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Abstract. We study the challenging problem of recovering detailed mo-
tion from a single motion-blurred image. Existing solutions to this prob-
lem estimate a single image sequence without considering the motion
ambiguity for each region. Therefore, the results tend to converge to the
mean of the multi-modal possibilities. In this paper, we explicitly ac-
count for such motion ambiguity, allowing us to generate multiple plau-
sible solutions all in sharp detail. The key idea is to introduce a motion
guidance representation, which is a compact quantization of 2D optical
flow with only four discrete motion directions. Conditioned on the mo-
tion guidance, the blur decomposition is led to a specific, unambiguous
solution by using a novel two-stage decomposition network. We propose
a unified framework for blur decomposition, which supports various in-
terfaces for generating our motion guidance, including human input, mo-
tion information from adjacent video frames, and learning from a video
dataset. Extensive experiments on synthesized datasets and real-world
data show that the proposed framework is qualitatively and quantita-
tively superior to previous methods, and also offers the merit of pro-
ducing physically plausible and diverse solutions. Code is available at
https://github.com/zzh-tech/Animation-from-Blur.
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1 Introduction

Motion blur appears in an image when the recorded scene undergoes change
during the exposure period of the camera. Although such blur may impart a dy-
namic quality to a photograph, it is often desirable to invert this blur to produce
a sharper image with clearer visual detail. Conventionally, this deblurring task
is treated as a one-to-one mapping problem, taking a motion blurred image as
input and producing a single output image corresponding to a single time instant
during the exposure. Recently, attention has been drawn to a more challenging
problem of extracting an image sequence [11] instead, where the images corre-
spond to multiple time instances that span the exposure period, thus forming a
short video clip from the blurred motion.

https://github.com/zzh-tech/Animation-from-Blur
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Fig. 1: This paper studies the challenging problem of recovering the sharp im-
age sequence from blurry input caused by relative motion. We first identify the
fundamental directional motion ambiguity in this problem, which prevents the
network to learn effectively. In order to solve this ambiguity, we propose to use
motion as a guidance for conditional blur decomposition. Our approach demon-
strates strong performance for recovering sharp visual details in motions.

Blur decomposition from a single blurry image faces the fundamental prob-
lem of motion ambiguity [27]. Each independent and uniform motion blurred
region in an image can correspond to either a forward or a backward motion se-
quence, both of which are plausible without additional knowledge. With multiple
motion blurred regions in an image, the number of potential solutions increases
exponentially, with many that are physically infeasible. For example, in Fig. 1,
there exists multiple human dance movements that can correspond to the same
observed blurry image, since the movement of each limb of the dancer can be
independent. However, existing methods for blur decomposition are designed
to predict a single solution among them. Moreover, this directional ambiguity
brings instability to the training process, especially when the motion pattern
is complex. As a result, this ambiguity, when left unaddressed as in current
methods, would lead to poorly diversified and low-quality results.

In this work, we introduce a motion guidance representation to tackle the in-
herent directional motion ambiguity. The motion guidance is an optical flow rep-
resentation quantized into four major quadrant directions, describing the motion
field only roughly. Given the input blurry image, conditioned on the compact
motion guidance, the blur decomposition now becomes a nearly deterministic
one-to-one mapping problem without directional ambiguity. Empirically, we find
that the decomposition network shows significantly better training convergence
with this conditioning on an additional guidance input.

Given the blurry image and additional motion guidance as inputs, we propose
a two-stage blur decomposition network to predict the image sequence. The first
stage expands the blurry image into an image sequence based on the motion
guidance, and the second stage refines the visual details in a residual fashion
to generate high-quality images. Our unified framework supports various inter-
faces for motion guidance acquisition: 1) Through a guidance predictor network
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learned from a dataset. The guidance predictor network is a VAE-GAN [18,44]
which learns a multi-modal distribution over plausible guidances. During infer-
ence, given an input blurry image together with sampled noises, the predictor can
produce multiple guidance maps. 2) By additional information of dense optical
flow computed from temporal frames. When the blurry image input is captured
and sampled from a video sequence. The optical flow field between the blurry
input and its adjacent frame can be used to compute the motion guidance. This
motion guidance reflects the actual motion direction. 3) Through user input.
Since the guidance is simple and compact, it can be annotated by outlining the
region contours and their motion directions interactively.

To train our model, we synthesize blurry images from high speed videos fol-
lowing the pipeline of REDS [22]. Specifically, we validate the performance of our
model on human dance videos from Aist++ [20] which only contain motion blur
caused by human movement from a static camera, and general scene videos (GO-
PRO [23], DVD [31]), which are dominated by camera motion. Our approach
provides a significant qualitative and quantitative improvement over previous
methods by introducing a novel motion guidance representation to address the
fundamental directional ambiguity in blur decomposition. Furthermore, due to
the compactness of motion guidance representation, our unified framework may
only need to be trained once, while supporting various decomposition scenar-
ios under different modalities. The motion guidance obtained through different
interfaces and their corresponding decomposition results reflect physically plau-
sible and diverse solutions from our multi-modal framework.

2 Related Works

In this section, we review the related literature on image and video deblurring,
blur decomposition, as well as multi-modal image translation.

2.1 Deblurring

Deblurring refers to the task of estimating a sharp image from a blurry input,
where the blur is often caused by scene or camera motion. Traditional deblur-
ring methods model the blur as a blur kernel operating on a sharp image via
a convolution operation. A number of useful priors have been proposed to infer
the latent sharp image and the corresponding blur kernel, such as total vari-
ation [3], hyper-Laplacian [15], image sparsity [19], and l0-norm gradient [36].
Recently, image and video deblurring has benefited from the advancement of
deep convolution neural networks (CNNs). A coarse-to-fine pyramid CNN struc-
ture is widely used for the single-image deblurring task and achieves impressive
performance [23,32,38]. Also, generative adversarial networks (GANs) have been
adopted to improve the perceptual quality of deblurring results [16,17]. Tempo-
ral dependency across adjacent frames is another source of information which
could be utilized to recover the sharp image [31,34]. Recurrent architectures are
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shown be effective at exploiting such temporal information [13,42,24,41]. Exten-
sive studies in these works demonstrate that deep neural networks are able to
approximate blur kernels well in an implicit way.

2.2 Blur Decomposition

Blur decomposition attempts to recover the full image sequence from a blurry
input caused by object and camera motion during the exposure time. [11] are
the first to tackle this problem and propose a pairwise order-invariant loss to
improve convergence in training. [27] present a method that extracts a motion
representation from the blurry image through self-supervised learning, and then
feeds it into a recurrent video decoder to generate a sharp image sequence. [2]
utilize an encoder-decoder structure with a spatial transformer network to esti-
mate the middle frame and other frames simultaneously with a transformation
consistency loss. Assuming that the background is known, DeFMO [28] embeds
a blurred object into a latent space, from which it is rendered into an image
sequence that is constrained to be sharp, time-consistent, and independent of
the background.

When the input is a blurry video, [10] design a cascade scheme, i.e., deblur-
ring followed by interpolation, to tackle the problem. To avoid errors introduced
in the first stage, Shen et al. propose BIN [29] with a pyramid module and an
inter-pyramid recurrent module to jointly estimate the latent sharp sequence.
[1] achieve blurry video decomposition by first estimating the optical flow and
then predicting the latent sequence by warping the decoded features. In ad-
dition, methods for blur decomposition also consider exploiting high-frequency
temporal information from event cameras [25,21].

None of the existing methods address the fundamental ambiguity that exists
with motion directions. We are the first to address this by conditioning the
decomposition process via a novel motion guidance approach. We also design a
flexible blur decomposition network, which can produce diverse decomposition
results using guidance from the proposed interfaces for different modalities.

2.3 Image-to-Image/Video Translation

Our work is related to image-to-image translation networks [9] with applications
for image synthesis [26] and style transfer [43]. GANs [6,12] and VAEs [14] are
two popular approaches for training generative models. Both models can easily
be conditioned by feeding additional inputs, such as in conditional VAE [30]
and infoGAN [4]. Blur decomposition can be formulated as a similar image-
to-image translation problem. However, the inherent motion ambiguity in the
blurry image prevents the model from converging to a single optimal solution.
We thus introduce a new motion guidance representation to disambiguate the
motion directions.

Multi-modal image translation is a promising direction to generate a distri-
bution of results given a single input. Approaches along this direction combine
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VAE and GAN, so that stochastic variables in VAE could sample from a dis-
tribution, while GAN is used to encourage realistic generations. Notable works
include VAE-GAN [18] and BicycleGAN [44]. Our guidance predictor follows
VAE-GAN [18] to generate multi-modal motion guidance. We note that this
technical element is not among the contributions of our paper.

Learning to animate a static image is a fascinating application. Learning-
based methods either predict the motion field [7,5] which is later used to generate
videos, or directly predict the next frames [39,37]. Our work focuses on animating
a specific kind of input image with motion blur, which is physically informative
to recover the image sequence.

3 Methodology

The Blur Decomposition Problem. A blurred image can be considered as
an average of successive relatively sharp images over the exposure time

Ib =
1

T

∫ T

0

Itdt, (1)

which can be approximately expressed in the following discrete form when T is
large enough, i.e., I1 · · · IT is a high-frame-rate sequence

1

T
(I1 + ...+ IT ) = Ib. (2)

Note that this image averaging process is simulated in an approximately linear
space through applying inverse gamma calibration to RGB images [23,22]. Our
goal is to invert this blurring process to estimate a finite sequence of sharp images
which are uniformly distributed over the exposure time

Ib
D7−→ I = {It, t ∈ 1, · · ·T}. (3)

This is a highly ill-posed problem because given the blurry image Ib, there are
infinitely many solutions per pixel (u, v) among the sharp images if these sharp
images are treated as independent

1

T
(I1(u, v) + ...+ IT (u, v)) = Ib(u, v). (4)

However, assuming the images exist in succession over a short period of time and
that the pixels are rarely affected by saturation and occlusions/disocclusions,
then the following holds true: the pixels in these images are highly correlated
and their dependencies can be described by the optical flow F t of a sharp image
It to its next frame It+1,

It(u, v) = It+1(F t(u, v)). (5)

Supposing that we are given the optical flow fields for all frames in the target
sequence F = {F t, t ∈ 1, · · ·T − 1}, Equations 4 and 5 form a linear system
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Fig. 2: Architecture of our motion guided blur decomposition network.
It consists of two successive stages. The first stage S1 concatenates the blurry
image Ib and motion guidance G as input and outputs a rough image sequence.
The second stage S2 then refines the visual details in a residual fashion.

which can be solved with a unique solution. In other words, the ground truth
motions between sharp images resolve the ambiguity problem in Equation 3.
Motion-guided Decomposition.We propose to solve the decomposition prob-
lem in Equation 3 in two steps. The first step estimates the motions F during
the exposure time, e.g., by learning a motion predictor P for the blurry image,

Ib
P7−→ F̂. (6)

The second step learns a motion guided decomposition network S that takes
both the blurry image and an estimated motion guidance as input to predict the
sharp image sequence,

(Ib, F̂)
S7−→ I = {Ît, t ∈ 1, · · ·T}. (7)

As a result, the ambiguity is explicitly decoupled from the decomposition net-
work S, and only exists in the motion predictor P.

Predicting the motion guidance with frame-wise optical flow would still be
a difficult task. In practice, motion ambiguity will be complex, because the am-
biguities of the independent moving regions in the image can be arbitrarily
combined. However, we notice that the ambiguity mainly lies in the forward and
backward directions of the motions, and hence the motion guidance does not
need to be precise to frame-wise and continuous values to resolve the ambigu-
ity. We therefore propose a compact motion guidance representation to replace
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the accurate optical flow, which enables the decomposition network to adapt
to different input modalities. In the following, we describe the compact motion
guidance representation in Sec. 3.1, the blur decomposition network conditioned
on the motion guidance in Sec. 3.2, and three distinct interfaces for acquiring
the motion guidance in Sec. 3.3.

3.1 Motion Guidance Representation

Given accurate dense optical flow sequence F = {F t, t ∈ 1, · · ·T − 1}, the blur
decomposition problem can be solved without ambiguity. However, dense optical
flow sequence is difficult to obtain and to predict accurately, and hence it may
not be an ideal representation as a guidance.

We notice that the ambiguity for blur decomposition is in the motion direc-
tions. For example, if F = {F 1, ..., FT−1} is one possible motion of the blurry
image Ib and the corresponding sharp image sequence is I = {I1, ..., IT }, then
there also exists another reverse motion Fbac = {FT−1

bac , ..., F 1
bac} with the cor-

responding sharp image sequence Iinv = {IT , ..., I1} which leads to the same
blurry image Ib, where F t

bac is the backward optical flow between It and It+1.
Providing a crude motion direction may be sufficient to resolve the ambiguity.

Motivated by this observation, we design a compact guidance representation
by motion quantization. We first assume that the motion directions within the
exposure time do not change abruptly. This is generally true when the shutter
speed is not extremely slow compared with object motion. We thus use the ag-
gregated flow to represent the motion pattern for the full sequence F̄ =

∑T
1 F t.

We further quantize the aggregated flow into four quadrant directions and an
additional motionless class which takes flows below a certain magnitude. Empiri-
cally, we find four quadrant directions to be adequate for disambiguating motion
directions. We denote the motion guidance as G.

3.2 Motion Guided Blur Decomposition Network

Given the blurry image and the motion guidance, the sharp image sequence is
predicted via a blur decomposition network S. Once the model is trained, it
can be used to decompose a blurry image into different sharp image sequences
simply by providing it with the corresponding motion guidance. In this section,
we illustrate the model architecture and training loss in detail.

Training the network requires a dataset of triplet samples (Ib, G, I), consisting
of the blurry image Ib, the ground truth sharp image sequence I, and motion
guidanceG derived from I. We follow the common practice [23,22] of synthesizing
a blurry image by accumulating sharp images over time according to Equation 2,
which is implemented in linear space through inverse gamma calibration. We use
a off-the-shelf optical flow estimator [33] for deriving F and the guidance G.

Fig. 2 illustrates our two-stage workflow of S. The first stage estimates a
rough dynamic image sequence, and the second stage refines the visual details in
a residual fashion. Both networks adopt a similar encoder-decoder architecture.
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Fig. 3: Motion guidance acquisition. We represent motion guidance as a
quantized motion vector into 4 quadrant directions. Due to its compactness, the
guidance could be obtained from a network, videos or user annotations.

The architecture details can be found in the supplementary materials. The two-
stage blur decomposition network outputs the sharp image sequence prediction
Î. We adopt commonly used L2 loss function for supervising the decomposition,

L2 = ∥I− Î∥22. (8)

3.3 Motion Guidance Acquisition

We provide three interfaces to acquire the motion guidance: learning to predict
the motion guidance, motion from video, and user input, as illustrated in Fig. 3.
Multi-modal Motion Prediction Network. The directional ambiguity now
exists in the motion guidance representation. To account for the ambiguity, we
train a multi-modal network to generate multiple physically plausible guidances
given a blurry image. We follow the framework of cVAE-GAN [30,18] for multi-
modal image translation as shown in Fig. 4.

The guidance prediction network comprises an encoder PE and a generator
PG. The encoder PE converts the ground truth guidance into a latent stochastic
variable by z = PE(G), and the generator predicts the guidance given the latent
code and the blurry input Ĝ = PG(z, Ib). The latent variable z is considered
to follow a Gaussian distribution N (0, 1), and this stochastic variable is used to
model the directional distribution that exists in the motion space. At the testing
phase, multi-modal motion predictions can be generated by randomly sampling
the latent vector z from a Gaussian distribution.

The overall network is trained with a combination of a GAN loss LGAN on the
guidance predictions, a VAE loss LVAE, and a Kullback-Leibler (KL) divergence
loss LKL for the stochastic variable z as in [44],

Lguidance =λ1LGAN(PE ,PG)

+λ2LVAE(PE ,PG) + λ3LKL(z||N (0, 1)),
(9)

where λ1, λ2, λ3 are mixing coefficients for the losses. The architecture details
can be found in the supplementary materials.
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Fig. 4: Framework of the multi-modal motion guidance prediction net-
work. We mainly follow the cVAE-GAN [30,18], and adapt it to our problem to
generate multiple physically plausible guidances from a blurry image.

Motion from Video. We assume that the motion direction does not change
abruptly in a short time. Thus, the motion direction in the blurry image can be
approximated by the motion to the adjacent frames, if a video is provided. Hence,
our method can be directly applied to video deblurring without any modification.
In the experiment, our method is also compared with the state-of-the-art video
deblurring methods and shows better performance.
Human Annotation. The compact quantized motion guidance provides a
friendly interface to our blur decomposition network. Given a blurry image,
the user can generate multiple plausible sharp video clips simply by drawing the
outlines of the blurry regions and arbitrarily specifying their motion directions.

4 Experiments

We show the details of the used datasets in Sec. 4.1, single image and video
decomposition results in Sec. 4.2 and Sec. 4.3, real-world evaluation in Sec. 4.4,
guidance robustness analysis in Sec. 4.5, as well as ablation study in Sec. 4.6.

4.1 Datasets

Existing dataset for blur decomposition [29] introduces 1/3 temporal overlaps
between adjacent blurred frames. This violates the actual blur occurred in real
world. We thus create datasets by our own where blurry frames have almost no
temporal overlaps. One of our datasets for general scenes (GenBlur) consists of
high-fps videos used by related works [11,27], but with a better pipeline [22] to
simulate the formation of blur.
GenBlur. We synthesize the GenBlur dataset using high-frame-rate (240 fps)
videos from GOPRO [23], DVD [31], and videos collected by ourselves. To sup-
press noise and video compression artifact [24], the image resolution is uniformly
down-sampled to 960×540. We follow a widely used blur synthesis technique pro-
posed in [22], that first employs an off-the-shelf CNN [8] to interpolate frames
into a much higher fps (240 fps → 7680 fps) to avoid unnatural spikes or steps in
the blurred trajectory [35]. In the interpolated videos, sets of 128 frames (non-
overlapping) are averaged in linear space through inverse gamma calibration to
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Fig. 5: Qualitative comparison with single image decomposition base-
line method [11]. Given a blurry image, our method can generate multiple
physically plausible motion guidance and recover distinct sharp image sequences
based on each motion guidance. The baseline Jin et al. fails, resulting in a se-
quence with little motion. Please pay attention to the motion on the hands of
the left dancer and the legs of the right dancer.

synthesize blurred images. Instead of using all the 128 frames as ground truth
clear images, we evenly sample 7 images among them to keep consistent with
the previous work [11]. There are 161 and 31 videos for the train and test set,
respectively. This dataset consists mainly of urban scenes, and the motion is
dominated by camera ego-motion.

B-Aist++. The problem arising from directional ambiguity is particularly se-
vere when there are multiple independent motions in the image. We thus syn-
thesize another dataset specifically to highlight this issue by using videos from
a dance dataset Aist++ [20] which contains complex human body movements
by professional dancers. We use the same pipeline as for GenBlur to synthesize
blurry images and corresponding sharp image sequences. The synthesized blurry
dataset is denoted as B-Aist++. There are 73 and 32 videos for the train and
test set. The images are in resolution of 960×720. This dataset contains complex
human motion and the camera is stationary.

4.2 Blurry Image Decomposition

Qualitative Evaluation. We qualitatively compare our result with the state-
of-the-art single image based blurry decomposition method [11] in Fig. 5. B-
Aist++ is used for comparison because of its complex directional ambiguities.
In the second and third rows, we demonstrate diversity in our blur decomposition
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Table 1: Quantitative evaluation of single blurry image decomposition.
For our method, we predict multiple motion guidance from our guidance pre-
dictor network. P# denotes we evaluate # number of plausible decomposition
results for each input, and choose the best case. The results of Jin et al. [11]
represent the best performance calculated as using either the forward or reverse
outputs, following the original paper. Our approach outperforms Jin et al. [11]
by a large margin even with a single sampling.

Dataset B-Aist++ GenBlur
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Jin et al. [11] 17.01 0.540 0.192 20.88 0.621 0.283
Ours (P1) 19.97 0.860 0.089 23.41 0.737 0.267
Ours (P3) 22.44 0.898 0.068 23.56 0.740 0.263
Ours (P5) 23.49 0.911 0.060 23.61 0.741 0.260

results through the use of different motion guidance sampled from our motion
predictor P. Ground-truth is presented in the last row.

Existing methods such as [11] are unable to resolve the directional ambiguity
in motion blur. For example, for the blur in the second dancer’s legs, they cannot
determine whether the legs are being spread out or drawn in. Consequently, in
the case of data with high directional ambiguity such as B-Aist++, the mov-
ing range of the generated sharp frames is limited. In contrast, our multi-modal
method incorporates directional guidance to remove ambiguity, leading to mul-
tiple coherent natural motions that look physically plausible. To better perceive
the temporal variation in the decomposition results, we strongly recommend the
reader to check out the videos in our supplementary materials.
Quantitative Evaluation. We report quantitative comparison results on B-
Aist++ and GenBlur in Table 1. Following common practice, PSNR, SSIM and
LPIPS [40] are used as evaluation metrics. Our method can generate multiple
decomposition results by sampling multiple motion guidances from the motion
predictor P. In the table, P# denotes that # motion guidances are sampled from
the predictor and the best result among the samples is reported. It can be seen
that our method outperforms Jin et al. [11] by a large margin and more samples
leads to better best results.

4.3 Blurry Video Decomposition

Qualitative Evaluation. As explained in Sec. 3.3, our method can be directly
applied to video based decomposition without modification. The motion guid-
ance used for our decomposition network is quantized from the optical flow
between adjacent frames.

Fig. 6 presents a visual comparison between our result and the state-of-the-
art video-based method BIN [29] on general scenes (GenBlur). Our decomposi-
tion results surpass those of the video-based model, with much clearer details.
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Fig. 6: Qualitative comparison with blurry video decomposition base-
line method BIN [29]. Our approach uses the guidance calculated from the
input video itself. For close up investigation, our method recovers much sharper
visual details than the baseline method, e.g., the text in the blurry input.

Table 2: Quantitative evaluation of blurry video decomposition. The
motion guidance for our method is obtained from the optical flow in the input
blurry video. Our method outperforms the baseline BIN [29] by a large margin
of 1.16 dB and 2.22 dB absolute PSNR on B-AIST++ and GenBlur respectively.

Dataset B-Aist++ GenBlur
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

BIN [29] 22.84 0.903 0.068 24.82 0.805 0.157
Ours (guidance from video) 24.03 0.911 0.067 27.04 0.858 0.122

It is worth noting that since the adjacent frames themselves are blurred, the
estimated optical flows are not accurate. However, due to the effective direction
augmentation and the need for only coarse directional guidance, the learned de-
composition network is robust and effective. Also, please see the videos in our
supplementary for better perception.
Quantitative Evaluation. When comparing with the video-based method
BIN [29], we use motion guidance estimated from adjacent frames using the off-
the-shelf flow estimator [33], denoted as vid. in Table. 2. Our method is clearly
superior to [29] in terms of all metrics.

4.4 Real-world Evaluation

We further captured real-world blurry image for validating the generalization
ability of the proposed method. Because the blurry image is captured in real
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Fig. 7: Results on real-world captured blurry image. We manually provide
the motion guidance and recover the image sequence using our decomposition
network. Although trained on synthetic data, our model successfully generalizes
on real-world data. Please notice the relative position between the door frame
and the legs of the girl in the bottom.

world, no ground truth sharp image sequences can be used for quantitative eval-
uation. We display the visual results on real-world data when a user provides
directional guidance in Fig. 7. The results demonstrate that our method can gen-
eralize well on real data. We also show real-world evaluations with the guidance
prediction network in the appendix.

4.5 Robustness of motion guidance

The errors of motion guidance may come from two sources: one by incorrect
prediction or human annotation, one by optical flow quantization. For the first
case, the model may tolerate guidance errors in the sharp regions. We demon-
strate this by showing results using fit, dilated, and eroded guidance in Fig. 8.
The decomposition model may identify the pixels are non-blurry and preserve
the original details, no matter what guidance prediction is given (dilate result).
The model cannot recover a blurry region and may introduce artifacts if it is not
provided with a meaningful guidance (erode result). For the second case, please
refer to the ablation experiment in the supplementary material, which shows
that quantization into 4 bins is sufficient to achieve good performance.

4.6 Ablation Studies

We present ablation studies on motion guidance and the multi-stage architecture.
The experiments are conducted on B-Aist++ and the metrics are calculated us-
ing ground-truth motion guidance. Based on Fig. 9, introducing motion guidance
in the training stage greatly improves convergence by eliminating directional
ambiguity. Table 3 shows that introducing a two-stage coarse-and-refinement
pipeline while maintaining the model size may bring about 1 dB gain.
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Fig. 8: The influence of incorrect prediction or human annotation. Our
approach may tolerate guidance errors in the sharp regions.
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Fig. 9: Training curves for the de-
composition network with and
without motion guidance.With ex-
tra guidance input to disambiguate the
motion direction, the network is able
to fit to the data a lot easier.

Table 3: Ablation studies on de-
composition network architec-
ture. We ablate the effectiveness of re-
finement work by studying 1-stage es-
timation and 2-stage estimation. The
refinement network significantly im-
proves the performance. 1-stage and
2-stage models are set to similar sizes
by adjusting channel numbers, for fair
comparison.

Method PSNR ↑ SSIM ↑ LPIPS ↓

1-stage 24.47 0.912 0.074
2-stage 25.45 0.933 0.054

5 Conclusions

In this work, we address the problem of recovering a sharp motion sequence from
a motion-blurred image. We bring to light the issue of directional ambiguity and
propose the first solution to this challenging problem by introducing motion
guidance to train networks. The proposed method can adapt to blurry input
of different modalities by using the corresponding interfaces including a multi-
modal prediction network, motion from video, and user annotation. The motion
sequences generated by our method are superior to existing methods in terms of
quality and diversity.
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