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Abstract. Entropy modeling is a key component for high-performance
image compression algorithms. Recent developments in autoregressive
context modeling helped learning-based methods to surpass their classi-
cal counterparts. However, the performance of those models can be fur-
ther improved due to the underexploited spatio-channel dependencies in
latent space, and the suboptimal implementation of context adaptivity.
Inspired by the adaptive characteristics of the transformers, we propose a
transformer-based context model, named Contextformer, which general-
izes the de facto standard attention mechanism to spatio-channel atten-
tion. We replace the context model of a modern compression framework
with the Contextformer and test it on the widely used Kodak, CLIC2020,
and Tecnick image datasets. Our experimental results show that the pro-
posed model provides up to 11% rate savings compared to the standard
Versatile Video Coding (VVC) Test Model (VTM) 16.2, and outperforms
various learning-based models in terms of PSNR and MS-SSIM.
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1 Introduction

Recent works in learned image compression outperform hand-engineered classi-
cal algorithms such as JPEG [46] and BPG [8], and even reach the rate-distortion
performance of recent versions of video coding standards, such as VVC [1]. The
most successful learning-based methods use an autoencoder based on [6,33],
where the entropy of the latent elements is modeled and minimized jointly with
an image distortion metric. The entropy modeling relies on two principles – back-
ward and forward adaptation [3]. The former employs a hyperprior estimator
utilizing a signaled information source. The latter implements a context model,
where previously decoded symbols are used for entropy estimation without a need
for signaling. Due to its efficiency, a wide variety of context model architectures
were explored in the recent literature [20,32,33,34,38,39,52]. We categorize those
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architectures into the following groups w.r.t. their targets: (1) increased support
for spatial dependencies; (2) exploitation of cross-channel dependencies; (3) in-
creased context-adaptivity in the entropy estimation. For instance, we consider
the methods such as [13,14,26,52] in the first category since those methods aim
to capture long distant relations in the latent space. The 3D context [11,31,32]
and channel-wise autoregressive context model [34] fall in the second category.
In those works, entropy estimation of each latent element can also use infor-
mation from the spatially co-located elements of previously coded channels. In
[34] the authors show that entropy estimation, which mainly relies on cross-
channel dependencies, outperforms their previous spatial-only model [33]. Most
often, the context models use non-adaptive masked convolutions [29]. Those are
location-agnostic [29], i.e., the same kernel is applied to each latent position,
which potentially reduces the model performance. Even for a larger kernel size,
the performance return is marginal, as only a small set of spatial relations be-
tween symbols can be utilized. [20,39] propose an adaptive context model, where
the selection of latent elements to be used is based on pair-wise similarities be-
tween previously decoded elements. Furthermore, [38] uses a transformer-based
context model to achieve context adaptivity for the spatial dimensions. How-
ever, those models have limited context adaptivity, as they are partially or not
applying adaptive modeling for the cross-channel elements. For instance, in [20],
although the primary channel carries on average 60% of the information, the
context model does not employ any adaptive mechanism for modeling it.

Attention is a widely used deep learning technique that allows the network
to focus on relevant parts of the input and suppress the unrelated ones [36]. In
contrast to convolutional networks, attention-based models such as transform-
ers [45] provide a large degree of input adaptivity due to their dynamic recep-
tive field [35]. This makes them a promising candidate for a high-performance
context model. Following the success of transformers in various computer vi-
sion tasks [10,16,17,22,38], we propose a transformer-based context model, Con-
textformer. Our contribution is threefold: (1) We propose a variant of the Con-
textformer, which adaptively exploits long-distance spatial relations in the latent
tensor; (2) We extend the Contextformer towards a generalized context model,
which can also capture cross-channel relations; (3) We present algorithmic meth-
ods to reduce the runtime of our model without requiring additional training.

In terms of PSNR, our model outperforms a variety of learning-based models,
as well as VTM 16.2 [43] by a significant margin of 6.9%–10.5% in average bits
saving on the Kodak [18], CLIC2020 [44] and Tecnick [2] image datasets. We
also show that our model provides better performance than the previous works
in a perceptual quality-based metric MS-SSIM [47].

2 Related Work

2.1 Learned Image Compression

Presently, the state-of-the-art in lossy image compression frameworks is funda-
mentally a combination of variational autoencoders and transform coding [19],
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where the classical linear transformations are replaced with learned non-linear
transformation blocks, e.g., convolutional neural networks [3]. The encoder ap-
plies an analysis transform ga(x;ϕ) mapping the input image x to its latent
representation y. This transform serves as dimensionality reduction. The latent
representation y is quantized by Q(·) and is encoded into the bitstream. In or-
der to obtain the reconstructed image x̂, the decoder reads the quantized latent
ŷ from the bitstream and applies the synthesis transform gs(ŷ;θ), which is an
approximate inverse of ga(·).

Aiming to reduce the remaining coding redundancy in latent space, Ballé
et al. [5] introduced the factorized density model, which estimates the symbol
distribution by using local histograms. During training, a joint optimization is
applied to minimize both the symbol entropy and the distortion between the orig-
inal and the reconstructed image. Knowledge of the probability distribution and
coding methods such as arithmetic coding [40] allows for efficient lossless com-
pression of ŷ. Later, Ballé et al. [6] proposed using a hyperprior, which employs
additional analysis and systhesis transforms ha/s(·) and helps with modeling of
the distribution pŷ(ŷ|ẑ) conditioned on the side information ẑ. The side infor-
mation is modeled with a factorized density model, whereas pŷ(ŷ|ẑ) is modeled
as a Gaussian distribution. Their proposed framework can be formulated as

ŷ = Q(ga(x;ϕ)), (1)

x̂ = gs(ŷ;θ)), (2)

ẑ = Q(ha(ŷ;ϕh)), (3)

pŷ(ŷ|ẑ)← hs(ẑ;θh), (4)

and the loss function L of end-to-end training is

L(ϕ,θ,ϕh,θh,ψ) = R(ŷ) +R(ẑ) + λ ·D(x, x̂) (5)

= E[log2(pŷ(ŷ|ẑ))] + E[log2(pẑ(ẑ|ψ))] + λ ·D(x, x̂), (6)

where ϕ, θ, ϕh and θh are the optimization parameters and ψ denotes the
parameters of the factorized density model pẑ(ẑ|ψ). λ is the Lagrange multiplier
regulating the trade-off between rate R(·) and distortion D(·).

2.2 Context Model

Higher compression performance requires more accurate entropy models, which
would need an increased amount of side information [33]. To overcome this limi-
tation, Minnen et al. [33] proposed a context model, which estimates the entropy
of current latent element ŷi using the previously coded elements. Their approach
extends Eq. (4) to

pŷi
(ŷi|ẑ)← gep(gcm(ŷ<i;θcm), hs(ẑ;θh);θep), (7)

where the context model gcm(·) is implemented as a 2D masked convolution.
gep(·) computes the entropy parameters and ŷ<i denotes the previously coded
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local neighbors of current latent element ŷi. Their proposed 2D context model
requires 8.4% fewer bits than BPG [8].

Further improvements of the context model have been proposed (see Figs. 1a
to 1e). In [13,14,52] a multi-scale context model was implemented, which employs
multiple masked convolutions with different kernel sizes in order to learn various
spatial dependencies simultaneously. [11,31,32] employ 3D masked convolutions
in order to exploit cross-channel correlations jointly with the spatial ones.

Minnen and Singh proposed a channel-wise autoregressive context model [34].
It splits the channels of the latent tensor into segments and codes each segment
sequentially with the help of a previously coded segment. This reduces the se-
quential steps and outperforms the 2D context model of [33]. However, this
approach uses only cross-channel correlations and omits the spatial ones.

Qian et al. [39] proposed a context model, which combines 2D masked con-
volutions with template matching to increase the receptive field and provide
context adaptivity. They search for a similar patch in the previously coded po-
sitions and use the best match as a global reference for the entropy model.

Guo et al. [20] proposed a context model, which can be seen as an exten-
sion of [39]. In their approach, the channels of the latent tensor are split into
two segments. The first segment is coded with a 2D masked convolution, similar
to [34]. Coding of the second segment is done using two different mechanisms:
MaskConv+, an “improved” version of the 2D masked convolutions, and a global
prediction. Additional to the local neighbors, MaskConv+ uses the spatially co-
located elements from the first segment. The global prediction is made by cal-
culating the similarity between all elements from the first segment. The indices
of the top k similar elements (from the corresponding position in the first seg-
ment) are used to select elements in the second segment and include those in the
entropy model. They reported average bits savings of 5.1% over VTM 8.0 [43].

Qian et al. [38] replaced the CNN-based hyperprior and context model with
a transformer-based one which increased the adaptivity of the entropy model.
They proposed two architectures for their context model – serial and parallel
model. The serial model processes the latent tensor sequentially similar to [33].
The parallel one uses the checkboard like grouping prosed in [21] to increase
the decoding speed. They achieved competitive performance with some of the
CNN-based methods such as [12].

2.3 Transformers

Self-attention is an attention mechanism originally proposed for natural language
processing [45]. Later, it was adopted in various computer vision tasks, where it
outperformed its convolutional counterparts [10,16,17,22].

The general concept of a transformer is as follows. First, an input represen-
tation with S sequential elements is mapped into three different representations,
query Q ∈ RS×dq , key K ∈ RS×dk and value V ∈ RS×dv with separate linear
transformations. Then, the attention module dynamically routes the queries with
the key-value pairs by applying a scaled dot-product. The attention module is
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Fig. 1. Illustration of the latent elements used by the context model ( ) to estimate the
entropy of the current latent ( ) in (a–e) for the prior-arts and (f–k) our proposed con-
text model. Previously coded and yet to be coded elements are displayed as ( ) and ( ),
respectively. The displayed prior-art models are (a) multi-scale 2D context [13,14,52],
(b) 3D context [11,31,32], (c) channel-wise autoregressive context [34], (d) 2D context
with global reference [39], and (e) context with advanced global reference [20]. Note that
in (c) each ( ) is coded simultaneously by using only a part of the elements presented as
( ), and in (e), the primary channel segment is shown at the bottom for better visibil-
ity. Our models with different configurations are shown in (f) Contextformer(Ncs=1),
(g) Contextformer(Ncs>1, sfo), (h) Contextformer(Ncs>1, cfo). Note that the (serial)
transformer-based context model of [38] employs similar mechanism as (f). (i–k) show
the versions of our models (f–h) using the sliding window attention.

followed by a point-wise multi-layer perceptron (MLP). Additionally, the multi-
head attention splits the queries, keys, and values into h sub-representations
(so-called heads), and for each head, the attention is calculated separately. The
final attention is computed by combining each sub-attention with a learned trans-
formation (W ). The multi-head attention enables parallelization and each inter-
mediate representation to build multiple relationships.

To preserve coding causality in autoregressive tasks, the attention mechanism
has to be limited by a mask for subsequent elements not coded yet. The masked
multi-head attention can be formulated as:

Attn(Q,K,V ) = concat(head1, . . . , headh)W , (8)

headi(Qi,Ki,Vi) = softmax

(
QiK

T
i

dk
⊙M

)
Vi, (9)

where Qi ∈ RS× dq
h , Ki ∈ RS× dk

h and Vi ∈ RS× dv
h are the sub-representations,

the mask M ∈ RS×S has ones in its lower triangle and the rest of its values are
minus infinity, and ⊙ stands for the Hadamard product.
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Sequence Generator 
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channel-first-order (cfo)

spatial-first-order (sfo)

(c)

Fig. 2. Illustration of (a) our proposed model with the Contextformer, (b) se-
quence generator for the Contextformer with spatial attention, Contextformer(Ncs=1),
and (c) sequence generator for the Contextformer with spatio-channel attention,
Contextformer(Ncs>1). The prepended start token is shown in dark gray in (b-c).
Inspired by [27], we use channel-wise local hyperprior neighbors to increase perfor-
mance; thus, regardless of the selected Ncs, we apply the sequence generator depicted
in (b) to the output of the hyperdecoder.

3 Our Approach

In this section, we introduce our transformer-based context model, Contextformer,
which provides context adaptivity and utilizes distant spatial relations in the la-
tent tensor. We present two versions of the model: a simple version, which uses
spatial attention; and a more advanced version, which employs attention both
in the spatial and channel dimensions for entropy modeling.

3.1 Contextformer with Spatial Attention

The proposed Contextformer builds on top of the architecture introduced in [14].
In the encoder, this model employs 3×3 convolution layers with GDN activa-
tion function [4] and residual non-local attention modules (RNAB) [50]. The
structure of the decoder is very similar to the one of the encoder, with the ex-
ception that residual blocks (ResBlock) [11] are used in the first layer to enlarge
the receptive field. Additionally, the model adopts a hyperprior network, the
multi-scale context model [52] and the universal quantization [53]. This model
estimates the distribution pŷ(ŷ|ẑ) with a single Gaussian distribution. In our
approach, we use a Gaussian mixture model [12] with 3 mixture components
km, which is known to increase the accuracy of the entropy model.
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In contrast to Cui et al. [14], we use a Contextformer instead of their multi-
scale context model, as shown in Fig. 2a. First, the latent ŷ ∈ RH×W×C is

rearranged into a sequence of spatial patches ŷs ∈ R
HW
phpw

×(phpwC)
. Here, H, W

and C stand for the height, width and number of channels; (ph, pw) corresponds
to the shape of each patch. Usually, patch-wise processing reduces complexity,
especially for large images [16]. However, the latent ŷ already has a 16 times
lower resolution than the input image, which makes learning an efficient context
model harder and leads to a performance drop. To remedy this issue, we set the
patch size to 1× 1, so each sequential element corresponds to one pixel in the
latent tensor (see Fig. 2b).

The Contextformer has L transformer layers with a similar architecture to
that of ViT [16]. Each layer requires an intermediate tensor with an embedding
size of de. Therefore, we apply a learnable linear transformation RHW×C →
RHW×de (embedding layer). In order to introduce permutation-variance, we add
a learned position encoding similar to the one in [16,17], but we apply it to the
first layer only. We prepend the latent sequence ŷs with a zero-valued start token
to ensure the causality of coding. We use masking in the attention as described
in Eq. (9), and multi-head attention with 12 heads. Multi-head allows our model
to independently focus on different channel segments of ŷ.

3.2 Contextformer with Spatio-Channel Attention

Although multi-head attention is computationally efficient in handling cross-
channel dependencies, it can explore relationships in a single channel only par-
tially. For example, consider a Contextformer with a single transformer layer.
Given a latent tensor ŷ ∈ RH×W×C and its sequential representation ŷs ∈ RS×C ;
the n-th sub-representation of the sequence ŷs(n, hi) ∈ R1×C

h can only attend
to the previous representations ŷs(<n, hi) with the same head index hi. This
means that the attention between different channel segments is not considered.
Another limitation arises from the way the model behaves w.r.t. ŷ. For modeling
the entropy of latent element ŷ(i, j, c) (with spatial coordinates (i, j) and chan-
nel index c), the context model cannot access information from the spatially
co-located elements from other channels ŷ(i, j, ̸=c). This limits exploiting the
cross-channel dependencies in ŷ, and, therefore, the performance of the model.

To remedy this issue, we generate spatio-channel patches in the latent space

ŷs ∈ R
HWC

phpwpc
×(phpwpc), where pc corresponds to the size of each channel seg-

ment, and total number of channel segments is Ncs =
C
pc
. In a special case of

(ph, pw)= (H,W ), our patch generation method is similar to the slicing method
in channel-wise context modeling [34], but our model has a multi-head attention
added. In this work, we set ph and pw to 1 as already discussed in Section 3.1.
Splitting the latent tensor into multiple channel segments enables two different
coding methods, spatial-first-order (sfo) and channel-first-order (cfo). The first
method prioritizes the spatial dimensions and codes all latent elements from a
channel segment sequentially before starting with the next segment. The second
method prioritizes the channel dimension, and codes all channel segments with
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the same spatial coordinate sequentially, before coding elements from the next
spatial coordinate.

Spatio-channel sequence generation allows the standard transformer to use
channel attention, from which a generalized context model can be obtained. To
illustrate this, we compare how dependencies in the latent space are handled
by Contextformer for various Ncs, and how those dependencies are handled by
context models in the prior-art.

In case of Ncs =1. The attention is limited to a spatial one (see Section 3.1).
However, such a model provides faster encoding and decoding due to the smaller
number of required autoregressive steps and still has better performance than
some models in the prior-arts. As illustrated in Fig. 1f, Contextformer (Ncs =1)
has a larger receptive field than [13,14,52], and also employs learned context
adaptivity. Additionally, in [39] the receptive field is limited to a single reference
and its neighboring latent elements, whereas Contextformer (Ncs =1)’s receptive
field is dynamic and theoretically unlimited. Notably, the serial model of [38]
(best performing one) uses a similar context model as Contextformer (Ncs =1).
However, their model has only a sparse-attention mechanism, whereas Con-
textformer employs the full attention mechanism.

In case of C ≧Ncs> 1. We achieve a context model that can exploit both
spatial and cross-channel dependencies. As shown in Figs. 1g and 1h, both Con-
textformers (Ncs > 1) with different coding order handle spatio-channel relation-
ships. Moreover, in [20] only non-primary channel segments could be selected
for entropy estimation, while the receptive field of the Contextformer’s receptive
field can adapt to cover every channel segment. Compared to [38], the Con-
textformer (Ncs > 1) provides a more adaptive context model due to the spatio-
channel attention. In the extreme case Ncs =C, the model employs the spatio-
channel attention to its full extend by computing the attention between every
single latent element. Other implementations can be seen as a simplification of
the extreme case for balancing the trade-off between performance and complex-
ity. The Contextformer (Ncs =C) can be regarded as a 3D context model with
a large and adaptive receptive field.

3.3 Handling High-Resolution Images

Although the receptive field size of the Contextformer is theoretically unlimited,
computing attention for long input sequences, e.g., high resolution images, is
not feasible due to the quadratic increase of memory requirement and compu-
tational complexity with increasing the length of the input sequence. Therefore,
we have to limit the receptive field of our model and use sliding-window at-
tention as described in [17,37]. Inspired by 3D convolutions, we implemented
a 3D sliding-window to traverse the spatio-channel array. Unlike 3D convolu-
tions, the receptive field only slides across spatial dimensions and expands to
encompass all elements in the channel dimension. In Figs. 1i to 1k one can see
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the sliding-window attention mechanism for various Contextformer variants. For
computational efficiency, during training, we used fixed-sized image patches and
omitted the sliding-window operations. During inference, we set the size of the
receptive field according to the sequence length (HWNcs) used for training.

3.4 Runtime optimization

Generally, autoregressive processes cannot be efficiently implemented on a GPU
due to their serialized nature [21,26,34]. One commonly used approach [15,45]
is to pad a set of sequences to have a fixed length, thus enabling the processing
of multiple sequences in parallel during training (we refer to this method as
Pad&Batch). A straightforward implementation of the sliding-window attention
uses dynamic sequence lengths for every position of the window. We call this
dynamic sequence processing (DS). The padding technique can be combined with
the sliding-window by applying masking to the attention mechanism. However,
one still needs to calculate attention for each padded element, which creates a
bottleneck for the batched processing.

We propose a more efficient algorithm to parallelize the sliding-window atten-
tion. The first step of the algorithm calculates the processing order (or priority)
for every position of the sliding window and then groups the positions with the
same processing order for batch processing. One possible processing order is to
follow the number of elements in each window and process them from the smallest
to the largest number of elements. We refer to this method as Batched Dynamic
Sequence (BDS). Note that transformers are sequence-to-sequence models; they
simultaneously compute an output for each element in a sliding window and
preserve causality of the sequence due to the masking. Therefore, we can skip
computation of intermediate channel segments and calculate the output of the
last channel segment for each spatial coordinate of the sliding window, which we
refer to as skipping intermediate channel segments (SCS). It is worth mention-
ing that both the BDS and SCS methods can only be applied in the encoder,
where all elements of the latent tensor are simultaneously accessible. For the
decoder-side runtime optimization, we adopted the wavefront coding described
in [30], which is similar to the partitioning slices used in VVC [42]. We use the
same processing priority to the independent sliding windows along the same
diagonal, which allows for simultaneous decoding of those windows. More infor-
mation about the proposed runtime optimization algorithms can be found in the
supplementary materials.

4 Implementation Details

We present a few variants of the Contextformer by changing its parameters
{L, de, Ncs, co}, where L, de and Ncs correspond to number of layers, embed-
ding size and number of channel segments, and co corresponds to the coding
order – either spatial-first (sfo) or channel-first (cfo). For all models, we used
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the same number of heads h and MLP size of dmlp. We selected the base con-
figuration of the Contextformer as {L=8, de =384, dmlp =4de, h=12, Ncs =4,
co= cfo}. More information about the architectural details can be found in the
suplementary materials.

For training of all variants, we used random 256× 256 image crops from
the Vimeo-90K dataset [49], batch size of 16, and ADAM optimizer [25] with
the default settings. We trained our models for 120 epochs (∼1.2M iterations).
Following [7], we used the initial learning rate of 10−4 and reduced it by half
every time the validation loss is nearly constant for 20 epochs. For this pur-
pose, we used the validation set of Vimeo-90K. We selected mean-squared-
error (MSE) as the distortion metric D(·) and trained a set of models with
λ ∈ {0.002, 0.004, 0.007, 0, 014, 0.026, 0.034, 0.070} to cover various bitrates.
We also obtained models optimized for MS-SSIM [48] by finetuning the models
trained for MSE, in the same fashion for ∼500K iterations. By default, we se-
lected both intermediate layer size N of the encoder and decoder, and bottleneck
size M as 192. To increase the model capacity at the high target bitrates (λ5,6,7),
we increased M from 192 to 312 by following the common practice [12,33,34].

5 Experimental Results

Unless specified otherwise, we used the base configuration (see Section 4) and
tested its performance on the Kodak image dataset [18]. We set the spatial re-
ceptive field size to 16×16 for the sliding-window attention. We compared the
performance with the following models: the 2D context models by Minnen et
al. [33] and Cheng et al. [12], the multi-scale 2D context model by Cui et al. [14],
the channel-wise autoregressive context model by Minnen and Singh [34], the
context model with an advanced global reference by Guo et al. [20], and the
transformer-based context model by Qian et al. [38]. When the source was avail-
able, we ran the inference algorithms of those methods; in other cases, we took
the results from the corresponding publications. For a fair comparison, we used
the model from [20] without the GRDN post-filter [24]. Similarly, we used the se-
rial model from [38], since it performs better and is more related to our approach.
We also compared with the results achieved by classical compression algorithms
such as BPG [8] and VTM 16.2 [43]. In order to test the generalization capability
of our model, we also tested its performance on CLIC2020 [44], and Tecnick [2]
datasets. Additionally, we present the impact of different configurations of our
model on its complexity. More details about the performance comparison, and
examples of compression artifacts can be found in the supplementary materials.

Performance. In Fig. 3a we show the rate-distortion performance of the Con-
textformer with a spatio-channel attention mechanism and the comparative per-
formance of prior methods on the Kodak image dateset. Our method qualita-
tively surpasses the rest in terms of PSNR for all rate points under test. Accord-
ing to the Bjøntegaard Delta rate (BD-Rate) [9], our method achieves average
saving of 6.9% over VTM 16.2, while the model in [20] provides 3.7% saving over
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Fig. 3. Illustration of (a) the rate-distortion performance and (b) the rate savings rela-
tive to VTM 16.2 as a function of PSNR on the Kodak dataset showing the performance
of our model compared to various learning-based and classical codecs.

the same baseline. On average, our model saves 10% more bits compared to the
multi-scale 2D context model in [14]. Notably, the only difference between our
model and the one in [14] is the context and entropy modeling, and both methods
have similar model sizes. The performance of our method and the prior in terms
of the generalized BD-Rate metric [34] is shown in Fig. 3b. Our model achieves
state-of-the-art performance by reaching 9.3% rate savings for low bitrate and
4% rate savings at the highest quality over VTM 16.2.

We also evaluated our model optimized for MS-SSIM [48]. Fig. 4 shows that
our model also outperforms previous methods for this perceptual quality metric.
On average, our models saves 8.7% more bits than Cheng et al. [12].
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dataset showing the performance of our model compared to various learning-based and
classical codecs. All learned methods were optimized for MS-SSIM.
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Generalization Capability. In order to show the generalization capability,
we also evaluated our Contexformer on CLIC2020-Professional and -Mobile [44],
and Tecnick [2] datasets. In terms of BD-Rate [9], our model achieves average
savings of 9.8%, 5.8%, and 10.5% over VTM 16.2 on those datasets, respectively
(see Fig. 6). Evaluating on the generalized BD-Rate metric [34] reveals that
our method provides up to 11.9% and 6.6% relative bit savings over VTM 16.2
on CLIC2020-Professional and -Mobile datasets. On Tecnick dataset, the Con-
textformer saves up to 12.4% more bits over VTM 16.2.
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Fig. 5. Comparison of the rate-distortion performance (a) on CLIC2020-Professional
(solid line, left vertical axis) and CLIC2020-Mobile (dashed line, right vertical axis)
datasets, and (b) on Tecnick dataset.

Contextformer Variants. In Fig. 6a we show the performance of our model
for a varying number of channel segments Ncs and coding order. From the fig-
ure, one can see that increasing the number of channel segments increases the
performance of the model since having more channel segments allows the models
to explore more of the cross-channel dependencies. However, there is a trade-off
between the number of segments and the complexity – the computational cost
increases quadratically with raising Ncs. According to our observations, training
the Contextformer with more than four segments increases training complexity
too much to justify the minor performance gains.

On average, the Contextformer (cfo) outperforms the same model in a spatial-
first-order (sfo) configuration, which highlights the greater importance of cross-
channel dependencies than the spatial ones. For instance, in the Contextformer
(sfo), the primary channel segment can only adopt spatial attention due to the
coding order. In Fig. 6b we show the distribution of information in each chan-
nel segment. The Contextformer (cfo) stores more than 70% of all information
in the first two channel segments, while in Contextformer(sfo) the information
is almost equally distributed along with the segments. We observed that the
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Fig. 6. Various ablation studies conducted with the Contextformer on Kodak dataset.
(a) illustrates the rate savings relative to VTM 16.2 for the Contextformer with different
number of channel segments Ncs and coding order. In (b), the percentile bit occupation
per channel segment is shown for models with different coding orders. Each model index
depicts a model trained for a specific λ. Notably, increasing the model capacity allocates
more bits in the first two segments for cfo variant. (c) is the illustration of the average
BD-Rate performance of various model sizes relative to base model. The annotations
indicate the total number of entropy and context model parameters.

spatial-first coding provides a marginal gain in low target bitrates (bpp< 0.3) and
images with a uniformly distributed texture such as “kodim02” (in Kodak image
dataset). This suggests that spatial dependencies become more pronounced in
smoother images.

Model Size. Fig. 6c shows the performance of the Contextformers for different
model sizes compared to the base configuration. Change in the network depth
L and embedding size de have similar effects on the performance, whereas best
performance can be achieved when both are increased. However, we observed
that the return diminishes after a network depth of 8 layers. Since the base model
already achieves state-of-the-art performance and further upscaling of models
increases the complexity, we did not experiment with larger models. Note that
the proposed network of [14], which our model is based on, has approximately
the same total number of entropy and context model parameters (17M) as our
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base model, whereas our model shows additionally 10.1% BD-Rate coding gain
on Kodak dataset.

Runtime Complexity. Table 1 shows the encoding and decoding complexity
of our model, some of the learning based- prior arts and VTM [43]. We tested the
learning-based methods on a single NVIDIA Titan RTX, and ran the VTM [43]
on Intel Core i9-10980XE Intel Core i9-10980XE. In our model, we used pro-
posed BDS and SCS optimizations in the encoder and wavefront coding in the
decoder. For low resolution images, our methods have close performance to the
one of the 3D context. For 4K images, we observed even bigger benefits by the
parallelization. The relative encoding time increases only 3x w.r.t. the one on the
Kodak dataset, while the increase in number of pixels is 20-fold. Such speed-up
shows that encoder methods with online rate-distortion optimization such as [51]
have unexplored potential. Moreover, we achieve 9x faster decoding compared
to a 3D context model with the proposed wavefront coding.

Table 1. Encoding and decoding time of different compression frameworks.

Enc. Time [s] Dec. Time [s]

Method Kodak 4K Kodak 4K

DS 56 1240 62 1440
BDS (ours) 32 600 – –
BDS&SCS (ours) 8 120 – –
Wavefront (ours) 40 760 44 820

3D context [11] 4 28 316 7486
2D context [12] 2 54 6 140
VTM 16.2 [43] 420 950 0.8 2.5

6 Conclusion

In this work, we explored learned image compression architectures using a trans-
former-based context model. We proposed a context model that utilizes a multi-
head attention mechanism and uses spatial dependencies in the latent space to
model the entropy. Additionally, we also proposed a more generalized attention
mechanism, spatio-channel attention, which can constitute a powerful context
model. We showed that a compression architecture that employs the spatio-
channel attention model achieves state-of-the-art rate-distortion performance.

While using an entropy model with spatio-channel attention brings notice-
able gain, it also increases the runtime complexity. We addressed this issue by
proposing an algorithm for efficient modeling while keeping the architecture
unchanged. Future work will further investigate efficient attention mechanisms
(e.g., [23,28,41]) aiming to bridge the gap to a real-time operation.
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