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Abstract. Since the first success of Dong et al., the deep-learning-
based approach has become dominant in the field of single-image super-
resolution. This replaces all the handcrafted image processing steps of
traditional sparse-coding-based methods with a deep neural network.
In contrast to sparse-coding-based methods, which explicitly create
high/low-resolution dictionaries, the dictionaries in deep-learning-based
methods are implicitly acquired as a nonlinear combination of multi-
ple convolutions. One disadvantage of deep-learning-based methods is
that their performance is degraded for images created differently from
the training dataset (out-of-domain images). We propose an end-to-end
super-resolution network with a deep dictionary (SRDD), where a high-
resolution dictionary is explicitly learned without sacrificing the advan-
tages of deep learning. Extensive experiments show that explicit learning
of high-resolution dictionary makes the network more robust for out-of-
domain test images while maintaining the performance of the in-domain
test images. Code is available at https://github.com/shuntama/srdd.
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1 Introduction

Single-image super-resolution (SISR) is a classical problem in the field of com-
puter vision that predicts a high-resolution (HR) image from its low-resolution
(LR) observation. Because this is an ill-posed problem with multiple possible so-
lutions, obtaining a rich prior based on a large number of data points is beneficial
for better prediction. Deep learning is quite effective for such problems. The per-
formance of SISR has been significantly improved by using convolutional neural
networks (CNN), starting with the pioneering work of Dong et al. in 2014 [9].
Before the dominance of deep-learning-based methods [1, 9, 10, 19, 20, 23, 26, 27,
41, 42, 56, 57] in this field, example-based methods [4, 12, 13, 16, 21, 44, 45, 51, 52]
were mainly used for learning priors. Among them, sparse coding, which is a rep-
resentative example-based method, has shown state-of-the-art performance [44,
45, 51]. SISR using sparse coding comprises the following steps, as illustrated
in Fig. 1(a): 1L○ learn an LR dictionary DL with patches extracted from LR
images, 1H○ learn an HR dictionary DH with patches extracted from HR images,
2○ represent patches densely cropped from an input image with DL, 3○ map
DL representations to DH representations, 4○ reconstruct HR patches using DH,
then aggregate the overlapped HR patches to produce a final output.
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Fig. 1. Schematic illustrations of single image super-resolution with (a) sparse-coding-
based approach, (b) conventional deep-learning-based approach, and (c) our approach.
The numbers 1○– 4○ indicate each step of the super-resolution process.

As depicted in Fig. 1(b), Dong et al. [9] replaced all the above handcrafted
steps with a multilayered CNN in their proposed method SRCNN to take ad-
vantage of the powerful capability of deep learning. Note that, in this method,
DL and DH are implicitly acquired through network training. Since the SRCNN,
various methods have been proposed to improve performance, for example, by
deepening the network with residual blocks and skip connections [20, 27, 41, 57],
applying attention mechanisms [8, 31, 34, 56], and using a transformer [6, 26].
However, most of these studies, including state-of-the-art ones, follow the same
formality as SRCNN from a general perspective, where all the processes in the
sparse-coding-based methods are replaced by a multilayered network.

One disadvantage of deep-learning-based methods is that their performance is
degraded for images created differently from the training dataset [14]. Although
there have been several approaches to address this issue, such as training net-
works for multiple degradations [40, 46, 49, 55, 59] and making models agnostic
to degradations with iterative optimizations [14, 38], it is also important to make
the network structure more robust. We hypothesize that DH implicitly learned
inside a multilayered network is fragile to subtle differences in input images from
the training time. This hypothesis leads us to the method we propose.

In this study, we propose an end-to-end super-resolution network with a deep
dictionary (SRDD), where DH is explicitly learned through the network training
(Fig. 1(c)). The main network predicts the coefficients of DH and the weighted
sum of the elements (or atoms) of DH produces an HR output. This approach
is fundamentally different from the conventional deep-learning-based approach,
where the network has upsampling layers inside it. The upsampling process of
the proposed method is efficient because the pre-generated DH can be used as a
magnifier for inference. In addition, the main network does not need to maintain
the information of the processed image at the pixel level in HR space. Therefore,
the network can concentrate only on predicting the coefficients of DH. For in-
domain test images, our method shows performance that is not as good as latest
ones, but close to the conventional baselines (eg., CARN). For out-of-domain
test images, our method shows superior performance compared to conventional
deep-learning-based methods.
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2 Related Works

2.1 Sparse-coding-based SR

Before the dominance of deep-learning-based methods in the field of SISR,
example-based methods showed state-of-the-art performance. The example-based
methods exploit internal self-similarity [11, 13, 16, 50] and/or external datasets [4,
12, 21, 44, 45, 51, 52]. The use of external datasets is especially important for ob-
taining rich prior. In the sparse-coding-based methods [44, 45, 51, 52], which are
state-of-the-art example-based methods, high/low-resolution patch pairs are ex-
tracted from external datasets to create high/low-resolution dictionariesDH/DL.
The patches cropped from an input image are encoded with DL and then pro-
jected onto DH via iterative processing, producing the final output with appro-
priate patch aggregation.

2.2 Deep-learning-based SR

Deep CNN All the handcrafted steps in the traditional sparse-coding-based
approach were replaced with an end-to-end CNN in a fully feed-forward man-
ner. Early methods, including SRCNN [9, 19, 20], adopted pre-upsampling in
which LR input images are first upsampled for the SR process. Because the
pre-upsampling is computationally expensive, post-upsampling is generally used
in recent models [1, 26, 27, 31, 56]. In post-upsampling, a transposed convolution
or pixelshuffle [37] is usually used to upsample the features for final output.
Although there are many proposals to improve network architectures [25, 54],
the protocol that directly outputs SR images with post-upsampling has been
followed in most of those studies. Few studies have focused on the improvement
of the upsampling strategy. Tough some recent works [3, 5, 60] leveraged the
pre-trained latent features as a dictionary to improve output fidelity with rich
textures, they used standard upsampling strategies in their proposed networks.
Convolutional sparse coding Although methods following SRCNN have
been common in recent years, several fundamentally different approaches have
been proposed before and after the proposal of SRCNN. Convolutional sparse
coding [15, 35, 39, 47] is one of such methods that work on the entire image differ-
ently from traditional patch-based sparse coding. The advantage of convolutional
sparse coding is that it avoids the boundary effect in patch-based sparse coding.
However, it conceptually follows patch-based sparse coding in that the overall
SR process is divided into handcrafted steps. Consequently, its performance lags
behind that of end-to-end feed-forward CNN.
Robust SR The performance of deep-learning-based SR is significantly affected
by the quality of the input image, especially the difference in conditions from
the training dataset [14]. Several approaches have been proposed to make the
network more robust against in-domain test images by training with multiple
degradations [40, 46, 49, 55, 59]. For robustness against out-of-domain test im-
ages, some studies aim to make the network agnostic to degradations [14, 38]. In
these methods, agnostics acquisition is generally limited to specific degradations;
therefore, it is important to make the network structure itself more robust.
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Fig. 2. The overall pipeline of the proposed method. A high-resolution dictionary DH

is generated from random noise. An encoded code of DH is then concatenated with an
extracted feature to be inputted to a per-pixel predictor. The predictor output is used
to reconstruct the final output based on DH.

3 Method

As depicted in Fig. 1(c), the proposed method comprises three components: DH

generation, per-pixel prediction, and reconstruction. The DH generator gener-
ates an HR dictionary DH from random noise input. The per-pixel predictor
predicts the coefficients of DH for each pixel from an LR YCbCr input. In the
reconstruction part, the weighted sum of the elements (or atoms) of DH produces
an HR Y-channel output as a residual to be added to a bicubically upsampled Y
channel. The remaining CbCr channels are upscaled with a shallow SR network.
We used ESPCN [37] as the shallow SR network in this work. All of these com-
ponents can be simultaneously optimized in an end-to-end manner; therefore,
the same training procedure can be used as in conventional deep-learning-based
SR methods. We use L1 loss function to optimize the network

L =
1

M

M∑
i=1

||Igti −Θ(I lri )||1, (1)

where I lri and Igti are LR patch and its ground truth. M denotes the number of
training image pairs. Θ(·) represents a function of the SRDD network. Figure 2
illustrates the proposed method in more detail. We describe the design of each
component based on Fig. 2 in the following subsections.
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Fig. 3. A generator architecture of a high-resolution dictionary DH. A tree-like network
with depth d generates 2d atoms of size 1× s× s from a random noise input, where s
is an upscaling factor.

Fig. 4. Learned atoms of ×4 SRDD with N = 128. The size of each atom is 1× 4× 4.
The data range is renormalized to [0, 1] for visualization.

3.1 DH Generation

From random noise δs
2×1×1 (∈ Rs2×1×1) with a standard normal distribution,

the DH generator generates the HR dictionary DN×s×s
H , where s is an upscaling

factor and N is the number of elements (atoms) in the dictionary. DH is then
encoded by s × s convolution with groups N , followed by ReLU [33] and 1 × 1
convolution. Each N element of the resultant code CN×1×1

H represents each s×s
atom as a scalar value. Although the DH can be trained using a fixed noise input,
we found that introducing input randomness improves the stability of the train-
ing. A pre-generated fixed dictionary and its code are used in the testing phase.
Note that only DH is generated since low-resolution dictionaries (encoding) can
be naturally replaced by convolutional operations without excessive increases in
computation.

As illustrated in Fig. 3, the DH generator has a tree-like structure, where
the nodes consist of two 1 × 1 convolutional layers with ReLU activation. The
final layer has a Tanh activation followed by a pixelshuffling layer; therefore, the
data range of the output atoms is [−1, 1]. To produce N atoms, depth d of the
generator is determined as

d = log2 N. (2)

Figure 4 shows generated atoms with s = 4 and N = 128. We observed that the
contrast of the output atoms became stronger as training progressed, and they
were almost fixed in the latter half of the training.
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Fig. 5. Visualization of sparsity of a prediction map (center) and its complementary
prediction map (right). The number of predicted coefficients larger than 1e − 2 is
counted for each pixel. More atoms are assigned to the high-frequency parts and the
low-frequency parts are relatively sparse.

3.2 Per-pixel Prediction

We utilize UNet++ [61] as a deep feature extractor in Fig. 2. We slightly modify
the original UNet++ architecture: the depth is reduced from four to three, and
a long skip connection is added. The deep feature extractor outputs a tensor
of size f × h × w from the input YCbCr image, where h and w are the height
and width of the image, respectively. Then the extracted feature is concatenated
with the expanded code of DH

CN×h×w
H = R1×h×w(C

N×1×1
H ), (3)

to be inputted to a per-pixel predictor, where Ra×b×c(·) denotes the a × b × c
repeat operations. The per-pixel predictor consists of ten bottleneck residual
blocks followed by a softmax function that predicts N coefficients of DH for each
input pixel. Both the deep feature extractor and per-pixel predictor contain batch
normalization layers [18] before the ReLU activation. The resultant prediction
map MN×h×w is further convolved with a 2× 2 convolution layer to produce a
complementary prediction map M ′N×(h−1)×(w−1). A complementary prediction
map is used to compensate for the patch boundaries when reconstructing the
final output. The detail of the compensation mechanism is described in the next
subsection. Although we tried to replace softmax with ReLU to directly express
sparsity, ReLU made the training unstable. We also tried entmax [36], but the
performance was similar to that of softmax, so we decided to use softmax for
simplicity.

Figure 5 visualizes the sparsity of the prediction map and its complementary
prediction map. The number of coefficients larger than 1e−2 is counted for each
pixel to visualize the sparsity. The model with N = 128 is used. More atoms are
assigned to the high-frequency parts of the image, and the low-frequency parts
are relatively sparse. This feature is especially noticeable in the complementary
prediction map. In the high-frequency region, the output image is represented
by linear combinations of more than tens of atoms for both maps.
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Fig. 6. Schematic illustration of a mechanism to compensate patch boundary with
a complementary prediction map, where s is a scaling factor. Left: Prediction map
(blue) and its complementary prediction map (orange). Right: Upsampled prediction
and complementary prediction maps with centering.

3.3 Reconstruction

The prediction map MN×h×w is upscaled to N × sh × sw by nearest-neighbor
interpolation, and the element-wise multiplication of that upscaled prediction
map Us(M

N×h×w) with the expanded dictionary R1×h×w(D
N×s×s
H ) produces

N × sh× sw tensor T consists of weighted atoms. The Us(·) denotes ×s nearest-
neighbor upsampling. Finally, tensor T is summed over the first dimension, pro-
ducing output x as

x1×sh×sw =

N−1∑
k=0

TN×sh×sw[k, :, :], (4)

TN×sh×sw = Us(M
N×h×w)⊗R1×h×w(D

N×s×s
H ). (5)

The same sequence of operations is applied to the complementary prediction
map to obtain the output x′ as follows:

x′1×s(h−1)×s(w−1) =

N−1∑
k=0

T ′N×s(h−1)×s(w−1)[k, :, :], (6)

T ′N×s(h−1)×s(w−1) = Us(M
′N×(h−1)×(w−1))⊗R1×(h−1)×(w−1)(D

N×s×s
H ). (7)

Note that the same dictionary, DH, is used to obtain x and x′. By centering x
and x′, as illustrated in Fig. 6, the imperfections at the patch boundaries can
complement each other. The final output residual is obtained by concatenating
the overlapping parts of the centered x and x′ and applying a 5× 5 convolution.
For non-overlapping parts, x is simply used as the final output.

4 Experiments

4.1 Implementation Details

We adopt a model with 128 atoms (SRDD-128) and a small model with 64 atoms
(SRDD-64). The number of filters of the models is adjusted according to the
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number of atoms. Our network is trained by inputting 48× 48 LR patches with
a mini-batch size of 32. Following previous studies [1, 27, 56], random flipping
and rotation augmentation is applied to each training sample. We use Adam
optimizer [22] with β1 = 0.9, β2 = 0.999, and ϵ = 10−8. The learning rate of the
network except for the DH generator is initialized as 2e− 4 and halved at [200k,
300k, 350k, 375k]. The total training iterations is 400k. The learning rate of the
DH generator is initialized as 5e−3 and halved at [50k, 100k, 200k, 300k, 350k].
Parameters of the DH generator are frozen at 360k iteration. In addition, to
stabilize training of the DH generator, we randomly shuffle the order of output
atoms for the first 1k iterations. We use PyTorch to implement our model with
an NVIDIA P6000 GPU. Training takes about two/three days for SRDD-64/128,
respectively. More training details are provided in the supplementary material.

4.2 Dataset and Evaluation

Training dataset Following previous studies, we use 800 HR-LR image pairs
of the DIV2K [43] training dataset to train our models. LR images are created
from HR images by Matlab bicubic downsampling. For validation, we use initial
ten images from the DIV2K validation dataset.
Test dataset For testing, we evaluate the models on five standard benchmarks:
Set5 [2], Set14 [53], BSD100 [29], Urban100 [16], and Manga109 [30]. In addition
to standard test images downsampled with Matlab bicubic function same as in
training, we use test images that downsampled by OpenCV bicubic, bilinear,
and area functions to evaluate the robustness of the models. In addition, we
evaluate the models on real-world ten historical photographs.
Evaluation We use common image quality metrics peak signal-to-noise ratio
(PSNR) and structural similarity index (SSIM) [48] calculated on the Y channel
(luminance channel) of YCbCr color space. For evaluation of real-world test
images, no-reference image quality metric NIQE [32] is used since there are no
ground-truth images. Following previous studies, we ignore s pixels from the
border to calculate all the metrics, where s is an SR scale factor.

4.3 Ablation Study

We conduct ablation experiments to examine the impact of individual elements
in SRDD. We report the results of SRDD-64 throughout this section. The results
of the ablation experiments on Set14 downsampled with Matlab bicubic function
are summarized in Tab. 1.
Batch normalization We show the validation curves of SRDD-64 with and
without batch normalization layers in Fig. 7. The performance of the proposed
model is substantially improved by using batch normalization. This result is in
contrast to conventional deep-learning-based SR methods, where batch normal-
ization generally degrades performance [27]. Unlike conventional methods where
the network directly outputs the SR image, the prediction network in SRDD
predicts the coefficients of DH for each pixel, which is rather similar to the se-
mantic segmentation task. In this sense, it is natural that batch normalization,
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Table 1. Results of ablation experiments on Set14 downsampled with Matlab bicubic
function.

PSNR SSIM

SRDD-64 28.54 0.7809
SRDD-64 − batch norm. 28.49 0.7792
SRDD-64 − bottleneck blocks 28.48 0.7790
SRDD-64 − compensation 28.51 0.7801

Fig. 7. Validation curves during the training of SRDD-64 with and without batch
normalization layers.

which is effective for semantic segmentation [7, 24, 58], is also effective for the
proposed model.
Bottleneck blocks We eliminate bottleneck blocks and DH code injection
from the per-pixel predictor. The prediction network becomes close to the plane
UNet++ structure with this modification. The performance drops as shown in
Tab. 1, but still demonstrates a certain level of performance.
Compensation mechanism As shown in Tab. 1, removing the compensa-
tion mechanism from SRDD-64 degrades the performance. However, the effect is
marginal indicates that our model can produce adequate quality outputs with-
out boundary compensation. This result is in contrast to the sparse-coding-based
methods, which generally require aggregation with overlapping patch sampling
to reduce imperfection at the patch boundary. Because the computational com-
plexity of our compensation mechanism is very small compared to that of the
entire model, we adopt it even if the effect is not so large.

4.4 Results on In-domain Test Images

We conduct experiments on five benchmark datasets, where the LR input im-
ages are created by Matlab bicubic downsampling same as in the DIV2K training
dataset. Because SRDD is quite shallow and fast compared to current state-of-
the-art models, we compare SRDD to relatively shallow and fast models with
roughly 50 layers or less. Note that recent deep SR models usually have hundreds
of convolutional layers [56]. We select ten models for comparison: SRCNN [9],
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Table 2. Quantitative comparison for ×4 SR on benchmark datasets. Best and second
best results are highlighted in red and blue, respectively.

Method Set5 Set14 BSD100 Urban100 Manga109
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

Bicubic 28.42 / 0.8104 26.00 / 0.7027 25.96 / 0.6675 23.14 / 0.6577 24.89 / 0.7866
A+ [45] 30.28 / 0.8603 27.32 / 0.7491 26.82 / 0.7087 24.32 / 0.7183 - / -
SRCNN [9] 30.48 / 0.8628 27.50 / 0.7513 26.90 / 0.7101 24.52 / 0.7221 27.58 / 0.8555
FSRCNN [10] 30.72 / 0.8660 27.61 / 0.7550 26.98 / 0.7150 24.62 / 0.7280 27.90 / 0.8610
VDSR [19] 31.35 / 0.8830 28.02 / 0.7680 27.29 / 0.0726 25.18 / 0.7540 28.83 / 0.8870
DRCN [20] 31.53 / 0.8854 28.02 / 0.7670 27.23 / 0.7233 25.14 / 0.7510 - / -
LapSRN [23] 31.54 / 0.8850 28.19 / 0.7720 27.32 / 0.7270 25.21 / 0.7560 29.09 / 0.8900
DRRN [41] 31.68 / 0.8888 28.21 / 0.7720 27.38 / 0.7284 25.44 / 0.7638 - / -
MemNet [42] 31.74 / 0.8893 28.26 / 0.7723 27.40 / 0.7281 25.50 / 0.7630 29.42 / 0.8942
CARN [1] 32.13 / 0.8937 28.60 / 0.7806 27.58 / 0.7349 26.07 / 0.7837 30.47 / 0.9084
IMDN [17] 32.21 / 0.8948 28.58 / 0.7811 27.56 / 0.7353 26.04 / 0.7838 30.45 / 0.9075
LatticeNet [28] 32.30 / 0.8962 28.68 / 0.7830 27.62 / 0.7367 26.25 / 0.7873 - / -
SRDD-64 32.05 / 0.8936 28.54 / 0.7809 27.54 / 0.7353 25.89 / 0.7812 30.16 / 0.9043
SRDD-128 32.25 / 0.8958 28.65 / 0.7838 27.61 / 0.7378 26.10 / 0.7877 30.44 / 0.9084
RCAN [56] (32.63/0.9002) (28.87/0.7889) (27.77/0.7436) (26.82/0.8087) (31.22/0.9173)
NLSA [31] (32.59/0.9000) (28.87/0.7891) (27.78/0.7444) (26.96/0.8109) (31.27/0.9184)
SwinIR [26] (32.72/0.9021) (28.94/0.7914) (27.83/0.7459) (27.07/0.8164) (31.67/0.9226)

Table 3. Execution time of representative models on an Nvidia P4000 GPU for ×4
SR with input size 256× 256.

Running time [s]

SRCNN [9] 0.0669
FSRCNN [10] 0.0036
VDSR [19] 0.2636
LapSRN [23] 0.1853
CARN [1] 0.0723
IMDN [17] 0.0351
SRDD-64 0.0842
SRDD-128 0.2196
RCAN [56] 1.5653
NLSA [31] 1.7139
SwinIR [26] 2.1106

FSRCNN [10], VDSR [19], DRCN [20], LapSRN [23], DRRN [41], MemNet [42],
CARN [1], IMDN [17], and LatticeNet [28]. We also compare our model with a
representative sparse coding-based method A+ [45]. Results for the representa-
tive very deep models RCAN [56], NLSA [31], and SwinIR [26] are also shown.

The quantitative results for ×4 SR on benchmark datasets are shown in
Tab. 2. SRDD-64 and SRDD-128 show comparable performances to CARN/IMDN
and LatticeNet, respectively. As shown in Tab. 3, the inference speed of SRDD-
64 is also comparable to that of CARN, but slower than IMDN. These results
indicate that the overall performance of our method on in-domain test images is
close to that of conventional baselines (not as good as state-of-the-art models).
The running time of representative deep models are also shown for comparison.
They are about 20 times slower than CARN and SRDD-64. The visual results
are provided in Fig. 8.
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Set14: baboon

HR Bicubic A+ SRCNN FSRCNN

VDSR LapSRN CARN SRDD-64 SRDD-128

Set14: comic

HR Bicubic A+ SRCNN FSRCNN

VDSR LapSRN CARN SRDD-64 SRDD-128

Set14: zebra

HR Bicubic A+ SRCNN FSRCNN

VDSR LapSRN CARN SRDD-64 SRDD-128

Urban100: 012

HR Bicubic A+ SRCNN FSRCNN

VDSR LapSRN CARN SRDD-64 SRDD-128

Urban100: 076

HR Bicubic A+ SRCNN FSRCNN

VDSR LapSRN CARN SRDD-64 SRDD-128

Fig. 8. Visual comparison for ×4 SR on Set14 and Urban100 dataset. Zoom in for a
better view.
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Table 4. Quantitative results of ×4 SR on Set14 downsampled with three different
OpenCV resize functions. Note that the models are trained with Matlab bicubic down-
sampling.

Bicubic Bilinear Area
PSNR / SSIM PSNR / SSIM PSNR / SSIM

CARN [1] 21.17 / 0.6310 22.76 / 0.6805 26.74 / 0.7604
IMDN [17] 20.99 / 0.6239 22.54 / 0.6741 26.60 / 0.7589
IKC [14] 20.10 / 0.6031 21.71 / 0.6558 26.40 / 0.7554
SRDD-64 21.52 / 0.6384 23.13 / 0.6871 27.05 / 0.7630

Bicubic CARN SRDD-64

Fig. 9. Visual comparison for ×4 SR on Set14 baboon downsampled with OpenCV
bicubic function.

4.5 Results on Out-of-domain Test Images

Synthetic test images We conduct experiments on Set14, where the LR in-
put images are created differently from training time. We use bicubic, bilinear,
and area downsampling with OpenCV resize functions. The difference between
Matlab and OpenCV resize functions mainly comes from the anti-aliasing option.
The anti-aliasing is default enabled/unenabled in Matlab/OpenCV, respectively.
We mainly evaluate CARN and SRDD-64 because these models have comparable
performance on in-domain test images. The state-of-the-art lightweight model
IMDN [17] and the representative blind SR model IKC [14] are also evaluated
for comparison. The results are shown in Tab. 4. SRDD-64 outperformed these
models by a large margin for the three different resize functions. This result
implies that our method is more robust for the out-of-domain images than con-
ventional deep-learning-based methods. The visual comparison on a test image
downsampled with OpenCV bicubic function is shown in Fig. 9. CARN overly
emphasizes high-frequency components of the image, while SRDD-64 outputs a
more natural result.
Real-world test images We conduct experiments on widely used ten his-
torical images to see the robustness of the models on unknown degradations.
Because there is no ground-truth image, we adopt a no-reference image qual-
ity metric NIQE for evaluation. Table 5 shows average NIQE for representative
methods. As seen in the previous subsection, our SRDD-64 shows comparable
performance to CARN if compared with in-domain test images. However, on the
realistic datasets with the NIQE metric, SRDD-64 clearly outperforms CARN
and is close to EDSR. Interestingly, unlike the results on the in-domain test im-
ages, the performance of SRDD-64 is better than that of SRDD-128 for realistic
degradations. This is probably because representing an HR image with a small
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Table 5. Results of no-reference image quality metric NIQE on real-world historical
images. Note that the models are trained with Matlab bicubic downsampling.

NIQE (lower is better)

Bicubic 7.342
A+ [45] 6.503
SRCNN [9] 6.267
FSRCNN [10] 6.130
VDSR [19] 6.038
LapSRN [23] 6.234
CARN [1] 5.921
EDSR [27] 5.852
SRDD-64 5.877
SRDD-128 5.896

Historical: 004

Bicubic A+ SRCNN FSRCNN VDSR

LapSRN CARN EDSR SRDD-64 SRDD-128

Historical: 007

Bicubic A+ SRCNN FSRCNN VDSR

LapSRN CARN EDSR SRDD-64 SRDD-128

Fig. 10. Visual comparison for ×4 SR on real-world historical images. Zoom in for a
better view.

number of atoms makes the atoms more versatile. The visual results are provided
in Fig. 10.

4.6 Experiments of ×8 SR

To see if our method would work at different scaling factors, we also experiment
with the ×8 SR case. We use DIV2K dataset for training and validation. The test
images are prepared with the same downsampling function (i.e. Matlab bicubic
function) as the training dataset. Figure 11 shows generated atoms of SRDD
with s = 8 and N = 128. The structure of atoms with s = 8 is finer than that
with s = 4, while the coarse structures of both cases are similar. The quantitative
results on five benchmark datasets are shown in Tab. 6. SRDD performs better
than the representative shallow models though its performance does not reach
representative deep model EDSR.
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Fig. 11. Learned atoms of ×8 SRDD with N = 128. The size of each atom is 1×8×8.
The data range is renormalized to [0, 1] for visualization.

Table 6. Quantitative comparison for ×8 SR on benchmark datasets. Best and second
best results are highlighted in red and blue, respectively.

Method Set5 Set14 BSD100 Urban100 Manga109
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

Bicubic 24.40 / 0.6580 23.10 / 0.5660 23.67 / 0.5480 20.74 / 0.5160 21.47 / 0.6500
SRCNN [9] 25.33 / 0.6900 23.76 / 0.5910 24.13 / 0.5660 21.29 / 0.5440 22.46 / 0.6950
FSRCNN [10] 20.13 / 0.5520 19.75 / 0.4820 24.21 / 0.5680 21.32 / 0.5380 22.39 / 0.6730
VDSR [19] 25.93 / 0.7240 24.26 / 0.6140 24.49 / 0.5830 21.70 / 0.5710 23.16 / 0.7250
LapSRN [23] 26.15 / 0.7380 24.35 / 0.6200 24.54 / 0.5860 21.81 / 0.5810 23.39 / 0.7350
MemNet [42] 26.16 / 0.7414 24.38 / 0.6199 24.58 / 0.5842 21.89 / 0.5825 23.56 / 0.7387
EDSR [27] 26.96 / 0.7762 24.91 / 0.6420 24.81 / 0.5985 22.51 / 0.6221 24.69 / 0.7841
SRDD-64 26.66 / 0.7652 24.75 / 0.6345 24.71 / 0.5926 22.20 / 0.6034 24.14 / 0.7621
SRDD-128 26.76 / 0.7677 24.79 / 0.6369 24.75 / 0.5947 22.25 / 0.6073 24.25 / 0.7672

5 Conclusions

We propose an end-to-end super-resolution network with a deep dictionary
(SRDD). An explicitly learned high-resolution dictionary (DH) is used to up-
scale the input image as in the sparse-coding-based methods, while the entire
network, including the DH generator, is simultaneously optimized to take full
advantage of deep learning. For in-domain test images (images created by the
same procedure as the training dataset), the proposed SRDD shows performance
that is not as good as latest ones, but close to the conventional baselines (eg.,
CARN). For out-of-domain test images, SRDD outperforms conventional deep-
learning-based methods, demonstrating the robustness of our model.

The proposed method is not limited to super-resolution tasks but is po-
tentially applicable to other tasks that require high-resolution output, such as
high-resolution image generation. Hence, the proposed method is expected to
have a broad impact on various tasks. Future works will be focused on the appli-
cation of the proposed method to other vision tasks. In addition, we believe that
our method still has much room for improvement compared to the conventional
deep-learning-based approach.

Acknowledgements I thank Uday Bondi for helpful comments on the
manuscript.
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