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In this supplementary material, we clarify the network architecture in Sec. 1.
And we will introduce the training loss of RRSR in Sec. 2. Then, we discuss
several reference-aware feature selection mechanisms in Sec. 3. Additionally, we
conduct a detailed ablation study on our reciprocal target-reference reconstruc-
tion (RTRR) in Sec. 4. We also describe the computational efficiency of our
RRSR in Sec. 5. Finally, we show more qualitative results in Sec. 6.

1 Network Architecture

In our framework, we improve C2-Matching by replacing its feature alignment
procedure by our progressive FAS, which contains our newly added RASs and
MDCNs. Meanwhile, the CCN(Contrastive Correspondence Network), CE(Content
Extractor), VGG, etc remain unchanged. We further reduce the number of res-
blocks to 5 to save computation budget for RASs and MDCNs. The number of
learnable filters in each FAS module is 16.

2 Loss Functions

Our overall objective is formulated as

L = λrecLrec + λRTRRLRTRR + λperLper + λadvLadv . (1)

Reconstruction loss. We adopt ℓ1-norm to calculate loss between the ground-
truth image XHR and the output image XSR , as

Lrec = ∥XHR −XSR∥1, XSR = RefSR(XLR, YHR) . (2)

Reciprocal loss. As elaborated in the main body, we derive the loss function
for reciprocal learning:

LRTRR = ∥YP
HR − YP

SR∥1, YP
SR = RefSR(YP

LR, XSR) , (3)
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where ∗P denote the warped version.
Perceptual loss. Our perceptual loss is defined as

Lper = ∥ϕ(XHR)− ϕ(XSR)∥F , (4)

where ϕ indicates the features obtained at the ReLU5 1 layer of the pretrained
VGG19 model [7], and ∥ · ∥F denotes the Frobenius norm.
Adversarial loss. Our adversarial loss Ladv is expressed as

LG = −E[D(XSR)] , (5)

LD = E[D(XSR)]− E[D(XHR)] + λpE[(∥∇X̂D(X̂)∥2 − 1)2] , (6)

where D(·) denotes the discriminator. The last term is a penalization term of
gradient norm and X̂ is the random convex combination of XSR and XHR.

3 Comparison of Different Reference-aware Feature
Selection Mechanisms

AdaIN [2] was proposed to align content features with style features in terms
of feature statistics. For RefSR, it can be used to remap the distribution of
reference features to that of LR features. Based on AdaIN, MASA [4] designed a
spatial adaption module (SAM) by adding learnable parameters to adapt local
feature differences. Nevertheless, as shown in Table 1, both AdaIN and SAM
improve C2-Matching only a bit. We observe that LR features and reference
features are extracted by a shared network in MASA while they are processed by
totally different networks (i.e., stacks of residual blocks and the shallow layers
of VGG [7]) in C2-Matching. Feature alignment methods based on statistics
perform not well for the latter case. On the contrary, our RAS has a 0.09dB
improvement with negligible extra overhead in FLOPs.

Table 1. Ablation study on our RAS

Model C2-Matching C2-Matching+AdaIN [2] C2-Matching+SAM [4] C2-Matching+RAS (ours)

PSNR(dB)↑ 28.40 28.40 28.41 28.49

GFLOPs 59.0 59.0 63.9 59.0

4 Further Analysis on Reciprocal Learning Framework

To investigate the benefits introduced by our reciprocal target-reference recon-
struction (RTRR), we conduct an ablation study in Table 2. Model a is the
base model without RTRR, while other models apply RTRR. Model b recon-
structs the original references, and Model c-g reconstruct the references with
different perturbation ranges. It can be observed from Table 2 that Model b
suffers a significant performance drop of 1.07 dB in PSNR. In this way, reference
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reconstruction is de facto self-reconstruction that takes references as inputs and
outputs references, which goes against target reconstruction (training collapse).
With perturbation range of [-5, 5], Model c gets inferior performance, because
YP
HR and YHR are very similar, the network tends to reach a local optimum: mak-

ing YP
SR as close to YHR as possible instead of YP

HR , as this is easily achieved
by letting XSR retain more of YHR’s information. We next try [-10, -5] ∪ [5,
10] and [-20, -6] ∪ [6, 20] to exclude small perturbations and found the results
are comparable. What’s more, we try the case of [-40, -5] ∪ [5, 40], the result
is 0.04dB worse than that of [-20, -5] ∪ [5, 20]. We think that much larger per-
spective transformation makes YP and Y not so similar in spatial details, such
that XSR cannot provide much reference information for reconstructing details
of YP

LR, then the gain of reciprocal learning is discounted.

Table 2. Ablation study on reciprocal learning framework.

Model RTRR Geometric perturbation range PSNR(dB)↑
a 28.70
b ✓ No perspective transformation 27.63
c ✓ [-5, 5] 28.22
d ✓ [-10, -5] ∪ [5, 10] 28.81
e ✓ [-20, -5] ∪ [5, 20] 28.83
f ✓ [-20, -6] ∪ [6, 20] 28.84
g ✓ [-40, -5] ∪ [5, 40] 28.79

5 Computational Efficiency

We compare the proposed RRSR against SISR methods and RefSR methods
in terms of computational efficiency. For SISR methods, we include RCAN [12]
and NLSN [6]. For RefSR methods, SRNTT [13], TTSR [10], MASA [4], and
C2-Matching [3] are included. The computational complexity is calculated for
recovering a 160 × 160 × 3 image under 4× SR setting. Our RRSR achieves
a PSNR of 28.83 dB at the cost of 81.7 GFLOPs. For a fair comparison, we
build a small variant of RRSR, dubbed RRSR-S, which uses the proposed FAS
module for two (three in RRSR) times at the 2× and 4× scales. Table 3 reports
the computational cost and the performances. Though our RRSR-S has lower
computational cost than C2-Matching [3], yet it performs significantly better.

Table 3. Efficiency and performance comparisons.

Model RCAN [12] NLSN [6] SRNTT [13] TTSR [10] MASA [4] C2-Matching [3] RRSR-S RRSR

GFLOPs 29.0 138.8 19.7 32.8 24.2 59.0 57.4 81.7

PSNR↑ 26.06 26.53 26.24 27.09 27.54 28.24 28.75 28.83
SSIM↑ 0.769 0.784 0.784 0.804 0.814 0.841 0.855 0.856
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6 More Visual Comparisons

In this section, we provide more visual results among the proposed RRSR and
the current top-performing methods, such as ESRGAN [9], RankSRGAN [11],
TTSR [10], MASA [4], and C2-Matching [3]. Comparisons on the testing set
of CUFED5 [13] are shown in Fig. 1 and Fig. 2. Comparisons on Sun80 [8] and
Urban100 [1] are shown in Fig. 3, and Manga109 [5] and WR-SR [3] are shown in
Fig. 4. These results indicate that our RRSR can restore more realistic textures.
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Input LR ESRGAN [9] RankSRGAN [11] TTSR [10]

Reference HR MASA [4] C2-Matching [3] Ours

Fig. 1. Comparisons on the testing set of CUFED5 [13]. (part 1)
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Input LR ESRGAN [9] RankSRGAN [11] TTSR [10]

Reference HR MASA [4] C2-Matching [3] Ours

Fig. 2. Comparisons on the testing set of CUFED5 [13]. (part 2)
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Input LR ESRGAN [9] RankSRGAN [11] TTSR [10]

Reference HR MASA [4] C2-Matching [3] Ours

Fig. 3. Comparisons on Sun80 [8] (the top four examples) and Urban100 [1] (the bot-
tom four examples).
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Input LR ESRGAN [9] RankSRGAN [11] TTSR [10]

Reference HR MASA [4] C2-Matching [3] Ours

Fig. 4. Comparisons on Manga109 [5] (the top four examples) and WR-SR [3] (the
bottom four examples).


