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This supplementary material is organized as follows: Section 1 contains com-
prehensive proof of Theorem 1. Section 2, 3, and 4 describe the results under
different thresholds t, the coefficient hyper-parameter δ, and computation com-
plexity. Section 6 and 7 contain additional visualization results.

1 Proof of Theorem 1

Firstly, we provide a standard derivation of Rsen based on asymptotic attributes
in statistics. Recall the definitions of ℓ(s, θ) andRsen (s

∗), we give the assumption
for ℓ1(s, θ).

Assumption 1 ℓ1(s, θ) and ℓc(s
∗, θ) are twice differentiable and strongly convex

in θ.

Based on Assumption 1, we give the lemma below:

Lemma 1. Rsen (s
∗) =

∣∣H−1
θ

∑
s∈S ∇θℓc (s

∗, θ)
∣∣

The empirical risk R(θ) is formulated as follows:

R(θ) =
∑
s∈S

[ℓ1(s, θ) + α · ℓc (s∗, θ)] (1)

Then we make derivation on R(θ), the Hessian matrix of R(θ) can be obtained
based on Assumption 1:

Hθ = ∇2R(θ) =
∑
s∈S

[
∇2

θℓ1(s, θ) + α · ∇2
θℓc (s

∗, θ)
]

(2)
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Assumption 1 guarantees that Hθ exists and is positive definite and guarantees
the existence of H−1

θ , which will be used in the following derivation.
Recall the definition of the minimizer θα,s∗ of Rsen:

θα,s∗ = argminθ∈Θ

∑
s∈S

[ℓ1(s, θ) + α · ℓc (s∗, θ)] (3)

Define the parameter change ∆θα,s∗ = θα,s∗ − θ0,s∗ when α is close to 0, then
the change of θ towards α can be defined as follows:

dθα,s∗

dα
=

∆θα,s∗

dα
(4)

Besides, let L1(s, θ) and Lc(s
∗, θ) be as follows for brevity:

L1(s, θ) =
∑
s∈S

ℓ1(s, θ)

Lc(s
∗, θ) =

∑
s∈S

ℓc (s
∗, θ)

Considering that θα,s∗ is a minimizer of R(θα,s∗), then we can obtain the follow-
ing property:

∇θα,s∗L1(s, θα,s∗) + α · ∇θα,s∗Lc (s
∗, θα,s∗) ≈ 0 (5)

Assumption 2 θα,s∗ → θ0,s∗ when α → 0

Then, we have a further derivation of Eq.(5) based on Assumption 2 and Taylor
expansion, which is listed as follows:

∇θα,s∗L1(s, θα,s∗) + α · ∇θα,s∗Lc (s
∗, θα,s∗)+

[∇2
θα,s∗

L1(s, θα,s∗) + α · ∇2
θα,s∗

Lc (s
∗, θα,s∗)]∆θα,s∗ ≈ 0

where we have dropped high-order terms. Naturally, we can get the formulation
of ∆θα,s∗ :

∆θα,s∗ ≈ −[∇2
θα,s∗

L1(s, θα,s∗) + α · ∇2
θα,s∗

Lc (s
∗, θα,s∗)]

−1

[∇θα,s∗L1(s, θα,s∗) + α · ∇θα,s∗Lc (s
∗, θα,s∗)]

Then we give the assumption for θα,s∗ as follows:

Assumption 3 ∇θα,s∗L1(s, θα,s∗) ≈ 0

Such an assumption is natural since empirical risk minimization (ERM) process
still optimizes L(·) well when the weight α of regularizer is small [5].

Then, based on Assumption 3, we have ∇L(s, θα,s∗) ≈ 0. After abandoning
the o(α) terms, we have

∆θα,s∗ ≈ −α[∇2
θα,s∗

L(s, θα,s∗)]
−1∇θα,s∗Lc (s

∗, θα,s∗)
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Combined with Eq.(2) and Eq.(4), we have

dθα,s∗

dα
|α→0= −H−1

θα,s∗
∇Lc(s

∗, θα,s∗) (6)

Since Rsen(s
∗) =

∣∣∣limα→0
dθα,s∗

dα

∣∣∣, we have that:

Rsen (s
∗) =

∣∣H−1
θ ∇θLc (s

∗, θ)
∣∣ (7)

which completes the proof of Lemma 1.
Then we provide deeper derivation and present the Lemma 2. Note that we

replace ∇θ with ∇ for brevity, and the omitted θ is aligned to its following θ
which is the same as the Proof for Lemma 1. For example, ∇Lc(s

∗
1, θα,s∗1 ) means

∇θα,s∗1
Lc(s

∗
1, θα,s∗1 ).

Lemma 2. Let s∗intra (s∗1) and s∗extra (s∗2) be the negative pairs constructed by
Intra-CR and Extra-CR, we have

|H−1
θα,s∗1

∇Lc(s
∗
1, θα,s∗1 )| < |H−1

θα,s∗2
∇Lc(s

∗
2, θα,s∗2 )|

Assumption 4 Hθα,s∗1
≈ Hθα,s∗2

Assumption 5 θα,s∗1 ≈ θα,s∗2 = θα

Since the objective can be decomposed into the dot product of two vectors:

|H−1
θα,s∗1

∇Lc(s
∗
1, θα,s∗1 )|

= |H−1
θα,s∗1

| · |∇Lc(s
∗
1, θα,s∗1 )| · |cos(γ)|

(8)

where H−1
θα,s∗1

∈ RΘ×1, ∇Lc(s
∗
1, θα,s∗1 ) ∈ R1×Θ, and Θ is the total number of

model’s parameters. γ is the angle between such two vectors, which we assume
the same.

Then, based on Assumption 4 and Assumption 5, we only need to investigate
the relation between |∇Lc(s

∗
1, θα,s∗1 )| and |∇Lc(s

∗
2, θα,s∗2 )|.

Then we directly compare |∇Lc(s
∗
1, θα,s∗1 )| and |∇Lc(s

∗
2, θα,s∗2 )|. Firstly, we

rewrite the formulation of ∇Lc(s
∗
1, θα,s∗1 ) as follows:

∇Lc(s
∗
1, θα) =

Lc(s
∗
1, θα + ϵ)− Lc(s

∗
1, θα)

dϵ
(9)

Similarily, we also have:

∇Lc(s
∗
2, θα) =

Lc(s
∗
2, θα + ϵ)− Lc(s

∗
2, θα)

dϵ
(10)

where ϵ → 0 is a perturbation. Since θα is the minimizer for Lc(s
∗
1, θα) and

Lc(s
∗
2, θα), respectively, which indicates that any small perturbation ϵ on θ will
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increase the empirical risk. Therefore, Lc(s
∗
2, θα + ϵ) − Lc(s

∗
2, θα) > 0 for any

small perturbation ϵ.
Based on this, we present our subsequent derivation for ∇Lc(s

∗
1, θα) and

∇Lc(s
∗
2, θα). First of all, ∇Lc(s

∗
2, θα) and ∇Lc(s

∗
2, θα) are positive due to the

property of θα,s∗1 and θα,s∗2 . Therefore, we have:

|∇Lc(s
∗
2, θα)| − |∇Lc(s

∗
1, θα)|

= |Lc(s
∗
2, θα + ϵ)− Lc(s

∗
2, θα)

dϵ
|

− |Lc(s
∗
1, θα + ϵ)− Lc(s

∗
1, θα)

dϵ
|

= (
Lc(s

∗
2, θα)− Lc(s

∗
1, θα)

dϵ
)

− (
Lc(s

∗
2, θα + ϵ)− Lc(s

∗
1, θα + ϵ)

dϵ
)

(11)

Recall the Assumption 1 and the fact that θ is the local minimizer of empirical
risk of Lc, such conditions indicate that the norm of gradient on θ is smaller
than the one on θ + ϵ. Based on the theoretical justification of empirical risk
[10] and convexity of loss function [2], the change of input s∗ causes higher risk
change at θ + ϵ than θ, which means:

|Lc(s
∗
1, θα)− Lc(s

∗
2, θα)

dϵ
|

< |Lc(s
∗
1, θα + ϵ)− Lc(s

∗
2, θα + ϵ)

dϵ
|

(12)

Then recall the definition of ℓc and construction of s∗1 and s∗2:

ℓc(s
∗) =

ℓ1(G(X), G(J))

ℓ1(G(X), G(J∗))

Since s∗1 and s∗2 are intra-class and extra-class image pairs, the distance between
G(X), G(J∗

intra) is lower than G(X), G(J∗
extra), thus ℓc(s

∗
intra) > ℓc(s

∗
extra).

Therefore, we have follows:

Lc(s
∗
2, θα)− Lc(s

∗
1, θα) < 0 (13)

Then we give further derivation on Eq.(11):

(
Lc(s

∗
2, θα)− Lc(s

∗
1, θα)

dϵ
)

− (
Lc(s

∗
2, θα + ϵ)− Lc(s

∗
1, θα + ϵ)

dϵ
)

= −|Lc(s
∗
2, θα)− Lc(s

∗
1, θα)

dϵ
|

+ |Lc(s
∗
2, θα + ϵ)− Lc(s

∗
1, θα + ϵ)

dϵ
| > 0

(14)
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The equation in Eq.(14) holds due to Eq.(13).
The result completes the Lemma 2. Combining Lemma 1 and Lemma 2, we

complete the proof of the theorem.

Table 1. Comparison of the different parameter values of threshold t in three main
restoration datasets in terms of PSNR (dB).

t 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

PSNR
Derain [7] 26.48 26.73 26.82 27.10 27.22 27.39 27.31 27.23 27.21 27.13
SIDD [1] 36.92 37.09 37.11 37.37 37.72 37.76 37.74 37.61 36.99 36.92
GoPro [3] 26.05 29.12 29.17 29.71 30.12 30.21 30.19 28.17 28.15 27.10

Table 2. Comparison of the different parameter values of threshold δ in three main
restoration dataset in terms of PSNR (dB).

δ 10−1 10−2 10−3 10−4 10−5 10−6 10−7

PSNR
Derain [7] 25.08 25.13 25.42 25.56 25.57 25.59 25.54
SIDD[1] 36.97 37.00 37.01 37.07 37.09 37.12 37.04
GoPro [3] 31.51 31.58 31.68 31.69 31.69 31.71 31.60

2 Threshold of t

Threshold t is set in the spatial filter branch to detect the degraded pixels with a
soft distinction. It could affect the masking progress of the degraded pixels and
further affect the quality of restoration results. We conduct a set of experiments
to explore the most suitable value of three t restoration tasks. The PSNR results
on Derain [7], SIDD [1] and GoPro [3] show that the proposed method only
using the spatial filter-branch achieves the best results when threshold t equals
to 0.75, as shown in Table 1. A range of t varies from 0.5 to 0.95 with an interval
of 0.05, and we test the model three times for each value of t, and select the
mean as the result. For each time, the training progress takes less than 400,000
epochs.

3 Analysis of δ

In order to explore the best value of the coefficient hyper-parameter δ in the
energy-based attention branch selected as it provides a good trade-off between
the re-calibration feature effect with texture detail and PSNR. The value of δ
varies from 10−1 ∼ 10−7. The performance on the Derain [7], SIDD [1] and
GoPro [3] show that the energy-based attention branch achieves the best results
when δ equals to 10−6, which provides good performance of three datasets, as
shown in Table 2.



6 F. Li et al.

4 Computation Complexity

We show the comparisons in Table 3,4, and 5 on the three tasks test sets. Flops
are obtained on a single NVIDIA V100 GPU with 256×256 image.

Table 3. Comparison of the Flops(G) on the derain test.

Methods PReNet MSPFN SPAIR HINet MPRNet DRCNet(Ours)

FLOPs (G) 66.44 620 - 171 545 124.2

Table 4. Comparison of the Flops(G) on the SIDD [1] dataset.

Methods DnCNN CBDNet RIDNet AINDNet VDN SADNet DANet+ CycleISP InvDN MPRNet DRCNet(Ours)

FLOPs (G) 24.38 40.33 196.5 187.9 99.0 43.3 30.6 219.2 47.8 1176 124.2

Table 5. Comparison of the Flops(G) on the GoPro [3]test.

Methods Nah et al. DeblurGAN-v2 SRN MT-RNN DMPHN MPRNet MIMO-UNet HINet DRCNet(Ours)

FLOPs (G) 336 43 173 164 235 760 154 341 124.2

5 More visual results of Energy-based attention module

We added the some visual results of each task in Figure 1, which indicated with
(w/.) EA can retain more details of edge info than without (w/o) it.

6 Image Deraining Results

Fig. 2, and 3 show deraining results of our DRCNet and those of the state-of-
the-art methods on several challenging images from different datasets [6,8,9].

7 Image Deblurring Results

For the case of deblurring datasets, the visual results are shown in Fig. 4 on the
RealBlur-J [4] datasets.
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Fig. 1. Visual results of w. and w/o EA.

Fig. 2. Image deraining on the Test1200 dataset [8].
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Fig. 3. Image deraining on the Test100 dataset [9].

Fig. 4. Image deblurring on the RealBlur-J dataset [4]
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