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Abstract. Few-shot object detection (FSOD) targets at transferring
knowledge from known to unknown classes to detect objects of novel
classes. However, previous works ignore the model bias problem inher-
ent in the transfer learning paradigm. Such model bias causes overfitting
toward the training classes and destructs the well-learned transferable
knowledge. In this paper, we pinpoint and comprehensively investigate
the model bias problem in FSOD models and propose a simple yet ef-
fective method to address the model bias problem with the facilitation
of model calibrations in three levels: 1) Backbone calibration to preserve
the well-learned prior knowledge and relieve the model bias toward base
classes, 2) RPN calibration to rescue unlabeled objects of novel classes
and, 3) Detector calibration to prevent the model bias toward a few
training samples for novel classes. Specifically, we leverage the overlooked
classification dataset to facilitate our model calibration procedure, which
has only been used for pre-training in other related works. We validate
the effectiveness of our model calibration method on the popular Pascal
VOC and MS COCO datasets, where our method achieves very promising
performance. Codes are released at https://github.com/fanq15/FewX.

Keywords: few-shot object detection, model bias, model calibration,
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1 Introduction

Object detection [26,77,58] is a fundamental and well-studied research problem
in computer vision, which is instrumental in many down-stream vision tasks and
applications. Current deep learning based methods have achieved significant per-
formance on object detection task by leveraging abundant well-annotated train-
ing samples. However, box-level annotation for object detection is very time and
labor consuming, and it is impossible to annotate every class in the real world.
Typical object detection models [59,75,76,63] degrade when labeled training data
are scarce, and fail to detect novel classes unseen in the training set. Few-shot
object detection (FSOD) [22,8,41] targets at solving this problem. Given only
a few support samples of novel classes, FSOD model can detect objects of the
target novel classes in query images.
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Table 1. The bias source of each detection module and the performance improvement
from our calibrated model on COCO [60].

Module
Biased Model Calibrated Model

Bias Source mAP mAP

RPN Base class

11.3

11.8 (+0.5)
Backbone Base class 14.7 (+3.4)
Detector Novel samples 11.9 (+0.6)
Overall All above 15.1 (+3.8)

Few-shot object detection is an emerging task and has received considerable
attention very recently. Some works [40,95,94] detect query objects by exploring
the relationship between support and query images through a siamese network
equipped with meta learning. Other works [91,93,108] adopt a fine-tuning strat-
egy to transfer knowledge priors from base classes to novel classes which have
very few annotated samples.

Despite their success, a critical intrinsic issue of few-shot object detection
has long been neglected by these previous works: the model bias problem. The
problem is caused by the extremely unbalanced training datasets between the
base and novel classes. Specifically, to learn general and transferable knowledge,
the model is first trained on base classes with numerous annotated samples,
where the potential novel classes are labeled as background. Therefore, the model
will bias toward only recognizing base classes and reject novel classes in RPN [77].
Second, the backbone feature will bias toward the base classes under the biased
training supervision, where the feature distribution learned from the abundant
classes from the pretraining dataset [13] will be destroyed with the backbone
overfitting to the limited base classes. Third, when the detector is finetuned
on novel classes, the very few training samples cannot represent the real class
statistics. Therefore, the model will bias toward the limited training samples of
novel classes, and thus cannot generalize well to the real data distribution, which
can not solved by the class-imbalance learning methods [14,42,89,43,11].

The model bias problem has not been given adequate research attention in
previous works. There are only few common practices to prevent model bias.
A naive and common practice is to leverage a large-scale classification dataset
with numerous classes, e.g., ImageNet [13], to pretrain the model for better and
general prior knowledge to alleviate the model bias toward base classes. Granted
that the ImageNet pretraining provides better prior knowledge with the fully-
supervised [33] or self-supervised learning [31,35,56], the pertinent model still
biases to base classes because of the lack of explicit bias constraints. Fan et
al. [22] proposes another solution to further alleviate this problem, by leveraging
an object detection dataset with numerous training classes to prevent overfitting
toward base classes. While this work has significantly improved the generaliza-
tion performance on novel classes, and such improvement has validated the model
bias problem in existing FSOD mothods, this approach requires to establish a
large-scale dataset for few-shot object detection, which is expensive and hard to
generalize to other high-level few-shot tasks.
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Previous works [22,91,93] either have limited performance or require extra
annotated dataset. In this paper, we pinpoint and thoroughly investigate the
model bias problems in each detection module and present a simple but effec-
tive method to calibrate the model from three levels to address the model bias
problem: RPN calibration, detector calibration and backbone calibration. Ta-
ble 1 presents the model bias problem and the bias source for different detection
modules, and the performance improvement from our model calibration.

Specifically, RPN calibration is designed to calibrate the biased RPN by iden-
tifying potential objects of the novel classes and rectify their training labels. We
propose Uncertainty-Aware RPN (UA-RPN) to evaluate the uncertainty of each
proposal, and exploit such uncertainty to mine novel classes. The detector cali-
bration is designed to leverage the feature statistics of both base and novel classes
to generate proposal features for unbiased detector training. For the backbone
calibration, we propose to leverage the overlooked classification dataset, i.e., Im-
ageNet dataset to address the model bias problem, which is freely available but is
only used for pretraining in other FSOD works. The backbone is jointly trained
on both detection and classification datasets with pseudo box annotations to
bridge the domain gap. In summary, our paper has three contributions:

– We identify and thoroughly inspect the model bias problem of each detection
module in existing few-shot object detection methods.

– We propose to address the model bias problem from three levels via back-
bone calibration, RPN calibration and detector calibration. We leverage the
overlooked classification dataset to further facilitate our model calibration
procedure.

– We verify the effectiveness of our method on two datasets and show that our
method achieves very promising performance.

2 Related Works

Object Detection. One-stage detectors [59,75,76,63,62,102] directly predict
classes and locations of anchors densely on the extracted backbone features in
a single-shot manner. These methods [46,80,109,105,103,90,70,85] usually have
fast inference at the expense of detection performance. But the recently proposed
anchor-free algorithms [47,66,107,18,99,87,64,45] have significantly boosted the
performance with competitive running speed at the same time. Two-stage detec-
tors, which are pioneered and represented by R-CNN methods [26,77,58], first
generate candidate proposals likely to contain objects, using traditional tech-
niques [88] or a jointly optimized region proposal network (RPN) [77]. Then
these proposals are refined for accurate locations and classified into different
classes. These methods [32,83,5,6,12,55,3,81,74,69,82,34] usually have higher de-
tection performance but are slower with its two-stage pipeline. Overall, even
these methods perform excellently on multiple object detection datasets, they
can only detect objects of training classes and cannot generalize to detecting
novel classes.
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Few-Shot Learning. Recent few-shot classification methods can be roughly
classified into two approaches depending on the prior knowledge learning and
adaptation methods. The first approaches few-shot classification as a meta-
learning problem by metric-based or optimization-based methods. The metric-
based approaches [1,16,36,44,52,53] leverage a siamese network [44] to learn fea-
ture embedding of both support and query images and evaluate their relevance
using a general distance metric regardless of their categories. The optimized-
based approaches [24,4,49,27,48,2,28,79] meta-learn the learning procedures to
rapidly update models online with few examples. The second is the recently
proposed transfer-learning approach [10,25,15,71] which consists of two sepa-
rate training stages. These methods first pretrain model on base classes to ob-
tain transferable backbone features at the first stage, and then finetune high-
level layers to adapt to novel classes at the second stage. This simple transfer-
learning procedure obtains strong performance as validated by multiple recent
works [61,86,110]. Our work is inspired by the transfer learning approach, with
the idea applied in the few-shot object detection task.
Few-Shot Object Detection. Until now, few-shot learning has achieved im-
pressive progress on multiple important computer vision tasks [65,54,20,21], e.g.,
semantic segmentation [17,68,38], human motion prediction [29] and object de-
tection [8]. The FSOD methods can be classified into two approaches: meta-
learning and transfer-learning methods. The meta-learning methods adopt a
siamese network to detect novel classes in query images based on the similarity
with given support images. Fan et al. [22] proposes attention-rpn and multi-
relation detector for better similarity measurement. FR [40] proposes a meta
feature learner and a reweighting module to quickly adapt to novel classes. Other
methods improve the meta-learning based FSOD methods with different mod-
ules, e.g., joint feature embedding [94], support-query mutual guidance [101],
dense relation distillation [37] and others [51,95,94]. Transfer-learning meth-
ods first train a model on base classes followed by finetuning the model on
novel classes to gain good generalization ability. TFA [91] introduces a cosine
similarity classifier to detect novel classes. MSPR [93] proposes a multi-scale
positive sample refinement module to enrich FSOD object scales. Techniques
have been proposed to improve the transfer-learning FSOD methods, e.g., se-
mantic relation reasoning [108], hallucinator network [104], contrastive proposal
encoding [84], and others [57,50,23,98,8,41,7,72,30,92]. Our work belongs to the
transfer-learning approach. Notably, we identify the model bias problem in ex-
isting FSOD models, and propose corresponding model calibration modules to
address the bias problems so as to make the trained model generalize better on
novel classes. It is also promising to apply our method to the zero-shot task [100].

3 FSOD with Model Calibration

The few-shot object detection (FSOD) task is formally defined as following: given
two disjoint classes, base class and novel class, where the base class dataset Db

contains massive training samples for each class, whereas the novel class dataset
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Table 2. Model bias problem.

Stage 1 Stage 2

Training data Base Classes Novel Classes
Data Volume Massive Few
Biased Module Backbone & RPN Detector
Bias Toward Base classes Novel samples

Dn has very few (usually no more than 10) annotated instances per class. The
base class dataset Db has been available for model training. The novel class
dataset Dn has however been unavailable until now. FSOD targets at detect-
ing all objects of the novel classes for any given input images by transferring
knowledge learned from the base class dataset. The performance is measured by
average precision (AP) [60] of the novel classes.

Current methods usually take a two-stage training scheme:the base train-
ing stage (stage-1) is conducted on the base dataset Db to extract transferable
knowledge. The novel finetuning stage (stage-2) is conducted on the novel dataset
Dn for generalization on novel classes. Because Dn contains very few training
samples, the backbone weights are frozen, and only the detector and RPN are
trained in the novel finetuning stage. This two-stage training scheme results in a
model bias problem, as shown in Table 2. In this paper, we propose to calibrate
the FSOD model to solve the model bias problem from three levels: backbone
calibration, RPN calibration, and detector calibration, as shown in Figure 1.

3.1 Backbone Calibration

For few-shot object detection task, a common practice is to pretrain the back-
bone on a large-scale classification dataset, e.g., ImageNet [13], to obtain good
feature initialization for faster training convergence, while simultaneously pro-
viding general prior data distribution for good generalization on novel classes.
However, the separate, two-stage training of FSOD impedes the generalization
gain for novel classes, which is only finetuned in the second training stage. The
key reason is that the base classes with massive training samples significantly
change the backbone feature distribution in the first training stage. The model
is trained to fit the data distribution of the limited base classes (less than 100
classes) at the expense of losing the general distribution learned from massive
classes (at least 1000 classes) in the pretraining stage. The backbone biases to-
ward base classes, thus impeding the generalization on novel classes.

Although the base class training stage can destroy the well-learned class
distribution from pretraining, it does provide model location supervision by en-
abling novel object detection. In practice, the detection performance on novel
classes will significantly degrade if we discard the base class training stage. This
paradox motivates us to find a good solution to simultaneously preserve the well-
learned class distribution while enabling location supervision. In this paper, we
propose to achieve this by providing the backbone with an implicit feature con-
straint in the base training stage, so as to keep the well-learned data distribution
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Fig. 1. Overall network architecture. The detection image is fed into the convolu-
tional backbone which is jointly trained with classification images alongside with
pseudo boxes. The feature of detection images is then processed by RPN and UA-
RPN (uncertainty-aware RPN) to generate proposals. The UA-RPN provides the reg-
ular RPN with label rectification (LR) and prediction rectification (PR). The proposal
features generated by RoI pooling are fed to the feature memory module to generate
features for novel classes. The detector processes both the original and generated pro-
posal features and outputs object detection predictions.

covering massive classes, while enabling the object detection training under the
location supervision from base classes.

A naive solution is to jointly train the backbone on both the large-scale
classification dataset and object detection dataset to keep both of their data
properties. But we find that the classification and detection tasks are not well
compatible, where the classification task always dominates the training proce-
dure while significantly degrading the object detection performance. Therefore,
we propose to equip the classification images with pseudo box annotations to
transform the classification dataset into object detection dataset.

The classification images have a desirable property: most images are domi-
nated by the salient objects of the labeled target class. We make use this attribute
to generate pseudo boxes for target objects. We utilize a pretrained salient ob-
ject detection (SOD) model [73] to detect salient objects in classification images.
Then we remove SOD mask outliers and only keep the largest contiguous region
as the salient region, and generate corresponding pseudo box.

We jointly train the model with a weight-shared backbone on both the detec-
tion dataset and classification dataset equipped with pseudo boxes. Specifically,
for the detection branch, we keep the training setting as other FSOD methods.
For the backbone trained on the classification dataset, we use a smaller input
size to fit its original image size. In this way, the model can be trained to perform
object detection task while simultaneously keeping the data distribution learned
from massive classes of the classification dataset. Note that our backbone cali-
bration is scalable to the number of classes in the classification dataset, where
more classes will produce better data distribution and thus better detection
performance.

Our backbone calibration method significantly alleviates the backbone bias
toward limited detection classes. This is achieved through the distribution cal-
ibration from abundantly available classes of the jointly trained classification
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Fig. 2. The t-SNE visualization for feature distributions of original, biased and cali-
brated backbones.

task. To show the backbone bias problem and the effect of our backbone calibra-
tion, we use t-SNE [67] to plot the respective feature distribution of the original,
biased and calibrated backbone feature. As shown in Figure 2, for the same input
images, the feature distribution of the biased backbone suffer obvious drift from
the well-learned distribution of the original backbone. After our model calibra-
tion, the backbone feature distribution is well aligned to the original distribution
which is closer to the real data distribution.

3.2 RPN Calibration

The region proposal network (RPN) is designed to generate proposals for po-
tential objects, which is trained in a class-agnostic manner. Thus RPN is widely
regarded as a general object detection module capable of detecting arbitrary
known or unknown classes [39]. However, we find that RPN is general only for
the known training classes, with its performance significantly degrading on un-
known novel classes for the following two intrinsic reasons.

First, there are no training samples available for novel classes and thus the
RPN cannot be trained with the supervision signals of novel classes. Notwith-
standing, the RPN generalization ability on novel classes (RPN still can detect
some objects of novel classes) is derived from supervision signals of the similar
training classes, e.g., RPN trained on horse and sheep can detect zebra, but the
performance is not as satisfactory as the training classes. Second, negative su-
pervision signals on novel classes may in fact be present. Note that the training
images from RPN probably contain objects of novel classes, but they are not
labeled and therefore are regarded as background during training. This inadver-
tent ignorance can further reduce the RPN generalization ability on novel classes.
To make things worse, FSOD models further suffer from the biased RPN prob-
lem because of its two-stage training scheme, where the novel classes are totally
unlabeled in first base training stage.

We propose to calibrate the biased RPN by rectifying the labels and pre-
dictions of potential objects of novel classes. The challenge lies on the object
discovery of novel classes. We find an interesting attribute for the RPN pro-
posals of novel classes: their object scores drastically fluctuate across different



8 Qi Fan et al.

Score 1

Score M

Var

Uncertainty

Supervision

Supervision

RPN 1

RPN M

…

Label 1

Label M

Proposal

(a) RPN Proposals (b) UA-RPN ProposalsUA-RPN

Fig. 3.Uncertainty-aware RPN (UA-RPN) and visualization for proposals of the biased
RPN and our UA-RPN. The proposals are visualized with semi-transparent insets, with
the most confident proposals highlighted with solid rectangular outlines. The base and
novel classes are represented by green and red proposals respectively.

images even for objects of the same novel class, while the base classes almost
always have stable high object scores. This means proposals of novel classes has
higher prediction uncertainty compared to pure background and base classes.
On the one hand, the RPN is trained to identify class-agnostic objects irrespec-
tive of classes. On the other hand, some objects of novel classes are regarded
as background during training. This observation motivates us to leverage the
prediction uncertainty to identify objects of novel classes.

We propose uncertainty-aware RPN (UA-RPN) to rectify the RPN training
labels and predictions for RPN calibration. Our method is inspired by a widely
used uncertainty estimation method M-head [78], which models deterministic
features with a shared backbone, as well as stochastic features with multiple
different predictors, where the multiple predicted hypotheses are utilized to rep-
resent the uncertainty. Our UA-RPN extends the M-head idea to estimate the
uncertainty of proposals, as shown in Figure 3. Specifically, we first build M
separate RPN heads fm with the same architecture. Each RPN shares the same
input backbone feature x and generates one object score prediction for each
proposal. Therefore, we can obtain M object scores for each proposal.

f(x) = (f1(x), f2(x), ..., fM (x)) (1)

Then we compute the variance Var

Var(f(x)) =

∑M
m=1(fm(x)− µ)2

M − 1
(2)

of these multiple predictions for each proposal to represent the prediction un-
certainty, where µ is the mean of f(x).

With the aforementioned M prediction heads, we want their predictions to
be different for the samples of novel classes, so that the prediction variance can
be used to evaluate uncertainty. Thus, we propose the following two designs to
make UA-RPN more uncertainty-aware.

The first is training UA-RPN with diverse label assignments, where different
RPN heads have different supervision labels for the same proposal. Because we
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target at discovering novel classes from cluttered background, we only change the
labels of background proposals, where some background proposals are selectively
ignored under different label assignments. For the regular RPN, the proposals
are labeled as background when the overlap OV with the groundtruth bounding
boxes satisfies OV ∈ [0.0, 0.3] and those proposals with OV ∈ (0.3, 0.7) are ig-
nored during training. For our UA-RPN, we set different OV s for the background
label assignment of different RPN heads to improve the supervision ambiguity
and diversity. Those original background proposals which are not in accordance
to the label assignment are ignored during training.

The second design is to detach UA-RPN from the backbone gradients so that
the backbone and UA-RPN are separately optimized. This separate optimization
not only avoids the backbone feature from the ambiguity supervision of UA-
RPN, but also ensures the independent training for different heads of UA-RPN.

During training, those background proposals with large uncertainty Var > α
are regarded as potential objects of novel classes, for which we rectify their
labels to foreground. During testing, the predicted object scores of UA-RPN are
used to rectify the RPN predictions through an average operation. The above
rectifications are performed in a module ensemble manner with only a few extra
computation, thanks to the light-weight design of UA-RPN.

We analyze proposal scores of both base and novel classes to illustrate the
RPN bias problem and our RPN calibration. As shown in Figure 3, the regular
RPN fails to detect the novel class caused by its training bias, while our UA-RPN
successfully detects the object of this novel “motorbike”. Note that the proposal
of novel classes has diverse object scores from multiple heads of UA-RPN and
therefore their uncertainty (variance) is very high, while the base class proposal
has consistently high object scores with low uncertainty.

3.3 Detector Calibration

The biased detector is mainly caused by the limited training samples in the novel
finetuning stage. With numerous labeled samples in the base training stage to
represent the real data distribution of base classes, the detector can be optimized
to the unbiased base classes and generalize well in inference. However, in the
novel finetuning stage, there are only a few training samples for each novel class,
which is insufficient to represent the real data distribution of novel classes. Thus
the model can easily overfit to the biased distribution underrepresented by these
few samples.

We propose to calibrate the biased detector by providing rectified proposal
features with the help of base classes. This idea is motivated by the fact that
different classes share some commonalities, e.g., horse and cow share similar legs
and bodies. We can accurately estimate the data distribution of base classes
under the supervision of numerous training samples. Then we can retrieve the
similar base classes for novel classes, and leverage the accurate distribution es-
timation to rectify the data distribution. With the rectified distribution estima-
tion, we can generate unbiased proposal features to train the detector for detector
calibration. This idea has been validated in other few-shot learning tasks [96,97].
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We assume the class feature distribution is Gaussian. Then we leverage a
feature memory module to accumulate the feature prototype statistics of both
base and novel classes. The global prototype of class c is denoted as Pc. For each
image i during training, we select all proposal features Fc of the target class and
accumulate them into the global prototype: Pc ← mPc + (1 −m)F i

c , where m
is the update momentum and set as 0.999 in our experiments. In this way, the
class prototype is iteratively updated during training in an exponential moving
average manner. The feature memory encodes various objects in the dataset
for each class, and thus the representative prototype can capture transferable
commonalities shared among base and novel classes with higher chance.

The class prototypes effectively represent the feature statistics of each class
under the Gaussian distribution assumption. For a novel class n, we compute
the cosine similarity S between its prototype Pn and all base class prototypes
Pb. Then we select the prototype of the most similar base class Pbs, where bs =
argmax(S). Then we calibrate the novel class prototype as P̂n = γPn+(1−γ)Pbs,
where γ is the adjustable weight and we adopt γ = 0.5 in our experiments. Then
we utilize a Gaussian distribution FG ∼ N(P̂n, 1) to generate features FG for
this novel class.

We perform detector calibration in the novel finetuning stage, where we fix
the backbone and only finetune the detector and RPN. We use the generated
feature FG with the original proposal feature FO to jointly train the detector.
There are at most 32 generated features for each foreground class.

4 Experiments

In this section, we conduct extensive experiments to validate the model bias
problem in current FSOD models, and demonstrates the effectiveness of our
proposed model calibration modules.

4.1 Experimental Settings

Datasets. Our experiments are conducted on MS COCO [60] and Pascal
VOC [19] datasets. MS COCO dataset contains 80 classes and we follow previous
works [22,91,40] to split them into two separate sets, where the 20 classes over-
lapping with Pascal VOC dataset are treated as novel classes, with the remaining
60 classes regarded as base classes. We utilize the 5K images of the val2017 set
for evaluation, and train2017 set with around 80K images for training. We use
the support samples of novel classes in FSOD [22] to finetune our model on MS
COCO dataset. As for Pascal VOC dataset which contains 20 classes, random
split is done to produce 5 novel classes and 15 base classes. Specifically, there
are three random class split groups, and we follow the split setting of previous
works [84,91] for a fair comparison. The VOC 2007 and VOC 2012 trainval sets
are utilized for training, and VOC 2007 test set are used for evaluation.
Training and Evaluation. The model is first trained on base classes and
then finetuned on novel classes. Specifically, the instance number K of novel
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Table 3. Ablation studies on different calibration (Cal.) cooperations.

RPN Detector Backbone AP AP50 AP75

11.3 20.9 11.0
Cal 11.8 21.5 11.8

Cal. 12.0 22.1 11.9
Cal. 14.7 25.8 14.6

Cal. Cal. 12.2 23.0 11.6
Cal. Cal. Cal. 15.1 27.2 14.6

classes for finetuning is K = 5, 10 for MS COCO dataset, and K = 1, 2, 3, 5, 10
for Pascal VOC dataset. The model is evaluated multiple times on novel classes
with average precision (AP) as the evaluation metric. We report the COCO-
style mAP on COCO dataset and AP50 on Pascal VOC dataset, which are the
common practice to fit the dataset characteristics.
Model Details. We adopt the pretrained U2-Net [73] salient object detection
network to generate pseudo boxes. We reuse ImageNet [13] dataset for backbone
calibration, which is only used for model pretraining in other works. UA-RPN
has M = 4 RPNs with different OV ∈ [0.01, 0.3], [0.1, 0.3], [0.15, 0.3], [0.2, 0.3]1.
We dynamically set α by selecting top-1,000 uncertain proposals.
Implementation Details. We adopt Faster R-CNN [77] with Feature Pyramid
Network [58] (FPN) as our basic detection framework, with the ResNet-50 [33]
backbone pretrained on ImageNet [13] dataset. We use SGD to optimize our
model with weight decay of 5e−5 and momentum of 0.9. The model is trained
50,000 iterations at the base training stage. The learning rate is set as 0.02 in
the first 30,000 iterations, which decays by 10× for every 10,000 iterations. For
the novel class finetuning stage, the model is trained 3,000 iterations with 0.01
initial learning rate, which decays by 10× upon reaching the 2,000-th iteration.
The object detection images are resized with the fixed height/width ratio, where
the shorter image side is resized to 600 while the longer side is capped at 1,000.

4.2 Ablation Studies

Table 3 shows that each model calibration module improves the detection per-
formance, and their combination promotes the overall performance from 11.3
to 15.1 AP. We further conduct extensive experiments on MS COCO dataset
to investigate the efficacy of our model calibration on handling model bias in
different modules.

Backbone calibration The backbone bias is introduced at the base training
stage, where the generalized feature distribution learned from massive classes can
be scrapped. This problem is effectively relieved by our backbone calibration

1 Proposals with OV ∈ {[0, 0.01), [0, 0.1), [0, 0.15), [0, 0.2)} are respectively ignored
during training for each UA-RPN head.
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Table 4. Ablation studies on backbone calibrations. “CAM” denotes class activation
map, PB denotes pseudo boxes, and † means with careful hyperparameter tuning.

Backbone AP AP50 AP75

Baseline 11.3 20.9 11.0
Cal. Backbone 14.7 25.8 14.6

Cal. w/ 725 Cls 14.2 25.4 13.9
Cal. w/ Rand. 500 Cls 13.9 24.7 13.8
Cal. w/ Rand. 300 Cls 13.3 25.3 12.7
Cal. w/ Rand. 100 Cls 12.3 22.2 12.1

Cal. w/ CAM 14.4 27.5 13.3
Cal. w/o PB 7.5 16.2 5.8

Cal. w/o PB† 14.2 27.1 13.2

module, where the generalization performance on novel classes is significantly
improved by 3.4 AP. (Table 4)

Discussions. Concerns about backbone calibration include:

Does the performance gain come from the overlapped classes in the ImageNet
dataset? The performance gain mainly comes from the well-learned feature dis-
tribution covering the massive classes. To remove any effect of the overlapped
classes, we use a purified ImageNet [13] dataset to calibrate the backbone, which
contains 725 classes by removing all classes similar to the novel classes in MS
COCO. Compared to the backbone calibrated on the full ImageNet dataset, the
performance slightly degrades by 0.5 AP. With 500 randomly selected classes,
the performance with model calibration only degrades by 0.8 AP. These results
validate that the improvement of backbone calibration is mainly derived from
the massive classes, rather than from the overlapped classes. We also present
the performance with 100 and 300 randomly selected classes to further show the
impact of the class diversity on backbone calibration.

Does the performance gain come from the pretrained SOD model? To ad-
dress this concern, we utilize class activated map [106] (CAM) to generate pseudo
boxes, which is an unsupervised method and the pseudo mask can be directly
generated from the pretrained classification model. The performance only de-
grades by 0.3 AP with the inaccurate CAM generated pseudo boxes. We also
directly and jointly train the model on both detection and classification datasets
without pseudo boxes. The performance dramatically degrades to 7.5 AP be-
cause of the dominating classification branch. But with careful hyperparameter
tuning by reducing the loss weights from the classification branch, the perfor-
mance can reach 14.2 AP. These results validates that the backbone calibration
can be only slightly affected by the pseudo box quality.

Does the backbone calibration introduce extra data? Our method does not
introduce any extra data. We only reuse ImageNet dataset, which is a free re-
source, to perform backbone calibration. Other FSOD methods however only
use ImageNet for model pretraining.
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Table 5. Ablation studies for UA-RPN. “DT” denotes detaching UA-RPN gradient
from backbone, “LA” denotes label assignment for background proposals, “LR” denotes
label rectification and “PR” denotes prediction rectification.

Stage1 AR Stage2 AR
AP

Method @100 @1000 @100 @1000

RPN 17.1 35.3 26.1 38.6 11.3
Cal. RPN 20.1 37.4 28.5 39.6 11.8

Cal. w/o DT 19.2 37.0 26.9 39.2 10.2
Cal. w/o LA 17.5 35.5 26.5 38.7 11.5
Cal. w/o LR 19.1 37.1 27.9 39.0 11.6
Cal. w/o PR 18.5 36.7 27.0 39.4 11.4

Table 6. Experimental results on Pascal VOC dataset. The best and second best
results are highlighted with bold and underline, respectively.

Novel Set 1 Novel Set 2 Novel Set 3
Method 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

LSTD [9] 8.2 1.0 12.4 29.1 38.5 11.4 3.8 5.0 15.7 31.0 12.6 8.5 15.0 27.3 36.3
FSRW [40] 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9

MetaRCNN [95] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1
FsDetView [94] 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6

MSPR [93] 41.7 – 51.4 55.2 61.8 24.4 – 39.2 39.9 47.8 35.6 – 42.3 48.0 49.7
TFA [91] 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
FSCE [84] 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5
DCNet [37] 33.9 37.4 43.7 51.1 59.6 23.2 24.8 30.6 36.7 46.6 32.3 34.9 39.7 42.6 50.7

SRR-FSD [108] 47.8 50.5 51.3 55.2 56.8 32.5 35.3 39.1 40.8 43.8 40.1 41.5 44.3 46.9 46.4

Ours 40.1 44.2 51.2 62.0 63.0 33.3 33.1 42.3 46.3 52.3 36.1 43.1 43.5 52.0 56.0

RPN calibration Table 5 validates the effectiveness of our proposed UA-RPN,
where the baseline RPN only has 17.1/35.3 AR@100/1000 on novel classes in the
base training stage (stage 1), while the performance on base classes can reach
42.1/49.8 AR@100/1000. The performance of the former on novel classes is only
improved to 26.1/38.6 AR@100/1000 after the novel finetuning stage. These re-
sults indicate the serious RPN bias toward the base classes, which adversely
affects the generalization ability on the novel classes. With our RPN calibra-
tion, the recall of the novel classes on both stage 1 and stage 2 is significantly
improved, and the overall detection AP performance is also improved by 0.5
AP. We further validate the effectiveness of separate modules in UA-RPN. The
gradient detaching is essential for keeping the detection performance by separat-
ing UA-RPN gradients from backbone. The diverse label assignment affects the
uncertainty of UA-RPN and therefore is essential for the recall of novel classes.
Both the label and prediction rectifications are beneficial to the proposal recall
and detection performance of novel classes.

Detector calibration We evaluate the models on the training samples of
novel classes to demonstrate the detector bias. The detection performance on
the training samples reaches 61.7 AP, while the generalization performance on
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Table 7. Experimental 5-shot results on MS COCO dataset.

Backbone Publication AP AP50 AP75

FSRW [40] ICCV’19 5.6 12.3 4.6
MetaRCNN [95] ICCV’19 8.7 19.1 6.6
FSOD [22] CVPR’20 11.1 20.4 10.6
MSPR [93] ECCV’20 9.8 17.9 9.7
FsDetView [94] ECCV’20 12.5 27.3 9.8
TFA [91] ICML’20 10.0 – 9.3
SRR-FSD [108] CVPR’21 11.3 23.0 9.8
FSCE [84] CVPR’21 11.9 - 10.5
DCNet [37] CVPR’21 12.8 23.4 11.2

Ours - 15.1 27.2 14.6

testing samples is only 11.3 AP. The large performance gap between training and
testing samples indicates the serious detector bias toward the training samples.
Equipped with our detector calibration, the performance on testing samples can
be improved from 11.3 to 11.9 AP, with the performance gap also reduced by
relieving the overfitting on training samples.

4.3 Comparison with SOTAs

We conduct comparison experiments with state-of-the-art methods on Pascal
VOC and MS COCO datasets. Pascal VOC contains more median-sized and
large objects and thus the detection performance is much higher than that on MS
COCO dataset. As shown in Table 6, out method performs better or comparable
to other methods in all class splits. MS COCO is a challenging dataset even
for fully-supervised methods. As shown in Table 7, with the proposed model
calibration, our model significantly outperforms other methods by a large margin
of 2.5 AP, with the detection performance reaching 15.1 AP.

5 Conclusion

Few-shot object detection (FSOD) has recently achieved remarkable progress.
However, previous FSOD works have ignored the intrinsic model bias problem
in transfer learning. The model bias problem causes overfitting toward training
classes while destructing the well-learned transferable knowledge. In this paper,
we identify and perform a comprehensive study on the model bias problem in
FSOD, and propose a simple yet effective method to address the problem, making
use of the ImageNet dataset not limited to pre-training as done in other works.
Specifically, we perform model calibrations in three levels: 1) backbone calibration
to preserve the well-learned prior knowledge which relieves the model from bias
towards base classes; 2) RPN calibration to rescue unlabeled objects of novel
classes; and 3) detector calibration to prevent model bias towards a small number
of training samples of the novel classes. Extensive experiments and analysis
substantiate the effectiveness of our model calibration method.
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