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Abstract. Reference-based image super-resolution (RefSR) is a promis-
ing SR branch and has shown great potential in overcoming the limita-
tions of single image super-resolution. While previous state-of-the-art
RefSR methods mainly focus on improving the efficacy and robustness
of reference feature transfer, it is generally overlooked that a well re-
constructed SR image should enable better SR reconstruction for its
similar LR images when it is referred to as. Therefore, in this work, we
propose a reciprocal learning framework that can appropriately leverage
such a fact to reinforce the learning of a RefSR network. Besides, we
deliberately design a progressive feature alignment and selection mod-
ule for further improving the RefSR task. The newly proposed module
aligns reference-input images at multi-scale feature spaces and performs
reference-aware feature selection in a progressive manner, thus more pre-
cise reference features can be transferred into the input features and
the network capability is enhanced. Our reciprocal learning paradigm
is model-agnostic and it can be applied to arbitrary RefSR models. We
empirically show that multiple recent state-of-the-art RefSR models can
be consistently improved with our reciprocal learning paradigm. Further-
more, our proposed model together with the reciprocal learning strategy
sets new state-of-the-art performances on multiple benchmarks.

Keywords: Reference-based Image Super-Resolution, Reciprocal Learn-
ing, Reference-Input Feature Alignment

1 Introduction

Image super-resolution (SR), which aims to reconstruct the corresponding high-
resolution (HR) image with natural and sharp details from a low-resolution (LR)
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Fig. 1. Left: Traditional RefSR. Right: Our proposed reciprocal training RefSR.

image, is an important image processing technique in computer vision. It has
broad applications in surveillance [44], medical imaging [4], and astronomy [8],
etc. With the prosperity of convolutional neural networks (CNN) [7, 29, 9], nu-
merous CNN-based SR methods [2, 17, 18, 46] are proposed, and considerable
improvements have been achieved. However, due to the inevitable information
loss of the LR images, the SR results often suffer from blurry textures or unreal-
istic artifacts. As an relaxation to this ill-posed problem, reference-based image
super-resolution (RefSR) aims to super-resolve the input LR image with an ex-
ternal HR reference image, which can be acquired from web-searching, photo
albums, private repositories, etc. In this manner, similar textures are transferred
from the reference image to provide accurate details for the reconstruction of
target HR image.

In recent years, there has been extensive research on RefSR. A general
pipeline for RefSR is as follows: (1) Search the correlated content in the ref-
erence image. (2) Align the matched patterns with the input LR features. (3)
Fuse the aligned features from reference image into input LR features and then
reconstruct target HR image. To obtain correspondences between the input im-
age and the reference image, some methods [49] directly make use of optical flow,
some [28] leverage deformable convolutional networks, and the others [48] per-
form dense patch matching. C2-Matching [15] combined dense patch matching
with modulated deformable convolution and achieved state-of-the-art perfor-
mance. MASA [20] proposed a spatial adaptation module to boost the network
robustness when there exists a large disparity in distribution. Prior research
works focused on leveraging the reference image to the largest extent to improve
reconstruction of the target HR image, while little attention is paid to whether
the reconstructed SR result can be leveraged to improve the RefSR itself.

In this paper, we introduce a novelReciprocal training strategy forReference-
based Super-Resolution (RRSR) paradigm, as shown in Fig. 1. Intuitively, if an
SR output XSR can be used as reference in turn to boost the performance of
super-resolving its similar LR images, XSR should be with clear and sharp con-
text. Therefore, unlike the previous RefSR methods, we treat the SR output of
a RefSR model as reference image and require it to assist in super-resolving a
LR variant of the original reference. With such a learning paradigm, the RefSR
model can be reinforced to be more robust. Besides the reciprocal learning frame-
work, we also propose a Feature Alignment and Selection (FAS) module for
more accurate reference feature transfer to enhance the capability of the RefSR
model. We progressively refine the reference feature alignment at different fea-
ture scales by stacking FAS multiple times. Moreover, a set of reference-aware
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learnable filters is used in FAS for learning to select the most relevant reference
features. Our model achieves state-of-the-art performance for the RefSR task.
In summary, our contributions are as follows.

– To the best of our knowledge, we are the first to introduce reciprocal learning
training strategy to RefSR task. We try this reciprocal learning training
strategy on multiple RefSR frameworks and achieve consistent performance
improvements.

– We propose a novel Feature Alignment and Selection (FAS) module for better
reference feature utilization. More specifically, we use multiple progressive
feature alignment and feature selection with reference-aware learnable filters.

– Without any bells and whistles, experiments and user studies show that our
method obtains favorable performance on several benchmarks. Specially, on
the most widely used CUFED5 [37] dataset, 0.59 dB PSNR gain is achieved
compared to prior state-of-the-art.

2 Related Work

In this section, we first briefly introduce the current mainstream research meth-
ods for single image super-resolution and reference-based image super-resolution.
Then, we discuss weight generating networks and reciprocal learning which are
related to our work.
Single Image Super-Resolution. In recent years, learning-based approaches
with deep convolutional networks achieve promising results in SISR. Dong et
al. [2] first introduced a 3-layer convolutional network to represent the image
mapping function between LR images and HR images. Ledig et al. [17] used
residual blocks which are originally designed for high-level tasks and brought
a significant reduction in reconstruction error. With elaborate analysis, lim et
al. [18] removed the batch normalization layers [12] and developed a new training
procedure to achieve better SR performance. Zhang et al. [46] and Dai et al. [1]
introduced channel attention [9] to explore inter-channel correlations. Recently,
a lot of works [19, 1, 47, 24, 23] adopted non-local attention to model long-range
feature relationships, further improving SR performance. Moreover, the PSNR-
oriented methods lead to overly-smooth textures, another branch of works aim-
ing at improving the perceptual quality have been proposed. Johnson et al. [16]
combined MSE with the perception loss based on high-level convolutional fea-
tures [29]. Generative adversarial network (GAN) [3] prior was also introduced
into SR tasks by [17] and further refined by [27, 36, 45].
Reference-based Image Super-Resolution. Different from SISR, whose only
input is an LR image, RefSR [42, 49] use an additional reference image, which
greatly improves the SR reconstruction. The RefSR methods transfer the fine
details of the external reference images to the regions with similar textures in
the input LR image, so that the SR reconstruction obtains more abundant high-
frequency components. Zhang et al. [48] performed a multi-scale feature trans-
fer by conducting local patch matching in the feature space and fusing multi-
ple swapped features to the input LR features. This enables the network with
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strong robustness even when irrelevant reference images are given. Subsequently,
TTSR [40] unfroze the parameters of VGG extractor [29] and proposed a cross-
scale feature integration module to merge multi-scale features, which enhances
the feature representation. MASA [20] designed a coarse-to-fine patch matching
scheme to reduce the computational complexity and a spatial adaption module
to boost the robustness of the network when the input and the reference differ
in color distributions.

C2-Matching [15] proposed a contrastive correspondence network to perform
scale and rotation robust matching between input images and reference images.
Although C2-Matching greatly improves the matching accuracy, there is still
room for improvement in terms of alignment. Besides, C2-Matching did not
filter and select the reference features and ignored the potential large disparity
in distributions between the LR and Ref images. We conduct a multiple times
progressive tuning at each feature scale to further improve reference feature
alignment. Besides, we design some reference-aware learnable filters to select
reference features.

Weight Generating Networks Unlike classical neural networks, where the
weight parameters are frozen after training, weight generating networks [5, 13,
21, 39] dynamically produce the weight parameters conditioned on the latent
vectors or the input. Ha et al. [5] proposed the HyperNetworks that uses an
extra network to generate the weight parameters for the main network. Instead
of learning input-agnostic weights, Jia et al. [13] and Yang et al. [39] suggested
learning different weights for different samples. Thanks to its powerful represen-
tational capability and customizability, weight generating networks have been
modified successfully for image denoising [25, 38], instance segmentation [33],
neural rendering [30] and scale-arbitrary SR [10, 34]. In this work, we extend the
idea to generate a set of reference-aware filters for reference feature selection.

Reciprocal Learning. Unlike these RefSR methods which focused on reference
feature transfer, we propose a reciprocal training strategy by using a RefSR result
image as a new reference and conducting a RefSR for the second time. Through-
out the literature of reciprocal learning [6, 31, 14, 26, 43], it generally involves a
pair of parallel learning processes, excavates the relation between them and con-
structs a learning-feedback loop, thus promoting the primal learning process. In
neural machine translation, He et al. [6] created a closed-loop, learning English-
to-French translation (source → target) versus learning French-to-English trans-
lation (target → source), and both learning processes are improved by generated
feedback signals. Similar strategies have been applied successfully to unpaired
image-to-image translation such as DualGAN [41]. More recently, Sun et al. [31]
designed two coupling networks, one predicting future human trajectories and
the other for past human trajectories, and achieved great improvement on human
trajectory prediction task by jointly optimizing two models under the reciprocal
constraint. In this paper, we make a conjecture that an ideal SR result can also
served as a new reference image and provide high-frequency information to other
similar LR images. Hence, we propose a reciprocal training strategy for RefSR.
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Fig. 2. An overview of RRSR with Reciprocal Target-Reference Reconstruction
(top) and Progressive Feature Alignment and Selection (bottom-left). By cre-
ating an extra branch that super-resolves reference LR, Reciprocal Target-Reference
Reconstruction constructs a dual task, i.e., reference → target and target → reference,
thus improving both target reconstruction and reference reconstruction. We progres-
sively refine the reference feature alignment at 2× and 4× feature scales by stacking
FAS multiple times. Moreover, a set of reference-aware learnable filters is used in FAS
for learning to select the most relevant reference features.

3 Approach

The overall architecture of the proposed method is shown in Fig. 2. Reciprocal
learning paradigm is designed to boost the training of the reference-based im-
age super-resolution network (RefSR Network). Intuitively, if a super-resolved
output is well reconstructed, it can be qualified to serve as reference image
for super-resolving the low-resolution version of the original reference image.
Therefore, in our framework, the original high-resolution reference image YHR is
leveraged to help the reconstruction of high-resolution version XSR for a given
low-resolution input XLR. In turn, we treat XSR as reference and require the
network to well reconstruct Y p

SR by super-resolving its low-resolution counterpart
Y p
LR. Note that, we did not directly super-resolve YLR, but a warped version Y p

LR

is fed into the RefSR network. Such a learning paradigm is termed as Reciprocal
Target-Reference Reconstruction (RTRR) in this paper.

Our RefSR network is largely inspired by the C2-Matching [15], meanwhile,
a novel feature alignment and selection module (FAS) is proposed and progres-
sively stacked for more accurate reference feature transformation. Specifically, a
VGG network and a context encoder (CE) are used to encode the high-resolution
reference image and the input low-resolution image, respectively. Then, a con-
trastive correspondence network (CCN) is applied for predicting the pre-offset
of input and reference at feature space. Subsequently, our proposed FAS module



6 L. Zhang, X. Li et al.

takes as input the pre-offset, input image feature, and the reference feature at
different scales to progressively transfer reference features to the input feature
space for high-resolution output reconstruction. We will present details of our
reciprocal learning paradigm and the feature alignment and selection module in
Sec. 3.1 and Sec. 3.2, respectively.

3.1 Reciprocal Target-Reference Reconstruction

Given the success of reciprocal learning in many research fields, we postulate
that RefSR would also benefit from a carefully designed reciprocal learning strat-
egy since the roles of input and reference could switch mutually. Intuitively, if
a super-resolved image is well reconstructed with clear and sharp context, it
should be suitable to serve as reference image to guide the super-resolution re-
construction of other similar LR images. Specifically, for reference-based image
super-resolution scenario, a straightforward way to compose a reciprocal learning
framework is to use the output image XSR, which is reconstructed by referring
to the original reference image YHR via a RefSR network, as reference for super-
resolving the down-sampled reference image YLR by using the RefSR a second
time to generate YSR. We adopt ℓ1 loss as the reconstruction objective, then
the two pass RefSR reconstruction and reciprocal loss to be optimized can be
represented as:

Lrec = ∥XHR −XSR∥1, XSR = RefSR(XLR, YHR), (1)

LRTRR = ∥YHR − YSR∥1, YSR = RefSR(YLR, XSR), (2)

Note that, during the two phases, the parameters of RefSR networks are shared.
However, with such straightforward configuration, the reciprocal learning

framework will collapse. That is because YHR is the input of the first RefSR
stage as reference, then the whole process combining Eq.1 and Eq.2 becomes an
auto-encoder for YHR. The auto-encoder will push the first RefSR stage to keep
XSR having as much YHR information as possible for better reconstructing YSR,
and the LRTRR drops quickly such that the capability of RefSR network is not
enhanced.

To prevent RefSR from collapsing, we introduce a simple yet effective mech-
anism for processing YHR. In the second RefSR phase, under the condition that
XSR is the reference image, we apply a random perspective transformation on
the original YLR and YHR to obtain the training image pair (YP

LR, Y
P
HR). A pro-

cess of perspective transformation is shown in Fig. 3. Because YP
SR and YHR are

quite different, the reconstruction of YP
SR will not force XSR to be same as YHR.

The revised RTRR loss then becomes as follows:

LRTRR = ∥YP
HR − YP

SR∥1, YP
SR = RefSR(YP

LR, XSR). (3)

To minimize LRTRR, Y
P
SR should be well reconstructed, which in turn de-

pends on the quality of its reference image XSR. Thus optimizing the RefSR
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Fig. 3. Illustration for perspective transformation. Given an image I and a rectangular
bounding box, we can get four new vertices by randomly perturbing the four vertices
of the box in a fixed area. Then we can use these two sets of vertices to compute an
perspective transformation matrix which is used to transfer I to Ip. Finally we crop
Ip with the original box to get a perspective transformation variant Ipcrop of Icrop.

result YP
SR at the second phase can also help optimize the first SR result XSR.

The proposed reciprocal target-reference reconstruction (RTRR) training strat-
egy is model-agnostic and can be leveraged to improve arbitrary reference-based
SR networks. We empirically show improvements of C2-Matching [15], MASA-
SR [20] and TTSR [40] by using our RTRR configuration in Sec. 4.4.

3.2 Progressive Feature Alignment and Selection

Our RefSR network is based on C2-Matching [15] considering its state-of-the-
art performance. We also propose progressive feature alignment and selection to
further improve its capability. As shown in Fig. 2, a Content Extractor is used to
extract features FXLR

from XLR. Multi-scale (1×, 2× and 4×) reference image
features F s

YHR
are extracted by a VGG extractor, where s = 1, 2, 4. A pretrained

Contrastive Correspondence Network is used to obtain the relative target off-
sets of the LR input and reference images. These offsets are used as pre-offsets
for reference feature alignment. We use the Modulated Deformable Convolution
(MDCN) in C2-Matching [15] to align the reference features. But unlike C2-
Matching [15], we propose a progressive feature alignment and selection module
(PFAS) for better aggregating information from the reference image.

First, an MDCN is used to initially align reference features F s
YHR

to LR
image features by the pre-offsets. Then the aligned reference features and the
LR features are concatenated together to get a merged feature F s

merge. In real
scenarios, there may be many differences between input and reference images in
terms of color, style, intensity, etc. Therefore, the features of the reference images
should be elaborately selected. We design a reference-aware feature selection
mechanism to selectively exploit reference features. Reference-aware information
is obtained by applying a global average pooling GAP to F s

merge. Then it is used
to generate routing weights:

(α1, α2, . . . , αK) = σ(f(GAP (F s
merge))) , (4)
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where f(·) and σ(·) denote fully-connected layer and sigmoid activation. These
routing weights are expected to combine K learnable template filters Ek, k ∈
{1, 2, ...,K} which are applied onto Fmerge to choose the features:

F s
selected = α1(E1 ∗ F s

merge) + α2(E2 ∗ F s
merge) + . . .+ αK(EK ∗ F s

merge)

= (α1E1 + α2E2 + . . .+ αKEK) ∗ F s
merge ,

(5)

where ∗ denotes convolution operation. It can be seen that it is equivalent to
predict a reference-aware filter, which is eventually used to process the F s

merge

for feature selection. Unlike static convolution, the reference-aware filter is adap-
tively conditioned on input and reference. It is demonstrated in Sec. 4.4 that our
network benefits from the reference-aware feature selection to produce better re-
sults for reference-based SR. At the last of the module, there are several residual
blocks to fuse the selected and aligned reference features with LR features. Fur-
thermore, we use the module three times at the 2× and 4× scale to progressively
refine the feature alignment and selection. In this way, the details in the LR and
reference features are enhanced and aggregated.

3.3 Loss Functions

Our overall objective is formulated as

L = λrecLrec + λRTRRLRTRR + λperLper + λadvLadv . (6)

The reconstruction loss Lrec and the reciprocal loss LRTRR have been intro-
duced in Sec. 3.1. To generate sharp and visually pleasing images, we employ
perceptual loss Lper and adversarial loss Ladv introduced in [48] to help the
training of the network.

4 Experiments

4.1 Datasets and Metrics

Following [48, 40, 28, 15], we use the training set of CUFED5 [48, 37] as our train-
ing dataset, which contains 11,781 training pairs. Each pair consists of a target
HR image and a corresponding reference HR image, both at about 160x160
resolution. We evaluate SR results on the testing set of CUFED5, Sun80 [32],
Urban100 [11], Manga109 [22] and the newly proposed WR-SR [15]. The testing
set of CUFED5 contains 126 pairs, and each consists of an HR image and five
reference images with different similarity levels based on SIFT feature match-
ing. In order to be consistent with the previous methods, we pad each reference
image to the left-top corner in each 500x500 zero image and stitch them to ob-
tain a 2500x500 image as the reference image. The Sun80 dataset contains 80
natural images, and each with 20 web-searching references. The reference im-
age is randomly selected from them. The Urban100 dataset contains 100 build-
ing images, lacking references. Because of self-similarity in the building image,
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Table 1. We report PSNR/SSIM (higher is better) of different SR methods on the
testing set of CUFED5 [48, 37], Sun80 [32], Urban100 [11], Manga109 [22], and WR-
SR [15]. Methods are grouped by SISR methods (top) and reference-based methods
(bottom). Urban100 indicated with † lacks an external reference image and all the
methods essentially degrade to be SISR methods. The best and the second best results
are shown in red and blue, respectively.

CUFED5 [48, 37] Sun80 [32] Urban100† [11] Manga109 [22] WR-SR [15]
Method PSNR↑ / SSIM↑ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑
SRCNN [2] 25.33 / 0.745 28.26 / 0.781 24.41 / 0.738 27.12 / 0.850 27.27 / 0.767
EDSR [18] 25.93 / 0.777 28.52 / 0.792 25.51 / 0.783 28.93 / 0.891 28.07 / 0.793
RCAN [46] 26.06 / 0.769 29.86 / 0.810 25.42 / 0.768 29.38 / 0.895 28.25 / 0.799
NLSN [23] 26.53 / 0.784 30.16 / 0.816 26.28 / 0.793 30.47 / 0.911 28.07 / 0.794
SRGAN [17] 24.40 / 0.702 26.76 / 0.725 24.07 / 0.729 25.12 / 0.802 26.21 / 0.728
ENet [27] 24.24 / 0.695 26.24 / 0.702 23.63 / 0.711 25.25 / 0.802 25.47 / 0.699
ESRGAN [36] 21.90 / 0.633 24.18 / 0.651 20.91 / 0.620 23.53 / 0.797 26.07 / 0.726
RankSRGAN [45] 22.31 / 0.635 25.60 / 0.667 21.47 / 0.624 25.04 / 0.803 26.15 / 0.719

CrossNet [49] 25.48 / 0.764 28.52 / 0.793 25.11 / 0.764 23.36 / 0.741 -
SRNTT [48] 25.61 / 0.764 27.59 / 0.756 25.09 / 0.774 27.54 / 0.862 26.53 / 0.745
SRNTT-rec [48] 26.24 / 0.784 28.54 / 0.793 25.50 / 0.783 28.95 / 0.885 27.59 / 0.780
TTSR [40] 25.53 / 0.765 28.59 / 0.774 24.62 / 0.747 28.70 / 0.886 26.83 / 0.762
TTSR-rec [40] 27.09 / 0.804 30.02 / 0.814 25.87 / 0.784 30.09 / 0.907 27.97 / 0.792
C2-Matching [15] 27.16 / 0.805 29.75 / 0.799 25.52 / 0.764 29.73 / 0.893 27.80 / 0.780
C2-Matching-rec [15] 28.24 / 0.841 30.18 / 0.817 26.03 / 0.785 30.47 / 0.911 28.32 / 0.801
MASA [20] 24.92 / 0.729 27.12 / 0.708 23.78 / 0.712 27.44 / 0.849 25.76 / 0.717
MASA-rec [20] 27.54 / 0.814 30.15 / 0.815 26.09 / 0.786 30.28 / 0.909 28.19 / 0.796
SSEN [28] 25.35 / 0.742 - - - -
SSEN-rec [28] 26.78 / 0.791 - - - -
DCSR [35] 25.39 / 0.733 - - - -
DCSR-rec [35] 27.30 / 0.807 - - - -
Ours 28.09 / 0.835 29.57 / 0.793 25.68 / 0.767 29.82 / 0.893 27.89 / 0.784
Ours-rec 28.83 / 0.856 30.13 / 0.816 26.21 / 0.790 30.91 / 0.913 28.41 / 0.804

the corresponding LR image is treated as the reference image. The Manga109
dataset contains 109 manga images without references. Since all the images in
Manga109 are the same category (manga cover) and some similar patterns occur
across the images, we randomly sample an HR image from the dataset as the
reference image. The WR-SR dataset, which is proposed by [15] to cover more
diverse categories, contains 80 image pairs, each target image accompanied by
a web-searching reference image. All the LR images are obtained by bicubically
downsampling the HR images with the scale factor 4×. All the results are eval-
uated in PSNR and SSIM on Y channel in the transformed YCbCr color space.

4.2 Training Details

We train our RefSR network for 255K iterations with a mini-batch size of 9, using
Adam optimizer with parameters β1 = 0.9 and β2 = 0.999. The initial learning
rate is set to 1e-4. The weight coefficients for λrec, λRTRR, λper and λadv are set
to 1, 0.4, 1e-4 and 1e-6, respectively. The perspective transformation perturba-
tion range in RTRR of the vertex is [-20, -5] and [5, 20] both horizontally and
vertically. The reason why [-5, 5] is not used because the perturbation must be
guaranteed to exceed a certain magnitude, otherwise the perturbed image YP

LR
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is too similar to YLR, which hinders the performance. The number of learnable
filters in each FAS module is 16. In order to keep the network complexity close
to C2-Matching, the number of res-blocks in a FAS is 5, and other network pa-
rameters are the same as C2-Matching. Please refer to supplementary material
for the network implementation details. The input LR patch size is 40x40, cor-
responding to a 160x160 ground-truth HR patch. During training, we augment
the training data with randomly horizontal flipping, randomly vertical flipping,
and random 90° rotation.

4.3 Comparison with State-of-the-Art Methods

Quantitative Comparison. We quantitatively compare our method with pre-
vious state-of-the-art SISR methods and reference-based SR methods. SISR
methods include SRCNN [2], EDSR [18], RCAN [46], NLSN [23], SRGAN [17],
ENet [27], ESRGAN [36], and RankSRGAN [45]. As for reference-based SR
methods, CrossNet [49], SRNTT [48], TTSR [40], SSEN [28], DCSR [35], C2-
Matching [15], and MASA [20] are included. All the reference-based methods
except CrossNet have a PSNR-oriented variant (training without GAN loss and
perceptual loss), marked with the suffix ’-rec’.

As shown in Table 1, our proposed method can outperform almost all compar-
ative methods. On the standard CUFED5 benchmark, our method shows a sig-
nificant improvement of 0.59 dB over the previous state-of-the-art C2-Matching.
On the Sun80 and Urban100 datasets, our method performs comparably to the
state-of-the-art methods. Because on the Urban100 dataset, the reference image
is the input image itself, reference-based methods have no advantage over SISR
methods. As for the Manga109 dataset, the performance of our method surpasses
the second-place candidate by a large margin of 0.44 dB. Moreover, our method
still achieves the best performance on the WR-SR dataset.

Qualitative Comparison. Fig. 4 shows some visual results for qualitative com-
parisons. We compare our method with current top-performing methods, ESR-
GAN [36], RankSRGAN [45], TTSR [40], MASA [20], and C2-Matching [15]. As
demonstrated by the examples, our method can extract the correlated informa-
tion from reference HR image and correctly transfer it to finer HR reconstruction
in both sharpness and details. As shown in the second example, our approach re-
covers a clear plausible face while other methods fail. Even though C2-Matching
achieves a comparable result, artifacts appeared in the left eye. Besides, as shown
in the bottom example, only the proposed method recovers the exact two Chinese
characters. More visual comparisons are provided in supplementary material.

Following the convention, we also conduct a user study to compare our
method with the above methods. Exactly, in each test, we present every par-
ticipant with two super-resolution results, one predicted by our method and
another predicted by one of the other methods. A total number of 50 users are
asked to compare the visual quality. As shown in Fig. 5 (a), the participants
favor our results against other state-of-the-arts methods.
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Input LR ESRGAN [36] RankSRGAN [45] TTSR [40]

Reference HR MASA [20] C2-Matching [15] Ours

Fig. 4. Comparisons on the testing set of CUFED5 [48, 37] (the first four examples),
Sun80 [32] (the fifth example), Urban100 [11] (the sixth example), Manga109 [22] (the
seventh example) and WR-SR [15] (the eighth example). Our method is able to discover
highly related content in reference HR and properly transfer it to restore sharper and
more natural textures than the prior works.

4.4 Ablation Study

In this section, we verify the effectiveness of different modules in our approach.
The testing set of CUFED5 is used for evaluating model. As shown in left of
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Fig. 5. (a) User study results. Values on Y-axis indicate the voting percentage for
preferring our method. (b) Influence of λRTRR.

the Table 2, starting with a C2-Matching baseline model, we separately evaluate
the impact of the progressive feature alignment (PFA) and the reference-aware
feature selection (RAS) in the proposed Progressive Feature Alignment and Se-
lection (PFAS). Then we demonstrate the effectiveness of the RTRR training
strategies.

Reciprocal Target-Reference Reconstruction. We introduce the RTRR
training strategies on C2-Matching [15], MASA [20] and TTSR [40], since these
methods are open-sourced. The right part of the Table 2 shows the influence
of the RTRR. It can be seen that all methods have consistent improvement,
especially a 0.24 dB in C2-Matching. We notice that the improvement of MASA
and TTSR with RTRR is slightly smaller, because the SR results of these two
methods are a little worse and RTRR relies on the SR results to do the second
time RefSR.

We study the effect of the coefficient λRTRR of the LRTRR loss. As shown
in Fig. 5 (b), The PSNR of the model with the RTRR is significantly higher
than that without. But as the λRTRR increases beyond 0.4, the results start to
drop. It’s easy to understand because in the inference phase, we use the first
time RRSR instead of the second which with the SR image XSR as a reference

Table 2. Left: Ablation study to analyze the effectiveness of each component of our
RRSR. Right: Ablation study on our reciprocal target-reference reconstruction. Aster-
isks represent our achieved results, not official results.

Model PFA RAS RTRR PSNR ↑ / SSIM↑
Baseline(C2-Matching∗) 28.40 / 0.846
Baseline+PFA ✓ 28.63 / 0.851
Baseline+PFA+RAS ✓ ✓ 28.70 / 0.853
Baseline+PFA+RAS+RTRR ✓ ✓ ✓ 28.83 / 0.856

Model RTRR PSNR ↑ / SSIM↑
C2-Matching∗ 28.40 / 0.846
C2-Matching∗+RTRR ✓ 28.64 / 0.853
MASA∗ 27.47 / 0.815
MASA∗+RTRR ✓ 27.58 / 0.818
TTSR∗ 27.03 / 0.800
TTSR∗+RTRR ✓ 27.17 / 0.804
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LR input GT patch w/o RTRRLR patch

w/ RTRRRTRR w/o PTRef patchRef image 

Fig. 6. Qualitative comparisons of ablation study on RTRR. The first column shows
the input image and the reference image. On the right side of them, we zoom in a small
region for better analysis. To take a close look, we find that a ghost of handheld fan
from reference image occurs in the SR result of a model with reciprocal learning but
no perspective transformation (RTRR w/o PT).

image. There is a data distribution gap between the SR result and a real HR
image when used as a reference, so λRTRR should not be too large.

Fig. 6 intuitively illustrates the important role of the perspective transfor-
mation used to generate the input image YP

LR for second time RRSR. The SR
result image of a model with reciprocal learning but no perspective transfor-
mation have reference image textures and the reason has been explained in Sec
3.1, these textures are used for generating SR result of the second time RRSR.
From Fig. 6 we can also see with the RRTR, the output SR images have more
clear and realistic textures. More experiments and discussions of perspective
transformation are in supplementary material.

Progressive Feature Alignment and Selection. As indicated in the left of
the Table 2, We verify the effects of the PFA which has an PSNR improvement
of 0.23dB. Fig. 7 shows the visualized feature maps after different alignments
module on 4× feature scale. It can be seen that the textures of feature maps
gradually become clear after passing through multiple alignments.

LR input Ref image SR Result 1st PFA 2nd PFA 3rd PFA

Fig. 7. Feature visualization at different PFA states on 4× feature scale. The quality
of features is improved progressively.
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Fig. 8. Qualitative comparisons of ablation study on reference-aware feature selection.
There are color and style differences between input and reference images in (a) and
(b). Models equipped with RAS can reproduce sharper textures.

Furthermore, we assess the impact of RAS and get a PSNR gain of 0.07dB.
Fig. 8 shows the the influence of the RAS module. When the reference images are
very different in color, lighting, style, etc., with the RAS module, our method can
better select reference features to generate more clear textures. Finally, we analyz
the influence of the number of learnable filters in RAS. We try the learnable
filters’ number of 8, 16 and 32, and find that compared to 16, the PSNRs of the
others decrease slightly by around 0.02 dB. We also compare RAS with feature
alignment methods based on statistics in supplementary material.

5 Conclusion

In this paper, we propose a novel reciprocal learning strategy for reference-
based image super-resolution (RefSR). In addition, in order to transfer more
accurate reference features, we design a progressive feature alignment and selec-
tion module. Extensive experimental results have demonstrated the superiority
of our proposed RefSR model against recent state-of-the-art framework named
C2-Matching. We also validate that the reciprocal learning strategy is model-
agnostic and it can be applied to improve arbitrary RefSR models. Specifically,
our reciprocal learning method consistently improves three recent state-of-the-
art RefSR frameworks. Combining the reciprocal learning and progressive fea-
ture alignment and selection strategies, we set new state-of-the-art RefSR per-
formances on multiple benchmarks.
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