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Abstract. Particle-based systems provide a flexible and unified way to
simulate physics systems with complex dynamics. Most existing data-
driven simulators for particle-based systems adopt graph neural networks
(GNNs) as their network backbones, as particles and their interactions
can be naturally represented by graph nodes and graph edges. However,
while particle-based systems usually contain hundreds even thousands
of particles, the explicit modeling of particle interactions as graph edges
inevitably leads to a significant computational overhead, due to the in-
creased number of particle interactions. Consequently, in this paper we
propose a novel Transformer-based method, dubbed as Transformer with
Implicit Edges (TIE), to capture the rich semantics of particle interac-
tions in an edge-free manner. The core idea of TIE is to decentralize the
computation involving pair-wise particle interactions into per-particle
updates. This is achieved by adjusting the self-attention module to re-
semble the update formula of graph edges in GNN. To improve the gen-
eralization ability of TIE, we further amend TIE with learnable material-
specific abstract particles to disentangle global material-wise semantics
from local particle-wise semantics. We evaluate our model on diverse
domains of varying complexity and materials. Compared with existing
GNN-based methods, without bells and whistles, TIE achieves superior
performance and generalization across all these domains. Codes and mod-
els are available at https://github.com/ftbabi/TIE_ECCV2022.git1.

1 Introduction

Particle-based physics simulation not only facilitates the exploration of underly-
ing principles in physics, chemistry and biology, it also plays an important role
in computer graphics, e.g., enabling the creation of vivid visual effects such as
explosion and fluid dynamic in films and games. By viewing a system as a com-
position of particles, particle-based physics simulation imitates system dynamics
according to the states of particles as well as their mutual interactions. In this
way, although different systems may contain different materials and follow dif-
ferent physical laws, they can be simulated in a unified manner with promising
quality.

1 Bo Dai completed this work when he was with S-Lab, NTU.
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Fig. 1. (a). Samples from base domains. FluidFall contains two drops of water. Flu-
idShake simulates a block of water in a moving box. RiceGrip has a deformable object
squeezed by two grippers. BoxBath contains a rigid cubic washed by water. (b). Samples
from BunnyBath, where we change the rigid cube into bunny for generalization test. We
compare our TIE with DPI-Net, which achieves the best performances on BunnyBath
among previous methods. While the bunny is flooded upside down in ground truth,
TIE rollouts more faithful results especially in terms of the bunny’s posture and fluid
dynamics. More comparisons can be found in Section 4.2.

Recent approaches for particle-based physics simulation [2,23,17,12,22,25] of-
ten adopt a graph neural network (GNN) [10] as the backbone network structure,
where particles are treated as graph nodes, and interactions between neighboring
particles are explicitly modeled as edges. By explicitly modeling particle inter-
actions, existing methods effectively capture the semantics emerging from those
interactions (e.g., the influences of action-reaction forces), which are crucial for
accurate simulation of complex system. However, such an explicit formulation re-
quires the computation of edge features for all valid interactions. Since a particle-
based system usually contains hundreds even thousands of densely distributed
particles, the explicit formulation inevitably leads to significant computational
overhead, limiting the efficiency and scalability of these GNN-based approaches.

In this paper, instead of relying on GNN, we propose to adopt Transformer
as the backbone network structure for particle-based physics simulation. While
particle interactions are represented as graph edges in GNN, in Transformer
they are captured by a series of self-attention operations, in the form of dot-
products between tokens of interacting particles. Consequently, in Transformer
only particle tokens are required to simulate a system, leading to significantly
reduced computational complexity when compared to GNN-based approaches.

The vanilla Transformer, however, is not directly applicable for effective simu-
lation, since the rich semantics of particle interactions cannot be fully conveyed
by the dot-products in self-attention operations. In this work, we address the
problem via a novel modification to the self-attention operation that resembles
the effect of edges in GNN but exempts from the need of explicitly modeling
them. Specifically, each particle token is decomposed into three tokens, namely
a state token, a receiver token, and a sender token. In particular, the state token
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keeps track of the particle state, the receiver token describes how the particle’s
state would change, and the sender token indicates how the particle will affect its
interacting neighbors. By taking receiver tokens and sender tokens as both keys
and values, while state tokens are queries, the sturcture of edges in GNN can
be equally represented by attention module in Transformer. To further trace the
edge semantics in GNN, motivated by the process of normalizations for edges,
both receiver and sender tokens are first decentralized in our attention module.
Then we recover the standard deviations of edges from receiver and sender to-
kens, and apply the recovered scalar values as part of attention scores. Thus, the
edge features can be effectively revived in Transformer. Moreover, to improve
the generalization ability of the proposed method, we further propose to assign
a learnable abstract particle for each type of material, and force particles of
the same material to interact with their corresponding abstract particle, so that
global semantics shared by all particles of the same material can be disentangled
from local particle-level semantics.

Our method, dubbed as Transformer with Implicit Edges for Particle-based
Physics Simulation (TIE), possesses several advantages over previous methods.
First, thanks to the proposed edge-free design, TIE maintains the same level of
computational complexity as in the vanilla Transformer, while combines the ad-
vantages of both Transformer and GNN. TIE not only inherits the self-attention
operation from Transformer that can naturally attend to essential particles in
the dynamically changing system, TIE is also capable of extracting rich seman-
tics from particle interactions as GNN, without suffering from its significant
computational overhead. Besides, the introduction of learnable abstract parti-
cles further boosts the performance of TIE in terms of generality and accuracy,
by disentangling global semantics such as the intrinsic characteristics of differ-
ent materials. For instance, after learning the dynamics of water, TIE can be
directly applied to systems with varying numbers and configurations of particles,
mimicking various effects including waterfall and flood.

To demonstrate the effectiveness of TIE, a comprehensive evaluation is con-
ducted on four standard environments commonly used in the literature [12,22],
covering domains of different complexity and materials, where TIE achieves su-
perior performance across all these environments compared to existing methods.
Attractive properties of TIE, such as its strong generalization ability, are also
studied, where we adjust the number and configuration of particles in each en-
vironments to create unseen systems for TIE to simulate without re-training.
Compared to previous methods, TIE is able to obtain more realistic simulation
results across most unseen systems. For example, after changing the shape from
cube to bunny in BoxBath, the MSEs achieved by TIE is at least 30% lower than
previous methods.

2 Related Work

Physics simulation by neural networks. There are many different kind of
representations for physics simulations. Grid-based methods [11,24,28] adopt
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convolutional architectures for learning high-dimensional physical system, while
mesh-based simulations [3,14,9,18,20,30,19] typically simulate objects with con-
tinuous surfaces, such as clothes, rigid objects, surfaces of water and so on.

Many studies [2,23,17,12,25,22] simulate physics on particle-based systems,
where all objects are represented by groups of particles. Specifically, Interac-
tion Network (IN) [2] simulated interactions in object-level. Smooth Particle
Networks (SPNets) [23] implemented fluid dynamics using position-based flu-
ids [15]. Hierarchical Relation Network (HRN) [17] predicted physical dynamics
based on hierarchical graph convolution. Dynamic Particle Interaction Networks
(DPI-Net) [12] combined dynamic graphs, multi-step spatial propagation, and
hierarchical structure to simulate particles. CConv [25] used spatial convolu-
tions to simulate fluid particles. Graph Network-based Simulators (GNS) [22]
computed dynamics via learned message-passing.

Previous work mostly adopted graph networks for simulations. They ex-
tracted potential semantics by explicitly modeling edges and storing their em-
beddings, and required each particle to interact with all its nearby particles
without selective mechanism. In contrast, our TIE is able to capture semantics
in edges in an edge-free manner, and selectively focus on necessary particle in-
teractions through attention mechanism. Experiments show that TIE is more
efficient, and surpasses existing GNN-based methods.
Transformer. Transformer [26] was designed for machine translation and achieved
state-of-the-art performance in many natural langruage processing tasks [6,21,4].
Recently, Transformer starts to show great expandability and applicability in
many other fields, such as computer vision [29,5,7,27,13], and graph representa-
tions [32,31,8]. To our knowledge, no attempt has been made to apply Trans-
former on physics simulation.

Our TIE inherits the multi-head attention mechanism, contributing to dy-
namically model the potential pattern in particle interactions. Though Graph
Transformer [8], which we refer as GraphTrans for short, is also Transformer-
based model on graphs, it still turns to explicitly modeling each valid edge to
enhance the semantics of particle tokens, failing to make full use of attention
mechanism to describe the relations among tokens in a more efficient manner. We
adopt GraphTrans [8] in particle-based simulation and compare it with TIE in
experiments. Quantitative and qualitative results show that TIE achieves more
faithful rollouts in a more efficient way.

3 Methodology

3.1 Problem Formulation

For a particle-based system composed of N particles, we use X t = {xt
i}Ni=1 to

denote the system state at time step t, where xt
i denotes the state of i-th particle.

Specifically, xt
i = [pt

i, q
t
i ,ai], where p

t
i, q

t
i ∈ R3 refer to position and velocity, and

ai ∈ Rda represents fixed particle attributes such as its material type. The goal
of a simulator is to learn a model ϕ(·) from previous rollouts of a system to
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causally predict a rollout trajectory in a specific time period conditioned on the
initial system state X 0. The prediction runs in a recursive manner, where the
simulator will predict the state X̂ t+1 = ϕ(X t) at time step t + 1 based on the
state X t = {xt

i} at time step t. In practice, we will predict the velocities of

particles Q̂t+1 = {q̂t+1
i }, and obtain their positions via p̂t+1

i = pt
i + ∆t · q̂t+1

i ,
where ∆t is a domain-specific constant. In the following discussion, the time-step
t is omitted to avoid verbose notations.

3.2 GNN-based Approach

As particle-based physics systems can be naturally viewed as directed graphs, a
straightforward solution for particle-based physics simulation is applying graph
neural network (GNN) [2,23,17,12,22]. Specifically, we can regard particles in the
system as graph nodes, and interactions between pairs of particles as directed
edges. Given the states of particles X = {xi}Ni=1 at some time-step, to predict
the velocities of particles in the next time-step, GNN will at first obtain the
initial node features and edge features following:

v
(0)
i = f enc

V (xi), (1)

e
(0)
ij = f enc

E (xi,xj), (2)

where vi, eij ∈ Rdh are dh dimensional vectors, and f enc
V (·), f enc

E (·) are respec-
tively the node and edge encoders. Subsequently, GNN will conduct L rounds of
message-passing, and obtain the velocities of particles as:

e
(l+1)
ij = fprop

E (v
(l)
i ,v

(l)
j , e

(l)
ij ), (3)

v
(l+1)
i = fprop

V (v
(l)
i ,

∑
j∈Ni

e
(l+1)
ij ), (4)

q̂i = fdec
V (v

(L)
i ), (5)

where Ni indicates the set of neighbors of i-th particle, and fprop
E (·), fprop

V (·)
and fdec

V (·) are respectively the node propagation module, the edge propagation
module as well as the node decoder. In practice, f enc

V (·), f enc
E (·), fprop

E (·), fprop
V (·)

and fdec
V (·) are often implemented as multi-layer perceptrons (MLPs). Moreover,

a window function g is commonly used to filter out interactions between distant
particles and reduce computational complexity:

g(i, j) = 1 (∥pi − pj∥2 < R) , (6)

where 1(·) is the indicator function and R is a pre-defined threshould.

3.3 From GNN to Transformer

To accurately simulate the changes of a system over time, it is crucial to exploit
the rich semantics conveyed by the interactions among particles, such as the
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(a) Edge propagations in GNNs.

(b) Implicit edge propagations in TIE.

Fig. 2. We demonstrate the propagations for edges in GNNs and TIE, where explicit
or implicit edges are shown in red boxes. The process of MLP in each layer is splitted
into blocks of square followed by summations. Different blocks of MLP are shown by
square areas with different colors. The key idea of TIE is that TIE replaces the explicit
edges e

(l+1)
ij by receiver tokens r

(l)
i and sender tokens s

(l)
j . When only considering the

trainable weights of each MLP, the summation of receiver and sender tokens within a
red box equals to the edge within the same depth of red box, as shown in Equation 12.
From the indexes we can know, the behaviors of node i and j are independent in Figure
(b), thus TIE does not include explicit edges.

energy transition of a system when constrained by material characteristics and
physical laws. While GNN achieves this by explicitly modeling particle interac-
tions as graph edges, such a treatment also leads to substantial computational
overhead. Since a particle-based system contains hundreds even thousands of
particles, and particles of a system are densely clustered together, this issue
significantly limits the efficiency of GNN-based approaches.

Inspired by recent successes of Transformer [26] that applies computational
efficient self-attention operations to model the communication among different
tokens, in this paper we propose a Transformer-based method, which we refer to
as Transformer with Implicit Edges, TIE, for particle-based physics simulation.
We first describe how to apply a vanilla Transformer in this task. Specifically, we
assign a token to each particle of the system, and therefore particle interactions
are naturally achieved by L blocks of multi-head self-attention modules. While
the token features are initialized according to Equation 1, they will be updated
in the l-th block as:

ωij = (W
(l)
Q v

(l)
i )⊤ · (W (l)

K v
(l)
j ), (7)

v
(l+1)
i =

∑
j

exp(ωij/
√
d)∑

k exp(ωik/
√
d)

· (W (l)
V v

(l)
j ), (8)
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where d is the dimension of features, and W
(l)
Q ,W

(l)
K ,W

(l)
V are weight matrices

for queries, keys, and values. Following the standard practice, a mask is gener-
ated according to Equation 6 to mask out distant particles when computing the
attention. And finally, the prediction of velocities follows Equation 5.

Although the vanilla Transformer provides a flexible approach for particle-
based simulation, directly applying it leads to inferior simulation results as shown
in our experiments. In particular, the vanilla Transformer uses attention weights
that are scalars obtained via dot-product, to represent particle interactions,
which are insufficient to reflect the rich semantics of particle interactions. To
combine the merits of GNN and Transformer, TIE modify the self-attention
operation in the vanilla Transformer to implicitly include edge features as in
GNN in an edge-free manner. In Figure 2 we include the comparison between
our proposed implicit edges and the explicit edges in GNN. Specifically, since
fprop
E in Equation 3 and f enc

E in Equation 2 are both implemented as an MLP in
practice, by expanding Equation 3 recursively and grouping terms respectively
for i-th and j-th particle we can obtain:

r
(0)
i = W (0)

r xi, s
(0)
j = W (0)

s xj , (9)

r
(l)
i = W (l)

r v
(l)
i +W (l)

m r
(l−1)
i , (10)

s
(l)
j = W (l)

s v
(l)
j +W (l)

m s
(l−1)
j , (11)

e
(l+1)
ij = r

(l)
i + s

(l)
j , (12)

where the effect of an explicit edge can be effectively achieved by two additional
tokens, which we refer to as the receiver token ri and the sender token sj . The
detained expansion of Equation 3 can be found in the supplemental material.
Following the above expansion, TIE thus assigns three tokens to each particle
of the system, namely a receiver token ri, a sender token si, and a state token
vi. The state token is similar to the particle token in the vanilla Transformer,
and its update formula combines the node update formula in GNN and the
self-attention formula in Transformer:

ω′
ij = (W

(l)
Q v

(l)
i )⊤r

(l)
i + (W

(l)
Q v

(l)
i )⊤s

(l)
j , (13)

v
(l+1)
i = r

(l)
i +

∑
j

exp(ω′
ij/

√
d)∑

k exp(ω
′
ik/

√
d)

· s(l)j . (14)

We refer to Equation 14 as an implicit way to incorporate the rich semantics
of particle interactions, since TIE approximates graph edges in GNN with two
additional tokens per particle, and more importantly these two tokens can be
updated, along with the original token, separately for each particle, avoiding the
significant computational overhead. To interpret the modified self-attention in
TIE, from the perspective of graph edges, we decompose them into the receiver
tokens and the sender tokens, maintaining two extra paths in the Transformer’s
self-attention module. As for the perspective of self-attention, the receiver tokens
and the sender tokens respectively replace the original keys and values.
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In practice, since GNN-based methods usually incorporate LayerNorm [1] in
their network architectures that computes the mean and std of edge features to
improve their performance and training speed, we can further modify the self-
attention in Equation 13 and Equation 14 to include the effect of normalization
as well:(

σ
(l)
ij

)2

=
1

d
(r

(l)
i )⊤r

(l)
i +

1

d
(s

(l)
j )⊤s

(l)
j +

2

d
(r

(l)
i )⊤s

(l)
j − (µ(l)

ri + µ(l)
sj )

2, (15)

ω′′
ij =

(W
(l)
Q v

(l)
i )⊤(r

(l)
i − µ

(l)
ri ) + (W

(l)
Q v

(l)
i )⊤(s

(l)
j − µ

(l)
sj )

σ
(l)
ij

, (16)

v
(l+1)
i =

∑
j

exp(ω′′
ij/

√
d)∑

k exp(ω
′′
ik/

√
d)

·
(r

(l)
i − µ

(l)
ri ) + (s

(l)
j − µ

(l)
sj )

σ
(l)
ij

, (17)

where µ
(l)
ri and µ

(l)
sj are respectively the mean of receiver tokens and sender tokens

after l-th block. Detailed deduction can be found in the supplemental material.

3.4 Abstract Particles

To further improve the generalization ability of TIE and disentangle global
material-specific semantics from local particle-wise semantics, we further equip
TIE with material-specific abstract particles.

For Na types of materials, TIE respectively adopts Na abstract particles
A = {ak}Na

k=1, each of which is a virtual particle with a learnable state token.
Ideally, the abstract particle ak should capture the material-specific semantics
of k-th material. They act as additional particles in the system, and their update
formulas are the same as normal particles. Unlike normal particles that only in-
teract with neighboring particles, each abstract particle is forced to interact with
all particles belonging to its corresponding material. Therefore with Na abstract
particles TIE will have N + Na particles in total: {a1, · · · ,aNa

,x1, · · · ,xN}.
Once TIE is trained, abstract particles can be reused when generalizing TIE to
unseen domains that have same materials but vary in particle amont and con-
figuration.

3.5 Traning Objective and Evaluation Metric

To train TIE with existing rollouts of a domain, the standard mean square error
(MSE) loss is applied to the output of TIE:

MSE(Q̂,Q) =
1

N

∑
i

∥q̂i − qi∥22, (18)

where Q̂ = {q̂i}Ni=1 and Q = {qi}Ni=1 are respectively the estimation and the
ground truth, and ∥ · ∥2 is the L2 norm.
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Table 1. We report M3SEs (1e-2) results on four base domains, while keep the mod-
els’ number of parameters similar to each other. TIE achieves superior performance
on all domains without suffering from its significant computational overhead. When
adding trainable abstract particles, TIE, marked by +, further improves performance
on RiceGrip and BoxBath, which involve complex deformations and multi-material
interactions respectively.

Methods
FluidFall FluidShake RiceGrip BoxBath

M3SE #Para M3SE #Para M3SE #Para M3SE #Para

DPI-Net [12] 0.08±0.05 0.61M 1.38±0.45 0.62M 0.13±0.09 1.98M 1.33±0.29 1.98M
CConv [25] 0.08±0.02 0.84M 1.41±0.46 0.84M N/A N/A N/A N/A
GNS [22] 0.09±0.02 0.70M 1.66±0.37 0.70M 0.40±0.16 0.71M 1.56±0.23 0.70M
GraphTrans [8] 0.04±0.01 0.77M 1.36±0.37 0.77M 0.12±0.11 0.78M 1.27±0.25 0.77M

TIE (Ours) 0.04±0.01 0.77M 1.22±0.37 0.77M 0.13±0.12 0.78M 1.35±0.35 0.77M
TIE+ (Ours) 0.04±0.00 0.77M 1.30±0.41 0.77M 0.08±0.08 0.78M 0.92±0.16 0.77M

(a) Batch size is 1. (b) Batch size is 1. (c) Batch size is 4. (d) Batch size is 4.

Fig. 3. We report averaged models’ training time for each iteration. The batch size in
(a) and (b) is set to 1, while the batch size in (c) and (d) is set to 4. As the number of
interactions increases, the time cost for TIE+ remains stable, while other models spend
more time to train due to the computational overhead introduced by extra interactions.

In terms of evaluation metric, since a system usually contains multiple types
of materials with imbalanced numbers of particles, to better reflect the estima-
tion accuracy, we apply the Mean of Material-wise MSE (M3SE) for evaluation:

M3SE(Q̂,Q) =
1

K

∑
k

1

Nk

∑
i

∥q̂i,k − qi,k∥22, (19)

where K is the number of material types, Nk is the number of particles belonging
to the k-th material. M3SE is equivalent to the standard MSE when K = 1.

4 Experiments

We adopt four domains commonly used in the literature [12,22,25] for evalua-
tion. FluidFall is a basic simulation for two droplets of water with 189 particle in
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total; FluidShake is more complex and simulate the water in a randomly moving
box, containing 450 to 627 fluid particles; BoxBath simulates the water washing
a rigid cube in fixed box with 960 fluid particles and 64 rigid particles; RiceGrip
simulates the interactions between deformable rice and two rigid grippers, in-
cluding 570 to 980 particles. Samples are displayed in Figure 1. To explore the
effectiveness of our model, we compare TIE with four representative approaches:
DPI-Net [12], CConv [25], GNS [22], and GraphTrans [8].
Implementation Details. TIE contains L = 4 blocks. For multi-head self-
attention version, The receiver tokens and sender tokens are regarded as the
projected keys and values for each head. After projecting the concatenated state
tokens from all heads, a two-layer MLPs is followed with dimensions 256 and
128. The concatenated receiver tokens and sender tokens are directly projected
by one layer MLP with dimensions 128. The rest hidden dimensions are 128 for
default. We train four models independently on four domains, with 5 epochs on
FluidShake and BoxBath, 13 epochs on FluidFall, and 20 epochs on RiceGrip. On
BoxBath, all models adopt the same strategy to keep the shape of the rigid object
following [12]. We adopt MSE on velocities as training loss for all models. The
neighborhood radius R in Equation 6 is set to 0.08. We adopt Adam optimizer
with an initial learning rate of 0.0008, which has a decreasing factor of 0.8 when
the validation loss stops to decrease after 3 epochs. The batch size is set to 16
on all domains. All models are trained and tested on V100 for all experiments,
with no augmentation involved.

4.1 Basic Domains

Quantitative results are provided in Table 1, while qualitative results are shown
in Figure 4. TIE achieves superior performances on all domains. The effectiveness
of abstract particles are more obvious for RiceGrip and BoxBath, which involve
complex materials or multi-material interactions.
Performance comparison. We compare TIE with four representative ap-
proaches: DPI-Net [12], CConv [25], GNS [22], and GraphTrans [8]. Since DPI-
Net and GNS adopt message-passing graph networks for particle-based simula-
tions, we set the number of propagation steps as four for both models, except
that DPI-Net adopts a total number of six propagation steps on BoxBath and
RiceGrip, where hierarchical structures are adopted. For CConv, which designs
convolutional layers carefully tailored to modeling fluid dynamics, such as an
SPH-like local kernel [16], we only report the results on fluid-based domains. As
shown in Table 1, TIE achieves superior performances on most domains, while
TIE+, which has abstract particles, further improves the performances especially
on RiceGrip and BoxBath, suggesting the effectiveness of abstract particles in
modeling complex deformations and multi-materials interactions. For qualitative
results in Figure 4, our model can predict more faithful rollouts on all domains.
Efficiency comparison. The training time for models with varying batch size
is shown in Figure 3. For simplicity, the number of particles is fixed and only
number of interactions varies in Figure 3. Since TIE uses implicit edges to model
particle interactions and significantly reduces computational overhead, TIE has
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Fig. 4. Qualitative results on base domains. TIE is able to achieve more faithful
results on all domains. On FluidFall, TIE is able to better maintain the shape before
the droplets merge and handle redundant neighbors, which are introduced from two
different droplets when they move closer to each other. The relative positions of the
droplets are also closer the the ground truth. On FluidShake, TIE can predict two
faithful blocks of water on the top right. On RiceGrip, when focusing on the areas
compressed by the grippers, the rice restores its position more faithfully in TIE. On
BoxBath, the rigid cube predicted by TIE is pushed far away enough from the right
wall, and the positions for the cube by TIE+ is much closer to the ground truth. The
fluid particles predicted by our models are also more faithful.

the fastest training speed against general GNN-based simulators (CConv [25] is
a specialized simulator for systems containing only fluid) as shown in Figure 3
(a) and (b). When it comes to batch size larger than 1, GNN-based methods
need pad edges for each batch, leading to extra computational cost. On the
other hand, TIE only need the corresponding attention masks to denote the
connectivities without further paddings, which is faster to train on large batch
size. We does not report the speed of GraphTrans with more than 1.4 × 104

interactions due to the limit of memory. In terms of testing speed, it is hard to
compare different methods directly since different simulation results will lead to
different amount of valid particle interactions.

4.2 Generalizations

As shown in Table 2, we generate more complex domains to challenge the robust-
ness of our full model TIE+. Specifically, we add more particles for FluidShake
and RiceGrip, which we refer to as L-FluidShake and L-RiceGrip respectively.
The L-FluidShake includes 720 to 1368 particles, while L-RiceGrip contains 1062
to 1642 particles. On BoxBath, we change the size and shape of rigid object.
Specifically, we add more fluid particles in Lfluid-BoxBath to 1280 fluid par-
ticles, while we enlarge the rigid cube in L-BoxBath to 125 particles. We also
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Table 2. M3SEs on generalizations. The lists of numbers in FluidShake and RiceGrip
are the range of particles, while the tuples in BoxBath denotes number of fluid particles,
number of rigid particles, and shape of rigid objects respectively. Training settings are
marked by *. TIE + achieves the best results on most cases.

Methods
FluidShake [450,627]* RiceGrip [570,980]*

[720,1013] [1025,1368] [1062,1347] [1349,1642]

DPI-Net [12] 2.13±0.55 2.78±0.84 0.23±0.13 0.38±0.67
CConv [25] 2.01±0.55 2.43±0.81 N/A N/A
GNS [22] 2.61±0.44 3.41±0.59 0.47±0.20 0.51±0.28
GraphTrans [8] 2.68±0.52 3.97±0.70 0.20±0.13 0.22±0.18

TIE+ (Ours) 1.92±0.47 2.46±0.65 0.17±0.11 0.19±0.15

Methods
BoxBath (960,64,cube)*

(1280,64,cube) (960,125,cube) (960,136,ball) (960,41,bunny)

DPI-Net [12] 1.70±0.22 3.22±0.88 2.86±0.99 2.04±0.79
GNS [22] 2.97±0.48 2.97±0.71 3.50±0.67 2.17±0.37
GraphTrans [8] 1.88±0.25 1.50±0.30 1.71±0.34 2.22±0.61

TIE+ (Ours) 1.57±0.18 1.49±0.19 1.45±0.27 1.39±0.48

change the shape of the rigid object into ball and bunny, which we refer to Ball-
Box and BunnyBath respectively. Details of generalized environments settings
and results can be found in supplementary materials.

Quantitative results are summarized in Table 2, while qualitative results are
depicted in Figure 5. As shown in Table 2, TIE+ achieves lower M3SEs on
most domains, while having more faithful rollouts in Figure 5. On L-FluidShake,
TIE+ maintains the block of fluid in the air and predicts faithful wave on the
surface. On L-RiceGrip, while DPI-Net and GNS have difficulties in maintaining
the shape, the rice predicted by GraphTrans is compressed more densely only
in the center areas where the grips have reached, the left side and right side of
the rice does not deform properly compared with the ground truth. In contrast,
TIE+ is able to maintains the shape of the large rice and faithfully deform the
whole rice after compressed. On generalized BoxBath, TIE+ is able to predict
faithful rollout when the fluid particles flood the rigid objects into the air or when
the wave of the fluid particles starts to push the rigid object after the collision.
Even when the rigid object changes to bunny with more complex surfaces, TIE+
generates more accurate predictions for both fluid particles and rigid particles.

4.3 Ablation Studies

We comprehensively analyze our TIE and explore the effectiveness of our model
in the following aspects: (a) with and without implicit edges; (b) with and with-
out normalization effects in attention; (c) with and without abstract particles;
and (d) the sensitiveness to R. The experiments for (a), (b), and (d) are con-
ducted on FluidShake and L-FluidShake, while experiment (c) is conducted on
BoxBath. The quantitative results are in Table 3 and Table 4.
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Fig. 5. Qualitative results on generalized domains. Here we only show part of results
on generalized BoxBath, where we mainly change the shape and size of the rigid object.
TIE+ can predict more faithful movements of the rigid object, while the fluid particles
are also vivid. More details can be found in supplementary materials.

Table 3. Ablation studies. We comprehensively explore the effectiveness of TIE, in-
cluding the effectiveness of implicitly modeling of edges, normalization effects in atten-
tion, and abstract particles. We report M3SEs(1e-2) on FluidShake and L-FluidShake,
which are complex domains involving outer forces.

Configurations A(Transformer) B C(TIE) D(TIE+)

Implicit Edges ✓ ✓ ✓
Normalization ✓ ✓
Abstract Particles ✓

FluidShake 2.75±0.86 1.52±0.39 1.22±0.37 1.30±0.41
L-FluidShake 8.18±3.15 3.17±0.94 2.40±0.74 2.16±0.62

Effectiveness of implicit edges. We apply vanilla Transformer encoders by
configuration A, while TIE in configuration B does not adopt the interaction
attention, making sure the only difference is the edge-free structure. The hidden
dimension and number of blocks are the same, while TIE is a little larger because
of the extra projections for receiver and sender tokens. As shown in Table 3, the
original Transformer achieves worse performances, suggesting the scalar atten-
tion scores alone are insufficient to capture rich semantics of interactions among
particles. In contrast, implicit way of modeling edges enables TIE to take ad-
vantages of GNN methods and recover more semantics of particle interactions.

Effectiveness of normalization effects in attention. We follow configura-
tion C to build TIE, which includes Equation 17. Comparing configuration B
and C in Table 3, we find that the normalization effects brings benefits to TIE on
both base and generalized domains. Such structure further enables TIE to trace
the rice semantics from edges, leading to more stable and robust performances.

Effectiveness of abstract particles. As shown in Table 4, we replace the
abstract particles with dummy particles, which are zero initialized vectors with
fixed values but have the same connectivities as abstract particles. Thus, the
dummy particles could not capture the semantics of materials during training.
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Table 4. Ablation studies on abstract particles and sensitiveness to radius R. To
explore the material-aware semantics extracted by abstract particles, we conduct ex-
periments on BoxBath and the generalized domains BunnyBath, where the rigid cube
is replaced by bunny. We replace abstract particles with dummy particles, which are
zero constant vectors and have same connectivities as abstract particles. TIE marked
by ”dummy” adopts dummy particles. The sensitiveness is on the right part. We report
M3SEs(1e-2) on FluidShake. Our default setting on all domains is marked by ∗.

Methods
BoxBath

Methods
FluidShake

(960,64,cube)* (960,41,bunny) R = 0.07 R∗ = 0.08 R = 0.09

TIE 1.35±0.35 1.50±0.45 DPI-Net 2.60±0.56 1.38±0.45 1.66±0.48
TIE dummy 1.21±0.28 1.96±0.71 GraphTrans 1.97±0.48 1.36±0.37 1.36±0.38
TIE+ 0.92±0.16 1.39±0.48 TIE 1.60±0.37 1.22±0.37 1.31±0.40

TIE with dummy particles slightly improve the performances on base domains,
suggesting that the extra connectivities introduced by abstract particles benefit
little on TIE. TIE+ achieves more stable and robust performances, suggesting
that the abstract particles are able to effectively disentangle the domain-specific
semantics, i.e., the outer forces introduced by walls, and materials-specific se-
mantics, i.e., the pattern of fluid particle dynamics.
Sensitiveness to R. Quantitative results are reported on FluidShake. As shown
in Table 4, when R is smaller, models tend to have a drop in accuracies due to
the insufficient particle interactions. When R is greater, the drop of accuracies
for DPI-Net is caused by redundant interactions due to the high flexibility of
fluid moving patterns. In all cases, TIE achieves superior performances more
efficiently, suggesting the effectiveness and robustness of our model.

5 Conclusion

In this paper, we propose Transformer with Implicit Edges (TIE), which aims
to trace edge semantics in an edge-free manner and introduces abstract particles
to simulate domains of different complexity and materials, Our experimental re-
sults show the effectiveness and efficiency of our edge-free structure. The abstract
particles enable TIE to capture material-specific semantics, achieving robust per-
formances on complex generalization domains. Finally, TIE makes a successful
attempt to hybrid GNN and Transformer into physics simulation and achieve
superior performances over existing methods, showing the potential abilities of
implicitly modeling edges in physics simulations.
Acknowledgements. This study is supported under the RIE2020 Industry
Alignment Fund Industry Collaboration Projects (IAF-ICP) Funding Initiative,
as well as cash and in-kind contribution from the industry partner(s). It is also
supported by Singapore MOE AcRF Tier 2 (MOE-T2EP20221-0011) and Shang-
hai AI Laboratory.



Transformer with Implicit Edges 15

References

1. Ba, L.J., Kiros, J.R., Hinton, G.E.: Layer normalization. CoRR (2016)

2. Battaglia, P.W., Pascanu, R., Lai, M., Rezende, D.J., Kavukcuoglu, K.: Interaction
networks for learning about objects, relations and physics. In: Advances in Neural
Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain (2016)

3. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric
deep learning: Going beyond euclidean data. IEEE Signal Process. Mag. (2017)

4. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Win-
ter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J.,
Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language mod-
els are few-shot learners. In: Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual (2020)

5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: Computer Vision - ECCV 2020 -
16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part
I (2020)

6. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Papers) (2019)

7. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby,
N.: An image is worth 16x16 words: Transformers for image recognition at scale.
In: 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021 (2021)

8. Dwivedi, V.P., Bresson, X.: A generalization of transformer networks to graphs.
CoRR (2020)

9. Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., Cohen-Or, D.:
MeshCNN: a network with an edge. ACM Trans. Graph. (2019)

10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. CoRR (2016)

11. Lee, S., You, D.: Data-driven prediction of unsteady flow over a circular cylinder
using deep learning. Journal of Fluid Mechanics (2019)

12. Li, Y., Wu, J., Tedrake, R., Tenenbaum, J.B., Torralba, A.: Learning particle
dynamics for manipulating rigid bodies, deformable objects, and fluids. In: 7th
International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019 (2019)

13. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
Transformer: Hierarchical vision transformer using shifted windows. CoRR (2021)

14. Luo, R., Shao, T., Wang, H., Xu, W., Chen, X., Zhou, K., Yang, Y.: NNWarp:
Neural network-based nonlinear deformation. IEEE Trans. Vis. Comput. Graph.
(2020)

15. Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. (2013)



16 Y. Shao et al.

16. Monaghan, J.J.: Smoothed particle hydrodynamics. Annual review of astronomy
and astrophysics (1992)

17. Mrowca, D., Zhuang, C., Wang, E., Haber, N., Fei-Fei, L., Tenenbaum, J., Yamins,
D.L.: Flexible neural representation for physics prediction. In: Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada
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