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This supplementary material is organized as follows: Section [I] contains com-
prehensive proof of Theorem 1. Section [2] 3] and [4] describe the results under
different thresholds ¢, the coefficient hyper-parameter ¢, and computation com-
plexity. Section [6] and [7] contain additional visualization results.

1 Proof of Theorem 1

Firstly, we provide a standard derivation of R, based on asymptotic attributes
in statistics. Recall the definitions of £(s, §) and Rgen (s*), we give the assumption
for ¢1(s,0).

Assumption 1 ¢1(s,0) and £.(s*,0) are twice differentiable and strongly convex
in 0.

Based on Assumption [T} we give the lemma below:
Lemma 1. Reen (s*) = [Hy ' Y. g Vole (s%,0)]
The empirical risk R(#) is formulated as follows:
R(0) = [t1(5,0) + - Lo (s7,0)] (1)
seS

Then we make derivation on R(#), the Hessian matrix of R(#) can be obtained
based on Assumption

Hp=VR(0) = > [V§li(s,0) + - Vile (s*,0)] (2)

ses
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Assumption [I] guarantees that Hy exists and is positive definite and guarantees
the existence of H, ! which will be used in the following derivation.
Recall the definition of the minimizer 6, s« of Rgen:

0,5+ = argming. o Z [01(s,0) + - L. (s*,0)] (3)
ses

Define the parameter change Ay, . = 04 s+ — 0 s« when a is close to 0, then
the change of  towards « can be defined as follows:

db, s+ Ao, .-
s — a,s 4
do do )
Besides, let Li(s,0) and L.(s*, ) be as follows for brevity:

Li(s,0) = > i(s,0)

ses

Le(s*,0) = Y Lo (s",0)

ses

Considering that 6, s+ is a minimizer of R(f s+ ), then we can obtain the follow-
ing property:

vﬁays* L1(57 90475*) +a- VG(,“S* Lc (S*a ea,s*) ~0 (5)
Assumption 2 6, ;« — 6y s« when oo — 0

Then, we have a further derivation of Eq. based on Assumption and Taylor
expansion, which is listed as follows:

VOQ)S* L1(87 9(1,8*) +a- VG(,)S* L. (3*; aa,s*) +
Vi, . Li(s,00,s) + - V5 Le(s*, 00,5, . =0

where we have dropped high-order terms. Naturally, we can get the formulation
of Ay .:

Ay, .o~ =V Li(8,00,) +a- Vi

a,s* o Lc (S*aga,s*)]71
(Vo

Ll (57 oa,s*) + - Vew* Lc (5*3 ea,s* )]

Then we give the assumption for 0, .~ as follows:
Assumption 3 Vg . Li(s,046)~0

Such an assumption is natural since empirical risk minimization (ERM) process
still optimizes L(-) well when the weight « of regularizer is small [5].

Then, based on Assumption [3] we have VL(s, 0, 4-) ~ 0. After abandoning
the o(«) terms, we have

Ag, .. =V L(s,00,5)] "V . Lc (5", 00,5)
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Combined with Eq. and Eq., we have

daa,s*

da |a—>0: _He_al‘s* VLC(S*) Ha,s*) (6)

Since Rgen(s*) =

. dOy, ox
limg, 0 T&" we have that:

Rsen (S*) = }HQ_IVGLC (S*a 9)‘ (7)

which completes the proof of Lemma

Then we provide deeper derivation and present the Lemma [2| Note that we
replace Vg with V for brevity, and the omitted 6 is aligned to its following 6
which is the same as the Proof for Lemma For example, VL.(s7, 04,5+ ) means

Vo Lelst, ;).
Lemma 2. Let s}, (51) and sk, (85) be the negative pairs constructed by

Intra-CR and Eztra-CR, we have

|Hy ' VLe(s},00,5:)| < [Hy ' VLe(53,00,5;)

Assumption 4 Hy . ~ Hy_ .
51 5%
Assumption 5 0, s: ~ 04 55 = 0o
Since the objective can be decomposed into the dot product of two vectors:

|H9;1,5’1f VL(s1, oa,S’{ )l
(®)

= [y |- [V L5, i) - cos ()

i
where He_l . € RO*Y VLc(57,0a,s1) € R'™®  and O is the total number of
LY,SI

model’s parameters. v is the angle between such two vectors, which we assume
the same.

Then, based on Assumption [ and Assumption[5] we only need to investigate
the relation between |V Lc(s7,0q,s:)| and [V Lc(s5, 0a,s3)|-

Then we directly compare |V L.(s],0q,s:)| and [V Lc(s3,0a,s3)]. Firstly, we
rewrite the formulation of VL.(s7], 04, s:) as follows:
N Lo(s7,0a +€) — Lc(s7, 04
VLC(Slaea): ( 1 d) ( 1 ) (9)
€
Similarily, we also have:
L (85,04 — L.(s5,0
VL(s5,0) = Tl la £ O = Lol Bo) (10)

de

where € — 0 is a perturbation. Since 6, is the minimizer for L.(s},0,) and
L.(s3,0,), respectively, which indicates that any small perturbation € on 6 will
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increase the empirical risk. Therefore, L.(s5,0, + €) — L.(s3,0,) > 0 for any
small perturbation e.

Based on this, we present our subsequent derivation for VL.(s,0,) and
VL.(s%,04). First of all, VL.(s3,60,) and VL.(s3,0,) are positive due to the
property of 0, sx and 0, 3. Therefore, we have:

[VLc(s3,0a)| — [VLe(s1, b))
L.(s5,00 +€) — Lo(s5,04)

=| I |

LC(ST7901 + 6) B LC(SL 904)

- | o | (11)
Lc(5379a) _Lc(sTaea)

= ( = )

— (

L.(85,00 +€) — Le(s3,00 +€)
de )
Recall the Assumption [I] and the fact that 6 is the local minimizer of empirical
risk of L., such conditions indicate that the norm of gradient on 6 is smaller
than the one on 6 + €. Based on the theoretical justification of empirical risk
[10] and convexity of loss function [2], the change of input s* causes higher risk
change at 6 + € than 0, which means:

L.(s7,00) — Le(835,04) |
de
L.(87,00 +€) — Lc(85,00 +€)
de |

(12)

<|

Then recall the definition of ¢, and construction of sj and s3:

6L (G(X), G(J))

) = gam. )

Since s7 and s3 are intra-class and extra-class image pairs, the distance between

G(X),G(J} 4ra) 1s lower than G(X), G(JZ1ra)s thus Le(skiira) > Le(Skpira)-

ntra
Therefore, we have follows:

L.(s5,04) — Lc(s7,04) <0 (13)
Then we give further derivation on Eq.:

Le(s3,00) — Le(s7,0a)
( 7 )

L.(s3,00 +€)— Lc(s7,00 +¢€)
—( 7 )
Lc(s5,00) — Le(s7,00) |

de
L.(85,00 +€) — L(s7,00 + €)
de

+ | | >0



DRCNet 5

The equation in Eq. holds due to Eq..
The result completes the Lemma[2] Combining Lemma [I] and Lemma [2] we
complete the proof of the theorem.

Table 1. Comparison of the different parameter values of threshold ¢ in three main
restoration datasets in terms of PSNR (dB).

t 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Derain [7] 26.48 26.73 26.82 27.10 27.22 27.39 27.31 27.23 27.21 27.13
PSNR SIDD [I] 36.92 37.09 37.11 37.37 37.72 37.76 37.74 37.61 36.99 36.92
GoPro [3] 26.05 29.12 29.17 29.71 30.12 30.21 30.19 28.17 28.15 27.10

Table 2. Comparison of the different parameter values of threshold § in three main
restoration dataset in terms of PSNR (dB).

5 10T 10721072 1007 10=° 107% 1077
Derain [7] 25.08 25.13 25.42 25.56 25.57 25.59 25.54
PSNR. SIDD[I] 36.97 37.00 37.01 37.07 37.09 37.12 37.04
GoPro [3] 31.51 31.58 31.68 31.69 31.69 31.71 31.60

2 Threshold of ¢

Threshold ¢ is set in the spatial filter branch to detect the degraded pixels with a
soft distinction. It could affect the masking progress of the degraded pixels and
further affect the quality of restoration results. We conduct a set of experiments
to explore the most suitable value of three t restoration tasks. The PSNR results
on Derain [7], SIDD [I] and GoPro [3] show that the proposed method only
using the spatial filter-branch achieves the best results when threshold ¢ equals
t0 0.75, as shown in Table[I] A range of ¢ varies from 0.5 to 0.95 with an interval
of 0.05, and we test the model three times for each value of ¢, and select the
mean as the result. For each time, the training progress takes less than 400,000
epochs.

3 Analysis of §

In order to explore the best value of the coefficient hyper-parameter § in the
energy-based attention branch selected as it provides a good trade-off between
the re-calibration feature effect with texture detail and PSNR. The value of ¢
varies from 107! ~ 1077, The performance on the Derain [7], SIDD [I] and
GoPro [3] show that the energy-based attention branch achieves the best results
when & equals to 1076, which provides good performance of three datasets, as
shown in Table 2
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4 Computation Complexity

We show the comparisons in Table and |9 on the three tasks test sets. Flops
are obtained on a single NVIDIA V100 GPU with 256 x256 image.

Table 3. Comparison of the Flops(G) on the derain test.

Methods PReNet MSPFN SPAIR HINet MPRNet DRCNet(Ours)
FLOPs (G) 66.44 620 - 171 545 124.2

Table 4. Comparison of the Flops(G) on the SIDD [I] dataset.

Methods DnCNN CBDNet RIDNet AINDNet VDN SADNet DANet+ CycleISP InvDN MPRNet DRCNet(Ours)
FLOPs (G) 24.38 40.33  196.5 187.9  99.0 43.3 30.6 219.2 47.8 1176 124.2

Table 5. Comparison of the Flops(G) on the GoPro [3]test.

Methods Nah et al. DeblurGAN-v2 SRN MT-RNN DMPHN MPRNet MIMO-UNet HINet DRCNet(Ours)
FLOPs (G) 336 43 173 164 235 760 154 341 124.2

5 More visual results of Energy-based attention module

We added the some visual results of each task in Figure |1} which indicated with
(w/.) EA can retain more details of edge info than without (w/o) it.

6 Image Deraining Results

Fig. 2l and [3] show deraining results of our DRCNet and those of the state-of-
the-art methods on several challenging images from different datasets [6/89].

7 Image Deblurring Results

For the case of deblurring datasets, the visual results are shown in Fig. [4on the
RealBlur-J [4] datasets.
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a) Deraining

Fig. 1. Visual results of w. and w/o EA.

b)Denoising c)Deblurring

PSNR 16.46 dB 21.39dB 25.76 dB

(a)Reference (b)Rainy (c)SEMI (d)RESCAN

26.35dB 25.09dB 32.06 dB 33.91dB
(e)PreNet (f)MSPFN (g)MPRNet (R)DRCNet(Ours)

Fig. 2. Image deraining on the Test1200 dataset [§].
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PSNR 21.52dB 18.12dB 25.76 dB
(a)Reference (b)Rainy (c)SEMI (d)RESCAN

18.82 dB 20.77dB 29.25dB 33.91dB
(e)PreNet (f)MSPFN (g)MPRNet (h)DRCNet(Ours)

Fig. 3. Image deraining on the Test100 dataset [9].

.. . .. .l -
PSNR 22.46 dB 24.43dB 28.34dB 29.14dB
(a)Reference (a)Blurry (c)DeblurGANv2 (c)DeblurGANv2 (g)DRCNet(Ours)

Fig. 4. Image deblurring on the RealBlur-J dataset [4]
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