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Abstract. Image compression is an essential and last processing unit in
the camera image signal processing (ISP) pipeline. While many studies
have been made to replace the conventional ISP pipeline with a single
end-to-end optimized deep learning model, image compression is barely
considered as a part of the model. In this paper, we investigate the de-
signing of a fully end-to-end optimized camera ISP incorporating image
compression. To this end, we propose RAWtoBit network (RBN) that
can effectively perform both tasks simultaneously. RBN is further im-
proved with a novel knowledge distillation scheme by introducing two
teacher networks specialized in each task. Extensive experiments demon-
strate that our proposed method significantly outperforms alternative
approaches in terms of rate-distortion trade-off.

Keywords: Camera network, knowledge distillation, image compres-
sion, image signal processing pipeline

1 Introduction

The image signal processing (ISP) pipeline is receiving increasing attention from
the research community, as mobile devices are equipped with powerful hardware
which can be utilized to process more sophisticated operations to boost perfor-
mance [14]. A typical ISP pipeline includes several local and global operations,
such as white balance, demosaicing, color correction, gamma correction, denois-
ing, and tone mapping [22]. Since each of these operations is a research topic on
its own, they are often separately optimized for a given ISP pipeline, which can
be sub-optimal.

The deep learning-based approach has proven to be effective in various com-
puter vision and image processing tasks, and consequently, many attempts have
been made to replace conventional ISPs with convolutional neural networks
(CNNs) [14,18,24,30]. While earlier learning-based works only dealt with the ISP
components separately, such as demosaicing [32] and denoising [15,35,37], recent
studies have paid attention to the design of a unified CNN that performs all ISP
functionalities, which is referred to as an ISP-Net. For example, Schwartz et
al. [24] proposed a two-stage ISP-Net for low-level and high-level operations and
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showed that sharing features between two stages leads to a better result. In [18],
correlated ISP components are categorized into two groups and independently
trained, followed by joint fine-tuning.

However, most previous ISP-Nets did not consider that sRGB images ren-
dered from RAW are essentially followed by lossy compression, which may sub-
stantially alter the image quality. Although some studies [29, 30] have proposed
to integrate JPEG simulation as a part of the model to take into account the
compression artifacts, they are limited to the simulation, and the standard JPEG
is still used to produce a bitstream.

The objective of image compression is to reduce bits required for storing
and transmitting an image without largely affecting the perceived quality. Im-
age compression is typically achieved by transforming the image, quantizing the
transformed coefficients, and compressing the resultant representation using en-
tropy coding [12]. In particular, the quantization introduces an inevitable error,
where coarse quantization leads to bitrate reduction at the expense of distortion
increase, giving rise to the rate-distortion trade-off. Under the principle of trans-
form coding [12], many codecs have been developed to improve rate-distortion
performance, including JPEG2000 [25] and versatile video coding (VVC) [4].
Most of the components in these existing codecs, however, are designed by human
experts much like conventional ISP components, which promote researchers to
design a CNN that performs image compression, which is referred to as a Comp-
Net [1, 2, 8, 20]. Unlike conventional image compression techniques, Comp-Net
is inherently differentiable and performs significantly better than the commonly
used JPEG.

The advances in deep learning-based image processing and image compression
motivate us to propose a fully end-to-end camera ISP network called RAWtoBit
network (RBN). Our RBN takes RAW as an input as other ISP-Nets [18, 24,
29, 30] but outputs a bitstream, which can be decoded to reconstruct a high-
quality sRGB image. To this end, we investigate two structures: cascaded and
unified. Cascaded structure refers to a simple concatenation of ISP-Net and
Comp-Net. However, the performance of Comp-Net can be upper-bounded by
ISP-Net, resulting in sub-optimal rate-distortion performance. Unified structure
refers to a single network that simultaneously performs the ISP operations and
image compression. Although the unified structure can be easily implemented
by training a Comp-Net with RAW-sRGB pairs with slight modification in net-
work architecture, such a structure can also lead to sub-optimal rate-distortion
performance since Comp-Net is not originally designed to perform complicated
ISP operations. Observing that these two näıve approaches suffer from poor
rate-distortion performance, we propose RBN to handle both tasks effectively.
Furthermore, we present two teacher networks, namely the ISP teacher and the
compression teacher, to guide RBN to reach a better rate-distortion trade-off.
Experimental results demonstrate that our proposed RBN performs noticeably
better than the alternative approaches. Our contribution can be summarized as
follows:
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– This work is the first attempt to integrate camera ISP and image compression
in a single learning framework to the best of our knowledge. Unlike previous
studies, our RBN takes RAW data as an input and produces a bitstream as
an output.

– We propose a method that distills the knowledge from two teacher models,
namely the ISP teacher and the compression teacher, to make RBN effec-
tively performs both ISP and compression tasks.

– Extensive experimental results demonstrate that our RBN with knowledge
distillation significantly improves rate-distortion performance over the cas-
caded or unified structure.

2 Related Work

2.1 Camera ISP Network

An ISP-Net is trained to render sRGB images from RAW sensor data, either
by explicitly supervising the subtasks of an ISP or by directly learning a RAW
to sRGB mapping function, which in this case learns the necessary subtasks
implicitly. Towards the latter approach, Schwartz et al. [24] presented an ISP-
Net called DeepISP, where the two-stage network is employed for low-level and
high-level operations, and demonstrated that the latter high-level enhancement
task could be improved by sharing features from the former low-level task. Chen
et al. [6] tackled the challenging problem of low light photography by learning
the mapping from a RAW image captured in low light to its corresponding long-
exposure sRGB image. Ignatov et al. [14] collected RAW and sRGB image pairs
using a smartphone camera and a professional DSLR, respectively. By training
a network with a hierarchical structure using such image pairs, their ISP-Net
produced sRGB images with better visual quality than those rendered from the
smartphone’s built-in ISP. Zhang et al. [38] addressed the misalignment problem
between RAW and sRGB image pairs [14] and proposed to warp the ground-
truth sRGB images to the color corrected RAW images for supervision. However,
none of the aforementioned ISP-Nets consider image compression, an essential
component of practical camera ISPs.

Meanwhile, Xing et al. [30] proposed an invertible ISP-Net, where the forward
pass produces sRGB images and the backward pass reconstructs RAW images.
With the differentiable rounding function defined by the Fourier series, JPEG
compression is simulated and integrated into the training procedure. Uhm et
al. [29] cascaded an ISP-Net and a network that simulates JPEG compression to
train the ISP-Net with lossy image compression in consideration. However, these
ISP-Nets [29,30] are not trained in a fully end-to-end (i.e., RAW-to-bits) manner
and rely on the standard JPEG compression at the inference stage, leading to
sub-optimal rate-distortion performance.

2.2 Image Compression Network

Learned image compression has drawn attention from many researchers in recent
years, and state-of-the-art methods [10] demonstrate improved rate-distortion
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performance compared to hand-crafted codecs such as JPEG and JPEG2000.
Learning-based methods share the same principle of transform coding as the con-
ventional codecs; however, the nonlinear transformation is performed by a neural
network instead of discrete cosine transform or wavelet transform, which are lin-
ear transformations, hence capable of learning a more complex representation.
The most indispensable component of lossy image compression is undoubtedly
the quantization, which is not differentiable, making the design of Comp-Net
challenging. Many Comp-Nets thus have applied different strategies to deal with
the quantization in the training process, e.g., by adding uniform noise [1] or
replacing the derivative of the rounding function with identity function [26].

While early Comp-Nets [27, 28] employed recurrent neural networks, more
recent Comp-Nets [1, 26] incorporated an autoencoder structure to minimize
distortion and an entropy model estimation network to minimize bitrate. To this
end, Ballé et al. [2] proposed to transmit side information to estimate the scale of
the zero-mean Gaussian entropy model. Minnen et al. [20] further improved this
idea by predicting the mean and scale of the Gaussian entropy model conditioned
on hyperprior and decoded latent elements. Cheng et al. [8] achieved comparable
performance to the latest VVC standard [4] by embedding attention modules in
the network and using Gaussian mixtures as the entropy model. An interested
reader can refer to the recent article [13] for a systematic literature review.

2.3 Knowledge Distillation

The main purpose of knowledge distillation (KD) is to transfer knowledge from
a large teacher model to a more compact model without significantly compro-
mising the performance. A comprehensive survey on KD [11] categorized exist-
ing schemes into three groups: response-based, feature-based, and relation-based
KD. We focus on the feature-based KD, where the intermediate features are com-
pared between teacher and student models as a means of knowledge transfer.
Since Romero et al. [23] first proved the effectiveness of providing intermedi-
ate representation of a teacher model as a hint for training a student model,
many approaches have been proposed to find a better form of KD. Zagoruyko
et al. [33] proposed to transfer attention maps generated from the intermediate
layers. Kim et al. [16] argued that the direct transfer of teacher’s knowledge
ignores the structural difference between the teacher and student models and in-
troduced “factors”, which are the features extracted and paraphrased from the
teacher model, as a more effective form of knowledge. Chen et al. [7] developed a
framework that can adaptively assign appropriate teacher layers to each student
layer by attention allocation.

Although most KD schemes are developed for model compression, some stud-
ies have investigated KD from the models which perform related tasks. While
not strictly following the general teacher-student principle in KD, Xu et al. [31]
proposed to simultaneously perform depth estimation and scene parsing with
guidance of intermediate auxiliary tasks such as surface normal estimation and
semantic segmentation. Zhang et al. [36] introduced a logit and representation
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graph for KD from multiple self-supervised auxiliary tasks. Similar to these ap-
proaches, we weakly disentangle the main objective into two tasks and perform
KD using two teacher networks that better perform each task.

Fig. 1. Different configurations of end-to-end camera ISP networks: (a) Cascaded ISP-
Net and Comp-Net, (b) unified ISP+Comp-Net, and (c) our proposed RBN with KD
from two teachers. The red arrows represent the KD direction, and the context model
for rate estimation is omitted for simplicity.

3 Proposed Method

The proposed work is the first attempt to integrate ISP-Net and Comp-Net to the
best of our knowledge. We thus first present two straightforward configurations
of the ISP-Net and Comp-Net integration, namely cascaded structure (Section
3.1) and unified structure (Section 3.2). We then introduce our RBN, which is
also based on the unified structure but specially designed and trained with our
KD scheme (Section 3.3).

3.1 Cascaded Structure

A näıve approach to combine ISP and lossy compression is to cascade ISP-
Net and Comp-Net, as shown in Fig. 1(a). An ISP-Net takes a RAW image
xr ∈ R4×H/2×W/2 as an input and produces an sRGB image x̂s ∈ R3×H×W ,
while Comp-Net takes an sRGB image as an input and generates a bitstream
which can reconstruct an sRGB image. Both ISP-Net and Comp-Net are sepa-
rately trained and cascaded. This configuration is not limited to specific ISP-Net
and Comp-Net architectures, and in our study, we use LiteISPNet [38] and the
context+hyperprior model [20] for ISP-Net and Comp-Net, respectively. In addi-
tion, as in [29], one can try fine-tuning ISP-Net in conjunction with Comp-Net to
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take lossy compression into consideration. We also investigate the effectiveness
of this fine-tuning in Section 4.

3.2 Unified Structure

Another way to achieve the same objective is to directly train Comp-Net with
RAW-sRGB image pairs, as shown in Fig. 1(b). Note that conventional Comp-
Nets input and output sRGB images, as shown in Fig. 1(a). However, our tar-
get network configuration requires the network to take a RAW image xr ∈
R4×H/2×W/2 as an input and produce a bitstream which can reconstruct an
sRGB image x̂s ∈ R3×H×W . Consequently, we modify the context+hyperprior
model [20] to handle a four-channel input and add an additional inverse gen-
eralized divisive normalization (IGDN) and a transposed convolutional layer in
the decoder to produce the sRGB image with the target size. The network is
trained using the rate-distortion loss [20] while measuring the difference between
ground-truth and decoded sRGB images.

Since conventional Comp-Nets, including the context+hyperprior model [20],
are not designed to handle complicated ISP functions, it is expected that this
unified model cannot perform both ISP and compression functionalities prop-
erly. More dedicated architecture design and training methodology are required
to realize an effective end-to-end camera ISP, which is the motivation of the
proposed RBN.

Fig. 2. Network architecture of RBN, consisting of (de)convolutional layers with the
specified number of features and stride, RCAG [38], GDN, and IGDN. The applied
context model for rate estimation [20] is omitted for simplicity.
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3.3 RBN with KD

We now introduce our proposed RBN, which has a more appropriate architec-
ture for the integration of ISP-Net and Comp-Net with a novel KD scheme,
as depicted in Fig. 1(c). While the unified structure described in Section 3.2
does achieve the main objective of combining ISP-Net and Comp-Net into a
single network, the performance is expected to be unsatisfactory in terms of
the rate-distortion trade-off. This is because Comp-Net cannot fully handle the
transformation of the RAW image into latent representation for compression and
necessary ISP operations at the same time. Hence, we design RBN to be capable
of performing both tasks with guidance from two teacher networks, namely the
ISP teacher and the compression teacher.

Fig. 2 illustrates the detailed network architecture of RBN. We design RBN
to have a heterogeneous encoder and decoder. The encoder of RBN follows the
general structure in image compression with a series of strided convolution and
generalized divisive normalization (GDN) [20]. Specifically, we modify the en-
coder architecture of one of the representative Comp-Nets [20] that sets the
number of channels and kernel size as 192 and 5, respectively, to compress a
three-channel sRGB image. Since our RBN takes a RAW image that is packed
into four channels, the receptive field can grow uncontrollably quickly if a large
kernel size is used. Hence, we use the kernel size of 3 while increasing the number
of channels to 256. The last convolutional layer produces latent representation
with 192 channels. The decoder architecture is modified from LiteISPNet [38],
which is one of the state-of-the-art ISP-Nets. In particular, we replace inverse
wavelet transform with transposed convolution and use two residual channel at-
tention blocks in the residual channel attention group (RCAG). Note that no
skip connection exists between the encoder and decoder since the decoded latent
vector alone should be capable of reconstructing an sRGB image. To perform en-
tropy coding and entropy model estimation, we leverage the context+hyperprior
model [20], which estimates the mean and scale of the Gaussian entropy model
using the spatially adjacent decoded latent elements and hyperprior.

Although RBN can be trained in an end-to-end manner, it may still suffer
from sub-optimal rate-distortion performance since joint learning of compres-
sion and ISP is challenging. To overcome this issue, on the one hand, we guide
the encoder of RBN to focus more on image compression using the compression
teacher. As shown in Fig. 2, the compression teacher network takes a RAW image
xr ∈ R4×H/2×W/2 and produces a bitstream that can reconstruct a RAW image
x̂r ∈ R4×H/2×W/2. Because the encoder of the compression teacher is trained
to find compact representation for efficient compression, we consider that the
knowledge from the encoder of the compression teacher can be distilled to the
encoder of RBN. On the other hand, we guide the decoder of RBN to focus more
on reconstructing the sRGB image from the latent representation by using the
ISP teacher. As shown in Fig. 2, the ISP teacher is designed as an sRGB au-
toencoder such that its decoder can best perform the sRGB image reconstruction
from low-dimensional latent representation. Consequently, we consider that the
knowledge from the decoder of the ISP teacher can be distilled to the decoder of
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RBN. Note that except for the last convolutional layer of the compression teacher
network, the encoder and decoder pairs between the two teacher networks and
RBN have identical structures to facilitate KD.

To perform KD, we adopt the attention transfer [33], where the spatial at-
tention maps evaluated from the intermediate layers of the teacher and student
networks are compared. In the original work [33], the attention map is defined
as the sum of absolute values along the channel dimension of the output of the
intermediate layer. We empirically found it to be ineffective to take absolute val-
ues, and thus we define the attention map as the direct sum along the channel
dimension:

Mj =

Cj∑
i=1

Aj (i, :, :), (1)

where Aj ∈ RCj×Hj×Wj is the output of the j-th intermediate layer, Mj ∈
RHj×Wj is the attention map of the j-th intermediate layer, Cj , Hj , and Wj

are the corresponding channel dimension, height, and width, respectively. This
modification is necessary because we apply the attention transfer between the
outputs of the convolutional layers and not the ReLU activation, thus taking
absolute values can lead to the loss of directional information embedded in the
output tensor. The attention loss for KD, LAT , is defined as the mean squared er-
ror between the normalized attention maps of the teacher and student networks:

LAT =
np∑
j=1

αjL
j
AT ,

Lj
AT = 1

Nj

∥∥∥∥ MS
j

∥MS
j ∥2

− MT
j

∥MT
j ∥2

∥∥∥∥2
2

,

(2)

where ∥·∥2 measures the L2-norm, MS
j (M

T
j ) is the j-th attention map of the

student (teacher) network, np is the number of pairs of the attention maps, Nj

is the number of elements in the j-th attention map, and αj is the weight for the
j-th loss term. Inspired by [21], we set αj to make the attention loss relatively
higher than the rate-distortion loss during the early training phase, and decay it
as the training progresses. In this way, our RBN can initially focus on KD and
progressively switch to the main objective of the rate-distortion optimization.
To this end, αj is chosen as:

αj = α0 · γk2

, (3)

where α0 is the initial value, and γ is the decay factor. α0 is set to 106 for KD
between the two encoders and 105 for KD between the two decoders, while γ
is set to 0.99999 for both cases. In other words, αj slowly decreases as training
epoch k increases. The final loss function is defined as follows:

Ltotal = LR + λLD + LAT , (4)

where LR and LD are the rate and distortion loss terms defined in [20], respec-
tively, and the trade-off parameter λ determines the rate-distortion trade-off.
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4 Experimental Results

4.1 Implementation Details

Dataset and Settings To train and test the models, we collected 487 RAW
images taken with Nikon D700 from the MIT-Adobe FiveK dataset [5]. As
in [29, 30, 34], the ground-truth sRGB images were rendered using the LibRaw
library [19] and split into a ratio of 80:5:15 for training, validation, and testing.
The training image patches were randomly extracted from the RAW images with
the dimension of 4× 128× 128 by four-channel packing (RGGB), and their cor-
responding patches were extracted from the sRGB images with the dimension of
3× 256× 256. Data augmentation, including random flip and rotation, was ap-
plied during the training. Our experiments were conducted using PyTorch with
Adam optimizer [17] on Intel i9-10980XE and NVIDIA RTX 3090.

Cascaded Structure We trained a LiteISPNet with the L2 loss. A batch size
of 16 was used in this experiment. The model was trained for 24k iterations with
the learning rate of 5× 10−5 and fine-tuned for 2.4k iterations with the learning
rate of 5×10−6. For the context+hyperprior model, we leveraged the pre-trained
model provided by [3]. We also experimented with the fine-tuning of the LiteISP-
Net in conjunction with the context-hyperprior model. In this case, after the
pre-training of the LiteISPNet for 24k iterations, fine-tuning was performed in
the cascaded configuration while fixing the parameters of the context-hyperprior
model.

Unified Structure The modified context-hyperprior model as described in Sec-
tion 3.2 was trained for 1.6M iterations. We used a batch size of 8 in this exper-
iment. The learning rate was set to 5× 10−5 and reduced to 5× 10−6 after 1.5M
iterations. The trade-off parameter λ was chosen from the set {0.0035, 0.0067,
0.013, 0.025, 0.0483, 0.0932, 0.18}, resulting seven different models with different
rate-distortion performance.

RBN with KD To train the teacher and student networks, we set the initial
learning rate to 5× 10−5 and then decayed it to 5× 10−6. Specifically, the ISP
teacher was trained for 580k iterations, where the learning rate was decayed after
480k iterations. The compression teacher network was trained for 2M iterations,
where the learning rate was decayed after 1.5M iterations. We trained separate
compression teacher models for each rate-distortion trade-off by choosing λ from
the set {0.0035, 0.0067, 0.013, 0.0483, 0.0932, 0.18, 0.36} to support seven models
with different rate-distortion performance. The channel dimension of the last
convolutional layer of the encoder of the compression teacher, i.e., K in Fig. 2,
was set to 192 for the three lower bitrate settings (λ = 0.0035, 0.0067, 0.013)
and 320 for the four higher bitrate settings. Our proposed RBN was trained for
1M iterations, where the learning rate was decayed after 900k iterations. We
also trained separate RBNs with the same λ values used in the corresponding
compression teachers. We used a batch size of 8 in this experiment.
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4.2 Performance Comparisons

Fig. 3. Experimental results: (a) Rate-distortion performance comparisons and (b)
training loss for the models trained with λ = 0.18.

Quantitative results The rate-distortion performance of the proposed method
is shown in Fig. 3(a), where the average PSNR between the ground-truth and re-
constructed sRGB images and average bits per pixel (bpp) were measured from
73 test images. Note that we evaluated bpp in terms of the resolution of the
reconstructed sRGB image and not the four-channel packed RAW image. Com-
pared to the baseline approaches such as the cascaded structure (CS) and unified
structure (US), RBN outperformed rate-distortion performance, and RBN with
KD (RBN+KD) further improved performance. We notice that the performance
gap becomes more significant in the high bitrate region, which is important
since high-bitrate compression is usually used in practical camera ISPs. Note
that the average PSNR between the ground-truth and reconstructed sRGB im-
ages obtained by the LiteISPNet used in the cascaded structure is 32.82 dB,
which means that the cascaded structure cannot exceed this value regardless of
compression rates. Hence the overall rate-distortion performance of the cascaded
structure is bounded by the performance of the ISP-Net. As for the joint fine-
tuning of the ISP-Net in the cascaded structure (CS+JT), we did not find it
effective. We suspect that, unlike the JPEG compression artifacts, which have
some form of regularity in that they appear in every 8×8 block boundary, the
effect of Comp-Net is more subtle and complex, making it difficult to be effec-
tively captured by the joint fine-tuning of the network. The unified structure
performed the worst among the compared methods. This result is expected as
the network architecture aims to extract and normalize the features for com-
pression and thus has difficulty performing local and global operations of the
ISP. We have also experimented cascading other ISP-Nets with Comp-Net, as
well as cascading Comp-Net with ISP-Net, where the result can be found in the
supplementary material.
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Fig. 3(b) shows training loss plots for the unified structure, RBN, and RBN
with KD. As suggested in [21], the initial training phase is critical for the network
to form a necessary connection to optimize the loss function. By enforcing the
network to focus on KD in the initial training stage, the loss of RBN with KD
reduced slower than that of RBN in early iterations. However, RBN with KD
eventually reached a better optimization point, leading to better rate-distortion
performance. It is also clear that the unified structure poorly optimized the
rate-distortion loss.

Fig. 4. Visual comparisons: (a) Ground-truth sRGB image and the error maps be-
tween the ground-truth and reconstructed sRGB images for (b) cascaded structure,
(c) cascaded structure with joint fine-tuning, (d) unified structure, (e) RBN, and (f)
RBN+KD.
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Qualitative results The visual comparisons of the proposed methods are shown
in Fig. 4. These results were obtained from the models trained with λ = 0.013
for the unified structure and RBN and λ = 0.0035 for the cascaded structure.
For each method, we visualize the error map between the ground-truth and re-
sultant sRGB images for comparison. It can be seen that the images obtained
from the cascaded and unified structures exhibit significant errors. These two
structures suffer from not only reproducing image textures such as flower petals
but also rendering global color tones, demonstrating that these näıve approaches
are insufficient to handle compression and necessary ISP operations at the same
time. Meanwhile, the proposed RBN renders sRGB images with less distortion,
especially in the texture-rich region. RBN with KD further reduces distortion,
yielding the highest image quality at similar compression rates. Additional vi-
sual comparison in Fig. 5 clearly shows that RBN with KD renders color more
accurately.

Fig. 5. Visual comparisons: (a) Ground-truth sRGB image and reconstructed sRGB
images obtained by (b) cascaded structure, (c) cascaded structure with joint fine-
tuning, (d) unified structure, (e) RBN, and (f) RBN+KD.

4.3 Ablation Studies

We conducted ablation studies on the KD scheme used in the proposed method
to verify its effectiveness. Fig. 6(a) shows rate-distortion performance for the
RBNs trained with guidance from either the ISP teacher or the compression
teacher only, as well as the RBNs with full KD and without any KD. The hy-
perparameters α0 and γ were kept the same for these four compared models.
Unexpectedly, removing either one of the teacher networks resulted in inferior
performance even compared with the RBN without KD. We conjecture that
the hyperparameter settings of α0 = 106 for the encoder, α0 = 105 for the de-
coder, and γ = 0.99999 were empirically chosen for the KD with two teachers;
thus, simply removing one of the teacher networks might not result in a better
rate-distortion performance. Next, to verify our claim of the ineffectiveness of
deriving the attention map by taking the absolute value of the tensor, we report
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the result for the model trained with such method in Fig. 6(b). It is clear that
the method mentioned above actually hinders the performance of RBN.

Fig. 6. Ablation studies for models trained with λ = 0.18: (a) RBNs with different KD
strategies and (b) RBNs with different attention maps for KD, and attention loss plots
of RBNs with and without KD: (c) encoder and (d) decoder.

Figs. 6(c) and (d) show the encoder and decoder attention loss plots for the
RBNs trained with and without KD, respectively. Although the RBN without
KD was not trained to optimize these attention loss terms, these losses decreased
to some extent as the training progressed, which suggests that the attention
losses are related to the main objective of the rate-distortion trade-off. In the
RBN with KD, the attention losses decreased at the early iterations but then
increased since the weight for the attention loss is decreased by (3) as training
proceeded. In other words, the optimization with the attention loss in the RBN
with KD contributed to finding good initial conditions for the model to reach
a better rate-distortion trade-off. Also, note that KD does not incur additional
computational cost in the inference stage. Comparison on the computational
cost of the experimented models can be found in the supplementary material.
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Fig. 7. Samples of the sRGB images rendered from RAW captured with Nikon D7000.
The RBN+KDmodel used for testing was trained with RAW from Nikon D700. Bilinear
demosaicing is applied to the RAW for visualization.

4.4 Generalization Test

Since different camera sensors have different characteristics, a dedicated RBN is
required for each specific camera model in principle. Here, to test the general-
ization ability of the RBN with KD trained on the Nikon D700 subset from the
MIT-Adobe FiveK dataset [5], we applied the trained model to the test images
captured by a different camera sensor. Fig. 7 shows some test results on the
Nikon D7000 subset from the RAISE dataset [9]. It can be seen that our results
still exhibit high contrast and well-adjusted color with rich textures, indicating
that sensor-specific training is desired but not mandatory, at least for the sensors
from the same manufacturer.

5 Conclusions

In this paper, we presented the first approach to integrate the ISP and im-
age compression into a single framework. To this end, we designed a network
called RBN to perform both tasks simultaneously and effectively. Compared to
the näıve baselines of the cascaded and unified structures, RBN exhibits sig-
nificantly better rate-distortion performance. In addition, we further improved
RBN by introducing KD from the two teacher networks specialized in each task.
Experimental results demonstrated that RBN with KD shows a noticeable per-
formance increase over the alternative approaches. We hope our work inspires
further research on the fully end-to-end camera ISP network.
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