformer CTX
Output: Contextformer Output ψ

1 Qctx, Qcrt ← {} // initialize empty dictionaries

2 ψ ← 0 // initialize Context Model Output

3 H,W,Ncs ← get original shape(ŷs)
//loop over sliding windows & store indices

4 foreach coord. (i,j,k) in 3DMeshCube(H,W ,Ncs) do
//get indices residing in current window

5 indices← get indices(i, j, k)
//compute priority, e.g. length(idx) for BDS

6 priority ← get priority(i, j, k)
//store current latent index

7 Qcrt[priority].append((i, j, k))
//store latent indices used as context

8 Qctx[priority].append(indices)

9 end
//loop over coding priorities & run CTX

10 foreach priority in sorted(Qcrr.keys()) do
//restore latent indices

11 icrt ← Qcrt[priority]
12 ictx ← Qctx[priority]

//run context model for the current latents

13 ŷctx ← ŷs[ictx]
14 ψ[icrt]← CTX(ŷctx)

15 end

4 A. B. Koyuncu et al.

Table A1. An overview of the proposed model with the Contextformer, where each
row depicts one layer or component of the model. “Conv: K ×K ×N s2” stands for a
convolutional layer with kernel size of K ×K, number of N output channels, and stride
“s” of 2. Similarly, “Deconv” is an abbreviation for transposed convolutions. IGDN is
the inverse function of GDN [4]. “Dense” layers are specified by their output dimension,
whereas K1 =2M + de, K2 =(4kmM)/Ncs. We selected the base configuration of the
Contextformer as {L=8, de =384, dmlp =4de, h=12, Ncs =4, co= cfo}

Encoder Decoder Hyperencoder Hyperdecoder

Conv: 3×3×N s2 2×ResBlock: 3×3×M Conv: 3×3×N s1 Conv: 3×3×M s1
GDN Deconv: 3×3×N s2 Leaky ReLU Deconv: 3×3×M s2
RNAB IGDN Conv: 3×3×N s1 Leaky ReLU

Conv: 3×3×N s2 Deconv: 3×3×N s2 Conv: 3×3×N s2 Conv: 3×3×M s1
GDN IGDN Leaky ReLU Deconv: 3×3× 3

2M s2
Conv: 3×3×N s2 Deconv: 3×3×N s2 Conv: 3×3×N s1 Leaky ReLU

GDN RNAB Conv: 3×3×N s2 Deconv: 3×3×2M s2
Conv: 3×3×N s2 IGDN Leaky ReLU
Conv: 1×1×M s2 Deconv: 3×3×3 s2

Context Model Entropy Parameters

Contextformer: Dense: (2K1+K2)/3
{L, de, dmlp, h,Ncs, co} GELU

Dense: (K1+2K2)/3
GELU

Dense: K2

A3 Details of Experiments

A3.1 Obtaining Prior-Art Results

As explained in Section 5, we compare the performance of our model with various
compression methods from the prior art. For this purpose, we used the official
open-source implementations of those methods for the inference. For all methods,
we used their default configurations. The links to those implementations are
available in Table A2. Where the source is not available, we extracted the results
from the corresponding publications. We also evaluated our extraction method
by using it for the methods with available sources. We observed a negligible
difference (< 0.1% in BD-Rate) between the inferred and extracted results.

A3.2 Detailed Performance Comparison

We provide more extensive versions of the figures presented in Section 5. Fig-
ures A3 and A4 show the same performance comparison on Kodak dataset as
Figs. 3a and 4, but it includes additional prior-art methods such as Qian et
al. [39] and Chen et al. [11]. Similarly, Figs. A5 and A7 illustrate the performance
comparison on CLIC2020 and Tecnick datasets, which show the same results as
Figs. 5a and 5b but provide better visuals. For the sake of completeness, we also
provide the results on CLIC2020 and Tecnick datasets for our models optimized
for MS-SSIM (see Figs. A6 and A8).

Contextformer 5

Table A2. Prior-art methods mentioned in this work with their official sources.

Method Link

Minnen et al. [33]
https://github.com/tensorflow/compression

Minnen&Singh [34]

Cheng et al. [12] https://github.com/ZhengxueCheng/

Learned-Image-Compression-with-GMM-and-Attention

Chen et al. [11] https://github.com/NJUVISION/NIC

BPG [8] https://bellard.org/bpg/

VTM 16.2 [43] https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_

VTM

A3.3 Detailed Model Size Comparison

Table A3 shows the number of parameters of our compression framework com-
pared to various frameworks. Depending on the implementation, we used the
summary functions of PyTorch or Tensorflow for the calculation. Compared to
the other transformer-based model such as Qian et al. [38], our model employs
relatively complex encoder/decoder with a smaller bottleneck, and much sim-
pler hyperprior. Additionally, our context model with spatio-channel attention
requires an order of magnitude smaller parameters compared to the other context
model adopting channelwise processing such as Minnen&Singh [34]. The total
number of parameters in our entropy modeling is relatively smaller than the
various approaches including our baseline Cui et al. [14]. Therefore, our method
might have a higher potential for adopting online rate-distortion optimization
techniques such as [51].

Table A3. Number of parameters of various models, which are calculated by summary
functions of the used framework.

Hyper Hyper Context+Entropy
Method Encoder Decoder Encoder Decoder Parameters

Contextformer 8.1M 9.4M 1.6M 2.4M 15.9M
Cui et al. [14] 8.1M 9.4M 1.6M 2.4M 17.2M
Qian et al. [38] 3.8M 3.8M 8.2M 15.9M 13.1M
Minnen&Singh [34] 2.8M 2.8M 2.1M 2.1M 2.8M
Minnen et al. [33] 4.2M 4.2M 5.2M 5.8M 101.9M

A3.4 Visual Assessment

In order to assess qualitative performance, we visually compare the reconstructed
images from our Contextformer models (base configuration), which are sep-

https://github.com/tensorflow/compression
https://github.com/ZhengxueCheng/Learned-Image-Compression-with-GMM-and-Attention
https://github.com/ZhengxueCheng/Learned-Image-Compression-with-GMM-and-Attention
 https://github.com/NJUVISION/NIC
https://bellard.org/bpg/
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM

6 A. B. Koyuncu et al.

arately optimized for MSE and MS-SSIM, with the ones from BPG [8] and
VTM 16.2 [43]. Fig. A9 shows the reconstructed images of kodim23 (Kodak im-
age dataset), and several crops from the images. Each reconstruction is generated
by targetting approximately 0.06 bpp. Similarly, Fig. A10 shows the reconstruc-
tions of kodim07 for 0.1 bpp. As we can see from both figures that the classical
codecs suffer from artifacts such as smear, blocking, and aliasing, whereas our
methods (both MSE and MS-SSIM trained models) preserve contours and high
frequency details better, and provides higher PSNR and MS-SSIM performance
for lower bpp. While both the MSE and MS-SSIM trained models provide bet-
ter visual quality than classical codecs, the type of distortions introduced by
the Contextformer are influenced by the cost function used. In our experiments,
the model optimized for MSE is better at producing sharper edges, while the
model optimized for MS-SSIM is better at preserving structure and texture of
the objects.

Contextformer 7

Results on Kodak image dataset (PSNR)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Bits per pixel (BPP)

28

30

32

34

36

38
PS

NR
 [d

b]
 (R

GB
)

Contextformer
Guo et al. [20]
VTM 16.2 [43]
Cui et al. [14]
Minnen&Singh [34]
Cheng et al. [12]
Qian et al. [38]
Qian et al. [39]
Chen et al. [11]
Minnen et al. [33]
BPG [8]

Fig.A3. 347.12354ptRate-distortion performance comparison on Kodak dataset in
terms of PSNR for our model, and various learning-based and classical codecs.

8 A. B. Koyuncu et al.

Results on Kodak image dataset (MS-SSIM)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Bits per pixel (BPP)

12

14

16

18

20

22

M
S-

SS
IM

 (R
GB

) [
db

]

Contextformer
Cheng et al. [12]
Qian et al. [38]
Qian et al. [39]
Chen et al. [11]
Cui et al. [14]
Minnen et al. [33]
Ballé et al. [6]
VTM 16.2 [43]
BPG [8]

Fig.A4. Rate-distortion performance comparison on Kodak dataset in terms of MS-
SSIM for our model, and various learning-based and classical codecs.

Contextformer 9

Results on CLIC2020 dataset (PSNR)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Bits per pixel (BPP)

28

30

32

34

36

38

40
PS

NR
 [d

b]
 (R

GB
) [

CL
IC

-P
]

30

32

34

36

38

40

42

PS
NR

 [d
b]

 (R
GB

) [
CL

IC
-M

]

Contextformer
VTM 16.2 [43]
Cheng et al. [12]
Minnen et al. [33]
Ballé et al. [6]
BPG [8]

CLIC-P CLIC-M

Fig.A5. Rate-distortion performance comparison on CLIC-Professional (solid line, left
vertical axis) and CLIC-Mobile (dashed line, right vertical axis) datasets in terms of
PSNR for our model, and various learning-based and classical codecs.

10 A. B. Koyuncu et al.

Results on CLIC2020 dataset (MS-SSIM)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Bits per pixel (BPP)

8

10

12

14

16

18

20

M
S-

SS
IM

 [d
b]

 (R
GB

) [
CL

IC
-P

]

14

16

18

20

22

24

26

M
S-

SS
IM

 [d
b]

 (R
GB

) [
CL

IC
-M

]

Contextformer
Cheng et al [12]
Minnen et al. [33]
Ballé et al. [6]
VTM 16.2 [43]
BPG [8]

CLIC-P CLIC-M

Fig.A6. Rate-distortion performance comparison on CLIC-Professional (solid line, left
vertical axis) and CLIC-Mobile (dashed line, right vertical axis) datasets in terms of
MS-SSIM for our model, and various learning-based and classical codecs.

Contextformer 11

Results on Tecnick dataset (PSNR)

0.1 0.2 0.3 0.4 0.5 0.6
Bits per pixel (BPP)

30

32

34

36

38

PS
NR

 [d
b]

 (R
GB

)

Contextformer
Minnen&Singh [34]
VTM 16.2 [43]
Cheng et al [12]
Minnen et al. [33]
Ballé et al. [6]
BPG [8]

Fig.A7. Rate-distortion performance comparison on Tecnick dataset in terms of PSNR
for our model, and various learning-based and classical codecs.

12 A. B. Koyuncu et al.

Results on Tecnick dataset (MS-SSIM)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Bits per pixel (BPP)

12

14

16

18

20

22

M
S-

SS
IM

 (R
GB

) [
db

]

Contextformer
Cheng et al [12]
Minnen et al. [33]
Ballé et al. [6]
VTM 16.2 [43]
BPG [8]

Fig.A8. Rate-distortion performance comparison on Tecnick dataset in terms of MS-
SSIM for our model, and various learning-based and classical codecs.

Contextformer 13

Or
ig

in
al

 Im
ag

e

0.059bpp, PSNR: 32.27dB, MS-SSIM: 0.952

Ou
r M

od
el

 (M
SE

 o
pt

im
.)

0.065bpp, PSNR: 29.69dB, MS-SSIM: 0.967Ou
r M

od
el

 (M
S-

SS
IM

 o
pt

im
.)

0.063bpp, PSNR: 31.62dB, MS-SSIM: 0.941

VT
M

 1
6.

2

0.060bpp, PSNR: 30.17dB, MS-SSIM: 0.922

BP
G

Fig.A9. The reconstructed images of kodim23 from the Kodak image dataset for the
visual comparison. The image is compressed by our models (optimized for MSE or
MS-SSIM), VTM 16.2, and BPG for the target bpp of 0.06.

14 A. B. Koyuncu et al.

Or
ig

in
al

 Im
ag

e

0.098bpp, PSNR: 30.83dB, MS-SSIM: 0.968

Ou
r M

od
el

 (M
SE

 o
pt

im
.)

0.086bpp, PSNR: 27.54dB, MS-SSIM: 0.971Ou
r M

od
el

 (M
S-

SS
IM

 o
pt

im
.)

0.108bpp, PSNR: 30.23dB, MS-SSIM: 0.960

VT
M

 1
6.

2

0.103bpp, PSNR: 28.79dB, MS-SSIM: 0.946

BP
G

Fig.A10. The reconstructed images of kodim07 from the Kodak image dataset for
the visual comparison. The image is compressed by our models (optimized for MSE or
MS-SSIM), VTM 16.2, and BPG for the target bpp of 0.1.

	Contextformer: A Transformer with Spatio-Channel Attention for Context Modeling in Learned Image Compression

