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Abstract. The existing methods for reflection removal mainly focus on
removing blurry and weak reflection artifacts and thus often fail to work
with severe and strong reflection artifacts. However, in many cases, real
reflection artifacts are sharp and intensive enough such that even humans
cannot completely distinguish between the transmitted and reflected
scenes. In this paper, we attempt to remove such challenging reflection ar-
tifacts using 360-degree images. We adopt the zero-shot learning scheme
to avoid the burden of collecting paired data for supervised learning and
the domain gap between different datasets. We first search for the ref-
erence image of the reflected scene in a 360-degree image based on the
reflection geometry, which is then used to guide the network to restore
the faithful colors of the reflection image. We collect 30 test 360-degree
images exhibiting challenging reflection artifacts and demonstrate that
the proposed method outperforms the existing state-of-the-art methods
on 360-degree images.

1 Introduction

We often take pictures through the glass, for example, take a picture of the glass
showcase in a museum or a gallery. The captured images through the glass ex-
hibit undesired artifacts of the reflected scene. Such reflection artifacts decrease
the visibility of the transmitted scene behind the glass and thus degrade the
performance of diverse computer vision techniques. For a few decades, attempts
have been made to develop efficient reflection removal methods. Whereas many
existing methods of reflection removal used multiple glass images taken under
constrained environments, the recent learning-based methods achieve outstand-
ing performance by exploiting deep features to separate an input single glass
image into transmission and reflection images.

While the existing methods usually assume blurry reflection artifacts asso-
ciated with the out-of-focus scenes in front of the glass, the actual reflection
artifacts exhibit more diverse characteristics than their assumption and often
become intensive and sharp. Therefore, even the state-of-the-art learning-based
methods still suffer from the domain gap between the training and test datasets.
In particular, 360-degree cameras, widely used for VR applications, do not fo-
cus on a specific object and usually generate the images with sharp reflection
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(a) 360-degree image (b) Glass (c) Reference

(d) BDN [30] (e) IBCLN [16] (f) Proposed

Fig. 1: Reflection removal of a 360-degree image. (a) A 360-degree image, and its
pairs of (b) the glass image and (c) the reference image. The reflection removal
results obtained by using (d) BDN [30], (e) IBCLN [16], and (f) the proposed
method.

artifacts on the glass region as shown in Fig. 1(a). Figs. 1(b) and (c) show the
cropped images of the glass region and the reference region of the actual reflected
scene, respectively, where we see that the reflected scene distinctly emerges in the
glass image. As shown in Figs. 1(d) and (e), the existing learning-based meth-
ods [16, 30] fail to remove such artifacts from the glass image, since the reflection
characteristics of 360-degree images are different from that of ordinary images.
In such a case, it is more challenging to distinguish which scene is transmitted or
reflected in the glass image by even humans. However, we can employ the visual
information of the reflected scene within a 360-degree image as a reference to
guide the reflection removal effectively.

The only existing reflection removal method [9] for 360-degree images uses a
glass image synthesis algorithm for supervised learning, and thus theoretically
suffers from the domain gap between the training and test datasets. Moreover,
it rarely concerns the cooperation between the two tasks of reflection removal
for 360-degree images: image restoration and reference image matching. In this
paper, we apply a zero-shot learning framework for reflection removal of 360-
degree images that avoids the burden of collecting training datasets and the
domain gap between different datasets. Also, the proposed method iteratively
estimates the optimal solutions for both the image restoration and the reference
matching by alternatively updating the results for a given test image.

We first assume that a 360-degree image is captured by a vertically standing
camera in front of the glass plane, and the central region of the 360-degree image
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is considered as the glass region. Then we investigate the reference information
matching to the restored reflection image in a 360-degree image and update the
network parameters to recover the transmission and reflection images based on
the matched reference information. Consequently, the proposed method provides
an outstanding performance to eliminate the reflection artifacts in 360-degree
images, as shown in Fig. 1(f).

The main contributions of this work are summarized as follows.

1. To the best of our knowledge, this is the first work to apply a zero-shot
learning framework to address the reflection removal problem for a single
360-degree image that avoids the domain gap between different datasets
observed in the existing supervised learning methods.

2. The proposed method refines the reference matching by using the reflection
geometry on a 360-degree image while adaptively restoring the transmission
and reflection images with the guidance of refined references.

3. We collect 30 real test 360-degree images for experiments and demonstrate
the proposed method outperforms the state-of-the-art reflection removal
techniques.

2 Related Works

In this section, we briefly summarize the existing reflection removal methods. We
classify the exiting methods into unsupervised and supervised approaches. The
unsupervised approach includes the computational reflection removal methods
and the latest zero-shot learning-based image decomposition method that does
not need paired datasets for training. In contrast, the supervised approach covers
the learning-based single image reflection removal methods.
Unsupervised approach: The distinct properties of the reflection artifacts ap-
pear in the multiple images taken in the particular capturing environments. [5,
13, 21] removed reflection artifacts in the multiple polarized images according
to the unique property of the reflected lights whose intensities are changed by
the polarization angles. [20] separated multiple glass images captured as vary-
ing focal lengths into two component images to have distinct blurriness. [7, 8,
17, 24, 29] analyzed different behaviors of the transmitted and reflected scenes
across multiple glass images taken at different camera positions. Furthermore,
[19] detected the repeated movement of the transmitted scene in a video. [23]
extracted the static image reflected on the front windshield of a car in a black-
box video. On the other hand, removing the reflection artifacts from a single
glass image is challenging due to the lack of characteristics to distinguish be-
tween the transmission and reflection images. [14] selected reflection edges to
be removed on a glass image by user assistance. [18] separated the input image
into a sharp layer and a blurry layer to obtain the transmission and reflection
images under the strong assumption that the reflection images are more blurry
than the transmission images. [15] supposed a glass image causes a large number
of the cross-points between two different edges, and separated the glass image
into two layers that minimize the total number of the cross-points. In addition,
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[22] removed spatially repeated visual structures because the lights reflected on
the front and back surfaces of the glass window yield the ghosting effects. [6]
proposed a general framework that trains a network to decompose the multiple
glass images captured in a constrained environment where the transmitted and
reflected scenes are dynamic and static, respectively.

While the existing methods require multiple glass images or assume distinct
characteristics of the reflection artifacts, the proposed method removes the chal-
lenging reflection artifacts exhibiting similar features to the transmission image
by detecting reference information in a single 360-degree image.

Supervised approach: Deep learning-based reflection removal methods have
been proposed in recent years. They train the deep networks by using the paired
dataset of the glass and transmission images, and provide more reliable results
than the computational methods that strongly assume the unique characteristic
of reflection artifacts. [4] firstly applied CNN for reflection removal and proposed
a framework that two networks are serially connected to restore the gradients
and colors of the transmission image, respectively. [25] revised the framework to
predict the colors and gradients of the transmission image simultaneously. [30]
proposed a novel framework that predicts a transmission image and a reflection
image recursively by using the prior result. Similarly, [16] adopted a complete
cascade framework that repeats to predict the transmission and reflection im-
ages from the glass image by feeding back the prior results of transmission and
reflection restoration. [2] tackled locally intensive reflection artifacts by predict-
ing a probability map indicating local regions of dominant reflection artifacts.
On the other hand, some methods have tackled the training data issues for su-
pervised learning. [27] defined a novel loss term to train the network parameters
regardless of the misalignment between an input glass image and its ground-
truth transmission image that is frequently observed in the existing real training
datasets. Due to the lack of paired data of real glass and transmission images,
[32] modeled a sophisticated image formulation to synthesize glass images, in-
volving the light absorption effect depending on the incident angle of rays on the
glass plane. [12] generated synthetic glass images by using a graphical simulator
to imitate the reflection physically. [28] utilized the deep networks for reflection
removal as well as the glass image synthesis to make more realistic glass images
for training. Recently, [9] removed the reflection artifacts using a reference image
captured in the opposite direction to the glass window in a panoramic image.

However, all the supervised learning-based methods suffer from the domain
gap. [1] demonstrated that the reflection removal performance of the existing
methods is determined by the types of reflection artifacts in their training
dataset. However, the proposed method adaptively works for a given input im-
age based on a zero-shot learning framework, and also alleviates the burden of
collecting training datasets in the supervised learning framework.
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(a) Image pair (b) DICL [26] (c) FlowNet [3]

Fig. 2: Image alignment using optical flow estimators. (a) A pair of the rectified
glass and reference images on a 360-degree image. The flow maps and the warped
reference images are obtained by (b) DICL [26] and (c) FlowNet [3], respectively.

3 Methodology

Since the 360-degree image includes the whole environmental scene around the
camera, the glass scene and the associated reflected scene are captured together.
The proposed method recovers the transmission and reflection images associated
with the glass region in a 360-degree image by bringing relevant information from
the reference region including the reflected scene. In this section, we first explain
how to search for the reference image based on the reflection geometry in a 360-
degree image. Then we introduce the proposed zero-shot learning framework
with a brief comparison to the existing method of DDIP [6]. We finally describe
the detailed training process of the proposed method in a test time.

3.1 Estimation of Reference Image

We investigate the relationship between the reflection image and the associated
reference image. As introduced in [9], the reflection image suffers from the pho-
tometric and geometric distortions that make it challenging to distinguish the
reflected scene from the transmitted scene on the glass image even using the ref-
erence image. The photometric distortion can be generated by external factors
like the thickness of glass, the incident angle of light, and the wavelength of light.
The image signal processing (ISP) embedded in the camera is also an internal
factor of photometric distortion. The geometric distortion between the reflec-
tion and reference images is mainly caused by the parallax depending on the
distances from the camera to the glass or the objects. The recent techniques [3,
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Fig. 3: Configuration for 360-degree image acqusition with reflection. Circles rep-
resent the surfaces of unit spheres where the 360-degree images are rendered.

26] for optical flow estimation fail to estimate the correct correspondence be-
tween the glass image and the reference image due to the photometric distortion
of the reflection image and the mixed transmission image, as shown in Fig. 2.

Reducing the geometric distortion and the photometric distortion can be
considered as a chicken-and-egg problem. The reference image well-aligned with
the reflection image provides faithful colors for the restoration of reflected scene
contents. On the other hand, a well-recovered reflection image yields confident
visual features to align the reference image with the reflection image. The pro-
posed method finds reliable reference regions for each pixel in the glass image
area based on the reflection geometry. A 360-degree image is captured by the
rays projected from the objects in 3D space to the surface of a unit sphere. In
particular, the glass region produces additional rays reflected on the glass, and
in such cases, we cannot estimate the accurate object locations in 3D space due
to the absence of distance information. As shown in Fig. 3, when an object is
observed at xi in the glass region of a 360-degree image, it would be observed at
x̂ if the glass does not exist. According to the reflection geometry, we calculate
the coordinates of the virtual points x̂i and ô using the Householder matrix [10]
defined by the orientation of the glass plane.

Assuming that the object should be located along the direction of di = x̂i−ô,
we consider candidate location of cki for xi by varying the distance to the object
from the virtual origin ô along di. Then we collect the matching candidates xk

i ’s
by projecting the candidate locations cki ’s to the unit surface, respectively. In this
work, we define the search space including 50 candidate locations of cki ’s sampled
along the direction of di to handle the background far from the glass. Then we
find the optimal matching point mi to xi among xk

i ’s of the search space that
has the smallest feature difference from xi. We consider the neighboring pixels
to compute a patch-wise feature difference between xi and x

k
i as

Ω(xi,x
k
i ) =

1

|Ni|+ 1

∑
pj∈Ni∪{pi}

∥FG(pj)− FR(p
k
j )∥1 (1)

where FG and FR represent the arbitrary rectified feature maps of the glass
and reference regions in the 360-degree image, respectively, p denotes the pixel
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Fig. 4: The overall architecture of the proposed network.

location corresponding to x on the rectified image domain, andNi is the neighbor
set of pi. In this work, we set the size of Ni to 24.

Specifically, for a given xi, we search for the two optimal matching pointsmc
i

and mg
i in terms of the color and gradient features, respectively. The notation

of the training iteration t is omitted for simplification. To search for the color-
based matching point mc

i , we set FG as a reconstructed reflection image R̂, and

set FR as the rectified reference image Iref. Note that R̂ and mc
i are iteratively

updated for training, and more faithful R̂ provides more confidentmc
i , and vice

versa. The gradient-based matching point mg
i is obtained by using the gradient

of the rectified glass image IG and Iref for FG and FR, respectively. Note that
mc

i andm
g
i provide partially complementary information for reflection recovery.

While mc
i prevents the recovered reflection image from having unfamiliar colors

with the reference image, mg
i makes the recovered reflection image preserve the

structure of the glass image.

3.2 Network Architecture

The proposed method is composed of the four sub-networks of encoder, decoder,
and two generators, as shown in Fig. 4. We share the network parameters of θ
and ϕ for the recovery of the transmission and reflection images, respectively.
The encoder gets the rectified images from the 360-degree image and extracts
the deep features that are able to reconstruct the input images by the decoder.
Since the deep features in the glass image have both of the transmission and
reflection features, the generators provide the mask maps to separate the deep
features of the glass image into the transmission feature hT and the reflection
feature hR, respectively, given by

hT = fθ(IG) · fψT
(zT), (2)

hR = fθ(IG) · fψR
(zR), (3)

where zT and zR represent the different Gaussian random noises and (·) denotes
the element-wise multiplication.

However, the photometric distortion of the glass image provides incomplete
reflection features to recover the original colors of the reflection image, and
the proposed method applies the Adaptive Instance Normalization (AdaIN) [11]
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on the reflection feature to compensate for the incomplete information. The
reflection feature hR is transformed by the reference feature href as

ĥR = σ(href)

(
hR − µ(hR)

σ(hR)

)
+ µ(href), (4)

where href = fθ(Iref), and µ and σ denote the operations to compute the average
and standard deviation across spatial dimensions. The proposed method finally
decodes the reflection image as R̂ = fϕ(ĥR). Since AdaIN transfers the feature
according to the statistics across spatial locations, it relieves the geometric differ-
ence between the reflection and reference images. Unlike the reflection recovery,
we suppose that the distortion of the transmission is negligible and predict the
transmission image via T̂ = fϕ(hT).

DDIP [6] introduced a general framework that is able to separate the multiple
glass images into the transmission and reflection images. It trains the network
under a linear formulation for the glass image synthesis. However, recent re-
search [1, 9, 28] has addressed that such a naive formulation is insufficient to
model the actual glass image. On the other hand, the proposed method decom-
poses the glass image in a deep feature space and synthesizes the glass image by
integrating the deep features of the transmission and reflection images instead
of simply adding the resulting transmission and reflection color maps. Also note
that the proposed method attaches a new branch that brings the reference infor-
mation from a given 360-degree image to distinguish the reflection image from
the transmission image, while DDIP simply demands multiple glass images to
involve distinct characteristics between the transmitted and reflected scenes.
Please refer to the supplementary material for network architecture details.

3.3 Training Strategy

The proposed method trains the network parameters in a test time for a given
instance. Particularly, each network of the proposed framework is trained re-
spectively according to different training losses. For each iteration, the (θ, ϕ),
ψR, and ψT are trained by using three individual Adam optimizers. We update
the network parameters during 600 iterations for each test image.
Encoder and decoder: The parameters of the encoder θ and the decoder ϕ
are trained to reconstruct the input image itself according to the reconstruction
loss Lrecon between a source map X and a target map Y defined as

Lrecon(X,Y ) = Lmse(X,Y ) + w1Lmse(∇X,∇Y ) (5)

where Lmse denotes the mean squared error and w1 denotes the weight to de-
termine the contribution of the gradient difference for training. We utilize the
rectified images IG and Iref of the glass region and the reference region as train-
ing images. The encoder extracts the deep features from IG and Iref and the
decoder outputs the images ÎG and Îref that minimize the auto-encoder loss LA

defined as
LA(θ,ϕ) = Lrecon(ÎG, IG) + Lrecon(Îref, Iref). (6)
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In addition, it is helpful to reduce the training time to initialize θ and ϕ by using
any photos. For all the following experiments, we used θ and ϕ pre-trained on
the natural images in [31] for one epoch.
Mask generator for transmission recovery: Though the network param-
eters θ, ϕ, and ψT are associated with the transmission recovery, ψT is only
updated by the transmission loss. The gradient prior that the transmission and
reflection images rarely have intensive gradients at the same pixel location has
been successfully used in reflection removal. We enhance this prior for the two
images not to have intensive gradients at similar locations. The gradient prior
loss Lgrad is defined as

Lgrad(T̂ , R̂) =
1

N

∑
pi

|∇T̂ (pi)||∇R̂∗(pi)|, (7)

where N represents the total number of pixels and ∇R̂∗(pi) denotes the gradient
having the maximum magnitude around pi, i.e. ∇R̂∗(pi) = maxpj∈Wi

|∇R̂(pj)|
where Wi denotes the set of pixels within a local window centered at pi. We
empirically set the window size to 5. We also evaluate the additional reconstruc-
tion loss for the glass image by synthesizing a glass image using the recovered
transmission and reflection images. For glass image synthesis, the existing meth-
ods [31, 30, 16] manually modify the reflection image to imitate the photometric
distortion of reflection and combine them according to the hand-crafted im-
age formation models. However, we obtain the distorted reflection image R̄ by
deactivating AdaIN of the proposed framework as R̄ = fϕ(fθ(IG) · fψR

(zR))

and synthesize the glass image by using the encoder and decoder as ĨG =
fϕ(fθ(T̂ ) + fθ(R̄)). The transmission loss LT is defined as

LT(ψT) = Lrecon(ĨG, IG) + w2Lgrad(T̂ , R̂). (8)

Mask generator for reflection recovery: While the transmission image is
hypothetically estimated by applying the gradient prior, the reflection image
has a reference color map R and a reference gradient map M obtained by the
reference matching process, such that R(pi) = I(mc

i ) and M(pi) = ∇I(mg
i )

where pi denotes the pixel location corresponding to xi in the rectified image.
The total reflection loss LR is given by

LR(ψR) = Lrecon(ĨG, IG) + w3Lmse(R̂, R) + w4Lmse(∇R̂,M). (9)

4 Experimental Results

This section provides the experimental results on ten 360-degree images to dis-
cuss the effectiveness of each part of the proposed method and compare the
proposed method with the state-of-the-art methods qualitatively and quantita-
tively. In this work, we set the weight of w1 for LA to 1 and the weights of
w1, w2, w3, and w4 for LT and LR to 10, 3, 5, and 50, respectively. Please see
the supplementary results for more experimental results.



10 B.J. Han and J.Y. Sim

(a) (b) (c) (d) (e)

Fig. 5: Effect of feature matching for reference searching. (a) Glass images and (b)
reference images rectified from 360-degree images. The reflection recovery results
are obtained by the proposed methods using the (c) color-based matching, (d)
gradient-based matching, and (e) both of them.

4.1 Ablation Study

Feature matching for reference searching: The proposed method utilizes
the color of the recovered reflection image and the gradient of the glass images to
determine the matching points to bring the information to recover the reflection
image. We tested the comparative methods that utilize either of the color-based
matching points or the gradient-based matching points to search for the ref-
erence images. Fig. 5 shows the glass and reference images in the 360-degree
images captured in front of the fish tanks of an aquarium. As shown in Figs. 5c
and 5d, the method using only the color-based matching destroys the reflected
scene structures, and the method using only the gradient-based matching fails
to recover the original color of the reflection image faithfully. However, when us-
ing both of the matching together, the proposed method recovers realistic colors
while preserving the reflected scene structures. Note that the rectified reference
image and the recovered reflection image are misaligned due to the geometric
distortion.
Glass synthesis loss: Although the gradient prior provides a good insight for
image decomposition, it may result in a homogeneous image where all pixels have
small gradients. We can alleviate this problem by using the glass synthesis loss
Lrecon(ĨG, IG). Fig. 6 shows the effect of the glass synthesis loss. The proposed
method without Lrecon(ĨG, IG) provides the significantly blurred transmission
images as shown in Fig. 6b where the mannequins behind the glass are disap-
peared from the recovered transmission image and the synthesized glass image.
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Glass Reference Trans. Reflection Synthesis Trans. Reflection Synthesis

(a) (b) (c)

Fig. 6: Effect of the glass synthesis loss Lrecon(ĨG, IG). (a) Glass and reference
images rectified from 360-degree images. The triplets of the recovered transmis-
sion, reflection, and synthesized glass images obtained by the proposed method
(b) without Lrecon(ĨG, IG) and (c) with Lrecon(ĨG, IG).

Glass Reference Transmission Reflection Transmission Reflection

(a) (b) (c)

Fig. 7: Effect of the gradient prior loss Lgrad(T̂ , R̂). (a) Glass and reference images
rectified from 360-degree images. The pairs of the recovered transmission and
reflection images obtained by the proposed method (b) without Lgrad(T̂ , R̂) and

(c) with Lgrad(T̂ , R̂).

In contrary, the proposed method using Lrecon(ĨG, IG) enforces the synthesized
glass images to have the image context not detected in the reflection image,
which preserves the context of the transmitted scene.

Gradient prior loss: The ablation study for the gradient prior loss Lgrad shows
how it affects the resulting transmission images. As shown in Fig. 7, whereas the
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(a) (b) (c) (d) (e) (f) (g)

Fig. 8: Qualitative comparison of the reflection removal performance. (a) Pairs of
the glass and reference images in 360-degree images. The results of the recovered
transmission and reflection images obtained by (b) RS [18], (c) PRR [31], (d)
BDN [30], (e) IBCLN [16], (f) PBTI [12], and (g) the proposed method.

method without the gradient prior loss often remains the sharp edges of the
intensive reflection artifacts in the transmission images, the proposed method
trained with Lgrad successfully suppresses such reflection edges.
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4.2 Qualitative Comparison

Since there are no existing methods of unsupervised reflection removal for a single
360-degree image, we compared the proposed method with the representative
unsupervised method [18] and the state-of-the-art supervised methods [12, 16,
30, 31] that remove the reflection artifacts from a single glass image. The rectified
images of the glass regions in 360-degree images are given as input images for
the existing methods. Most of the reflection removal methods restore not only
the transmission image but also the reflection image, and thus we evaluate the
quality of the recovered transmission and reflection images together.

Fig. 8 shows the reflection removal results for three challenging glass images
that make it hard for even humans to distinguish between the transmission and
reflection images. Due to the absence of the ground truth images, the rectified
images of the misaligned reference regions in the 360-degree images are inferred
to display the reflected scenes. The unsupervised method RS [18] targets to
remove blurred reflection artifacts and therefore rarely removed the reflection
artifacts on the test glass images. Also, the existing learning-based methods
failed to detect the reflection artifacts because they are mainly trained by the
synthesized glass images where the reflection images are manually blurred and
attenuated except PBTI [12]. PBTI generates realistic glass images by using a
graphic simulator, and suppressed the grey and homogeneous reflection artifacts
from the sky as shown in the first image in Fig. 8, however, it failed to remove the
colorful and structural reflection artifacts in the other glass images. On the other
hand, the proposed method successfully estimated the reflection images and
suppressed the challenging reflection artifacts with the guidance of the reference
regions estimated in the 360-degree images.

4.3 Quantitative Comparison

We simply synthesize the glass images in 360-degree images without reflection
artifacts. In practice, we set the center area of a 360-degree image as the glass
region and suppose an arbitrary depth of the region opposite to the glass re-
gion as a reflected scene. Then we compose the transmission image in the glass
region according to the conventional linear glass image formulation. Table 1
quantitatively compare the performance of the reflection removal methods using
12 synthetic 360-degree images, where ‘-T’ and ‘-R’ denote the comparison for
the transmission and reflection images, respectively. We see that the proposed
method ranks the first among the compared methods in terms of all the metrics
except SSIM-T. However, note that the input glass image itself, without any
processing, yields the SSIM-T score of 0.666, even higher than that of the most
methods. It means that the quantitative measures are not sufficient to reflect
the actual performance of the reflection removal, and the qualitative comparison
on real test datasets is much more informative.
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Method Input RS [18] PRR [31] BDN [30] IBCLN [16] PBTI [12] Prop.

PSNR-T 12.19 15.10 14.30 12.12 12.80 12.70 19.08
PSNR-R - 10.36 10.85 9.08 12.28 12.46 28.31

SSIM-T 0.666 0.655 0.675 0.620 0.580 0.626 0.647
SSIM-R - 0.448 0.296 0.428 0.507 0.531 0.852

Table 1: Comparison of the quantitative performance of reflection removal.

Fig. 9: Layer separation results accroding to different angles of the glass plane
orientation.

4.4 Limitations

The angular deviation of the glass plane orientation may cause large displace-
ment of the matching candidates in 3D space, and thus degrade the performance
of the proposed method. Fig. 9 shows this limitation where the recovered trans-
mission images remain lots of the reflection artifacts in the glass regions as the
angular deviation of the glass plane orientation increases. Moreover, since the
proposed method highly depends on the quality of the reference image captured
by the camera, it fails to remove the reflected camera contents itself and it of-
ten fails to recover the transmission and/or reflection images when the reference
image is overexposed due to intense ambient light.

5 Conclusion

This paper proposes a novel reflection removal method for 360-degree images
by applying the zero-shot learning scheme. Based on reflection geometry, the
proposed method searches for reliable references from outside the glass region
in the 360-degree image. And then, it adaptively restores the truthful colors for
the transmission and reflection images according to the searched references. Ex-
perimental results demonstrate that the proposed method provides outstanding
reflection removal results compared to the existing state-of-the-art methods for
360-degree images.
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