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Abstract. Few-Shot Learning (FSL) alleviates the data shortage challenge via
embedding discriminative target-aware features among plenty seen (base) and
few unseen (novel) labeled samples. Most feature embedding modules in recent
FSL methods are specially designed for corresponding learning tasks (e.g., clas-
sification, segmentation, and object detection), which limits the utility of em-
bedding features. To this end, we propose a light and universal module named
transformer-based Semantic Filter (tSF), which can be applied for different FSL
tasks. The proposed tSF redesigns the inputs of a transformer-based structure by
a semantic filter, which not only embeds the knowledge from whole base set to
novel set but also filters semantic features for target category. Furthermore, the
parameters of tSF is equal to half of a standard transformer block (less than 1M ).
In the experiments, our tSF is able to boost the performances in different clas-
sic few-shot learning tasks (about 2% improvement), especially outperforms the
state-of-the-arts on multiple benchmark datasets in few-shot classification task.

1 Introduction

Few-Shot Learning (FSL) aims to recognize unseen objects with plenty known data
(base) and few labeled unknown samples (novel). Due to the shortage of novel data,
FSL tasks suffer from weak representation problem. Hence, researchers [17, 60, 51, 41,
79, 80, 25, 67] manage to design a embedding network to make extracted features robust
and fine-grained enough in unseen instances recognization. To deal with different FSL
tasks (e.g., classification, segmentation, and object detection), researchers propose dif-
ferent feature embedding modules, e.g., FEAT [71], CTX [6] for classification, HSNet
[31] for segmentation, and FSCE [48] for detection, respectively.

Nevertheless, these methods are limited by the purposes of different tasks. In the
classification task, methods put emphasis on locating the representive prototype for
each class. Methods in the detection task aim to distinguish the similar objects and
correct the bounding box, while in the segmentation task, methods manage to gener-
ate a precise mask. In consequence, classification task requires more robust features,
while detection task and segmentation task need more fine-grained features. To satisfy
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Fig. 1. (a) Standard Transformer layer. (b) transformer-based Semantic Filter (tSF), where θ is
learnable semantic filter. (c) Base to novel transferring by tSF. After training, the semantic info of
base dataset are embedded into θ, e.g. there are n = 5 semantic groups and θ1 represents dog-like
group. Then, given a novel input sample, tSF enhances its regions which are semantic similar to
θ. (d) Intuition for tSF enhancing novel input feature.

the demands of different tasks concurrently, a target-aware and image-aware feature
embedding method is inevitable.

Throughout the recent investigations, transformer-base structure [54] brings an im-
portant significance at computer vision field, which works on almost all common tasks
due to its sensibility on both big dataset (macro) and a single image (micro). Specif-
ically, transformer is able to store the information of whole dataset modeling spatio-
temporal correlations among instances. The property exactly satisfies the purpose of
the feature embedding operation. Besides, observing from Transformer [54], Feat [72],
SuperGlue [43], CTX [6] and DETR [4], we notice that the transformer layer could per-
form different learning behaviors with different input forms of {Q,K, V }. In common,
a traditional transformer structure needs big training dataset to achieve high perfor-
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mances. However, in few-shot learning field, it may fall into overfitting problem due to
the shortage of data without a carefully designed framework.

To this end, we propose a light and general feature embedding module, named trans-
former based Semantic Filter (tSF), as illustrated in Fig. 1(b). We redesign the inputs
Q,K, V of traditional transformer as f, θ, θ, where f is the extracted feature and θ is
a learnable weight, named semantic filter. The tSF uses the correlation matrix between
(f, θ) to re-weight θ. The average of the re-weighted θ is involved the dataset-attention
response, which enhances the feature f from the views of both global dataset and local
image. In this way, tSF can be trained without big data, while keeping the macro and
micro information at the same time. Intuitively, Fig. 1(c) and Fig. 1(d) show that the
proposed tSF is able to enhance the foreground regions of input novel feature via the
embedded semantic info of base dataset. Besides, to further show the efficient of tSF, we
insert the tSF into a strong few-shot classification framework, named PatchProto. The
experimental results show that tSF helps PatchProto achieve SOTA performance with
about 2% improvement. In addition, the parameter size of tSF is less than 1M , half
of that in traditional transformer. Moreover, to prove that tSF can suit different FSL
frameworks, we conduct massive experiments on different few-shot learning tasks, and
the results show that tSF can make 2%− 3% improvements on classification, detection
and segmentation tasks.

In summary, our contributions are listed as follows:
• An effective and light module named transformer-based Semantic Filter (tSF)

is proposed, which is helpful to learn a generalized-well embedding for novel targets
(unseen in model training phase). The tSF leverages dataset-attention mechanism to
realize information interaction between single input instance and whole dataset.

• A strong baseline framework called PatchProto is introduced for few-shot classifi-
cation. Experimental results show our PatchProto+tSF approach outperforms the state-
of-the-arts on multiple benchmark datasets such as miniImageNet and tieredImageNet.

• As a universal module, tSF is applied in different few-shot learning tasks, in-
cluding classification, semantic segmentation and object detection. The massive exper-
iments demonstrate that tSF is able to boost their performances.

2 Related Work

Few-Shot Classification FSL algorithms first pre-train a base classifier with abun-
dant samples (seen images), then learn to recognize novel classes (unseen images) with
a few labeled samples. According to recent investigations, there are four representa-
tive directions: optimization-based, parameter-generating based, metric-learning based,
and embedding-based methods. Optimization-based methods are able to perform rapid
adaption with a few training samples for new classes by learning a good optimizer [39,
2] or learning a well-initialized model [12, 35, 42]. Parameter-generating methods [3,
32, 36, 33, 14] focus on learning a parameter generating network. Metric-learning based
methods learn to compare to tackle the few-shot classification problem. The main idea
is classifying a new input image by computing the similarity compared with labeled
instances [15, 55, 17, 67, 46, 50, 63, 73]. These methods design carefully to embedding
network to match their corresponding distance metrics. Embedding-based methods [60,
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51, 41, 79, 80, 25] firstly focus on learning a generalize-well embedding with supervised
or self-supervised learning tasks, and then freeze this embedding and further train a lin-
ear classifier or design a metric classifier on novel classes.
Auxiliary Task for Few-shot Classification Some recent works gain a performance
improvement by training few-shot models with supervised and self-supervised auxiliary
tasks. The supervised task for FSL simply performs global classification on the base
dataset as in CAN [17]. The effectiveness of self-supervised learning for FSL has been
demonstrated, such as contrastive learning in either unsupervised pre-training [30] or
episodic training [6, 25], and auxiliary rotation prediction task [13, 47, 41].
Few-Shot Semantic Segmentation Early few-shot semantic segmentation methods
apply a dual-branch architecture [44, 7, 38], one segmenting query-images with the pro-
totypes learned by the other branch. In recently, the dual-branch architecture is uni-
fied into a single-branch, using the same embedding for support and query images [77,
45, 57, 69, 27]. These methods aim to leverage better guidance for the segmentation of
query-images [77, 34, 56, 74], via learning better class-specific representations [57, 26,
27, 69, 45] or iteratively refining [75].
Few-Shot Object Detection Existing few-shot object detection approaches can be
divided into two paradigms: meta-learning based [20, 64, 10, 18] and transfer learn-
ing based [59, 62, 48, 11, 37]. The majority of meta-learning approaches adopt feature
reweighting or its variants to aggregate query and support features, which predict de-
tections conditioned on support sets. Differently, the transfer learning based approaches
firstly train the detectors on base set, then fine-tune the task-head layer on novel set,
which achieve competitive results comparing to meta-learning approaches.
Transformer Transformer is an attention-based network architecture that is widely
applied in natural language processing area [54, 5]. Due to its power in learning repre-
sentation, it has been introduced in many computer vision tasks, such as image classifi-
cation [8, 58, 53], detection [76, 4, 82], segmentation [78, 22, 66], image matching [49,
43] and few-shot learning [6, 70, 28].

To best of our knowledge, there is no general feature embedding method, which can
be applied on multiple few-shot learning tasks.

3 Transformer-based Semantic Filter (tSF)

3.1 Related Transformer

Transformer-based Self-Attention The architecture of a standard Transformer [54]
layer is presented in Fig. 1(a), which consists of Attention and Feed-Forward Network
(FFN). Given input feature f ∈ Rc×h×w, the Transformer layer outputs f

′ ∈ Rc×h×w.
The key operation Attention is expressed as:

Attention(Q,K, V ) = σ(QKT )V, (1)

where, {Q,K, V } are known as query, key and value respectively, σ is softmax func-
tion. The forms of {Q,K, V } in transformer-based self-attention are:

Q = WQf, K = WKf, V = WV f, (2)
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where, {Q,K, V } ∈ Rhw×c and some feature-reshaping operations are omitted for
simplicity, WQ,WK ,WV are learnable weights (e.g. convolution layers). For few-shot
classification, based on self-attention mechanism, Feat [72] used the standard trans-
former layer as a set-to-set function to perform embedding adaptation, formally:

Q = WQfset, K = WKfset, V = WV fset, (3)

where fset is a set of features of all the instances in the support set. Both the standard
transformer [54] and Feat [72] are based on self-attention mechanism which learns to
model the relationship between the feature-nodes insight the input features. Differently,
as illustrated in Fig. 1(b) and Eq. 6, our Transformer-based Semantic Filter (tSF) applies
Transformer-based Dataset-Attention, which makes information interaction between
single input sample and whole dataset.
Transformer-based Cross-Attention The standard Transformer performs self-attention
behavior, and SuperGlue [43] found that Transformer can be used to make cross-attention
between pair-features. Given input pair-features (fref , f ), it can obtain a cross-correlation
matrix between (fref , f ) which is used to re-weight f and achieves the cross-attention
implementation. Specifically, {Q,K, V } forms in transformer-based cross-attention
are:

Q = WQfref , K = WKf, V = WV f. (4)
For few-shot classification, based on cross-attention mechanism, CTX [6] used the
transformer layer to generate query-aligned prototype for support class.
Transformer-based Decoder The forms of {Q,K, V } in transformer-based decoder
of DETR [4] are:

Q = φ, K = V = f, (5)
where φ ∈ Ru×c is learnable weights which is called as object queries. Given input
feature f ∈ Rc×h×w, the DETR [4] decoder outputs φ

′ ∈ Ru×c which is used to locate
the objects. The dimension u of object queries φ represents the maximum number of
objects insight a image.

3.2 tSF Methodology

In few-shot learning task, obtaining a generalized-well embedding for novel categories
is one of the key problem. To this end, we plan to model the whole dataset information
and then transfer the knowledge from base set to novel set. Benefiting from the property
of modeling spatio-temporal correlations among instances, transformer is able to learn
the whole dataset information. Besides, observing from Transformer [54], Feat [72],
SuperGlue [43], CTX [6] and DETR [4], we notice that the transformer layer performs
different learning behavior with different input forms of {Q,K, V }. Therefore, in order
to transfer the knowledge from whole base set to novel set, we propose a transformer-
based Semantic Filter (tSF) as illustrated in Fig. 1(b), where the forms of {Q,K, V }
are designed as:

Q = f, K = V = θ, (6)
where, Q ∈ Rhw×c after feature-reshaping, and θ ∈ Rn×c is learnable weights which
is called as semantic filter. Formally, tSF is expressed as:

f
′
= tSF (f) = FFN

(
f + σ

(
fθT

)
θ
)
. (7)
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Fig. 2. The tSF for few-shot learning tasks such as classification, semantic segmentation and
object detection.

The input and output features of tSF are {f, f ′} ∈ Rc×h×w respectively, which is con-
sistent with the standard Transformer. The tSF can be utilized as a feature-to-feature
function, e.g. stacking tSF as a neck after the backbone architecture for few-shot learn-
ing as illustrated in Fig. 2 and Fig. 3(a).

Formally, let’s define Cbase and Cnovel as categories of base and novel respectively.
Although Cbase ∩ Cnovel = ∅, we assume Cbase consists of sub-sets Csim

base and Cdiff
base

which are semantically similar and different from Cnovel respectively. Then, tSF trans-
fers knowledge from base to novel:

Base Training : f
′

base = FFN
(
fbase + σ

(
fbaseθ

T
)
θ
)
,

Novel Testing : f
′

novel = FFN
(
fnovel + σ

(
fnovelθ

T
)
θ
)
.

(8)

After training on base, semantic info of Cbase are embedded into θ of which dimension
n are interpreted as projected semantic groups, i.e. θ also consists of sub-sets θsim and
θdiff which are similar and different from Cnovel respectively. Given a novel image,
tSF enhances its regions which are similar to θsim while θdiff doesn’t. For example,
if ’dog’ in base, tSF enhances novel ’wolf’ due to their high similarity relation. In
Fig. 1(d), θsim is {θ1, θ2, θ4}, θdiff is {θ0, θ3}.

Intuitively, as illustrated in Fig. 1(c), with the model training on base set, the se-
mantic filter θ learns the whole dataset information. In the model testing on novel set,
according to Eq. 7 and Fig. 1(d), the tSF uses the correlation matrix between (f, θ)
to re-weight θ. The average of the re-weighted θ is the dataset-attention response A,
which is semantically similar to f and can be used to enhance the target object as
f

′
= FFN(f +A). f and θ contains the info of one sample and whole dataset re-

spectively, and the tSF can collect the target information (i.e. A which is semantically
similar to f ) from θ to enhance f . Therefore the foreground region of the input novel
sample feature can be enhanced by the dataset-attention response.

3.3 Discussions

Visualizations Under the few-shot classification framework of PatchProto+tSF intro-
duced in Sec. 4.2, we give the visualizations of feature response map and t-SNE for
tSF as shown in Fig. 3(c) and Fig. 3(b) respectively. In detail, f

′
= gθ(f) and gθ is the

proposed tSF, the correlation matrix R = σ(fnovelθ
T ) ∈ Rhw×n and R θi ∈ Rhw rep-

resents the correlation vector between fnovel and θi ∈ Rc (ith position of θ ∈ Rn×c).
In Fig. 3(c), comparing to f , f

′
obtains more accurate and complete response map
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focusing on the foreground region, which indicates that tSF is able to transfer seman-
tic knowledge from base set to novel set. The visualizations of the correlation vector
R θi show that θi learns semantic information from base set, specifically, these targets
foreground are enhanced mainly contributed from {θ1, θ2, θ4}. In addition, the t-SNE
visualizations in Fig. 3(b) show that f

′
obtains more clear category boundaries than f ,

which demonstrates that tSF is able to produce more discriminative embedding features
for novel categories.
Properties The properties of tSF are as follows: (i) Generalization ability: Based
on dataset-attention mechanism, the tSF models the whole dataset information and
then transfer the knowledge from base set to novel set. The tSF makes information
interaction between input sample and whole dataset, while self-attention based trans-
former interacts info insight input sample itself which leads to overfitting problem
due to insufficient information interaction. (ii) Representation ability: The low dimen-
sion semantic filter θ ∈ Rn×c learns high-level semantic information from whole
dataset. (iii) Efficiency: The computational complexity of tSF is less than self-attention
based transformer. The complexity of transformer in calculating Attention by Eq. 1 is
O(transformer) = (h× w)3 × c, while our tSF is only O(tSF ) = (h× w)2 × n× c,
i.e. O(transformer)

O(tSF ) = h×w
n ≫ 1.

Comparisons Comparing our tSF with Transformer and DETR decoder, in model
testing on novel set, the input novel feature fnovel is enhanced by different information.
Our tSF enhances fnovel by base dataset info (i.e. the semantic filter θ learned on base
set) as defined in Eq. 8, which fulfils base to novel transferring. Differently, the standard
Transformer enhances fnovel by itself instance info:

Transformer : f
′

novel = FFN
(
fnovel + σ

(
fnovelfnovel

T
)
fnovel

)
. (9)

Besides, the DETR decoder also enhances fnovel by itself instance info:

DETR : f
′

novel = FFN
(
fnovel + σ

(
θfnovel

T
)
fnovel

)
. (10)

As illustrated in Tab. 2, the experimental comparisons show that our tSF obtains obvious
performance gains, while Transformer and DETR show performance degradation due
to overfitting problem.

4 tSF for Few-Shot Classification

4.1 Problem Definition

N -way M -shot task to learn a classifier for N unseen classes with M labeled samples.
Formally, we have three mutually disjoint datasets: a base set Xbase for training, a
validation set Xval, and a novel set Xnovel for testing. Following [55, 50, 17, 67], the
episodic training strategy is adopted to mimic the few-shot learning setting, which has
shown that it can effectively train a meta-learner (i.e., a few-shot classification model).
Each episode contains N classes with M samples per class as the support set S =
{(xs

i , y
s
i )}

ms
i=1 (ms = N × M ), and a fraction of the rest samples as the query set

Q = {(xq
i , y

q
i )}

mq

i=1. And the support subset of the kth class is denoted as Sk.
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Fig. 3. (a) The PatchProto framework inserted tSF for few-shot classification. (b) The t-SNE
visualization comparison for PatchProto+tSF, where f

′
= gθ(f) and gθ is the proposed tSF. (c)

The visualizations of response map with the input of novel sample, where R θi is the correlation
vector between (f, θi), and the dimension n of θ ∈ Rn×c is set to 5.

4.2 PatchProto Framework with tSF

As illustrated in Fig. 3, the proposed PatchProto network consists of five components:
feature extractor backbone fθ, transformer-based Semantic Filter (tSF) gθ, Metric clas-
sifier fM for few-shot classification, and Global fG and Rotation fR classifiers for
auxiliary tasks which are only used to assist model training.

The input image xq in the query set Q = {(xq
i , y

q
i )}

mq

i=1 is rotated with [0◦, 90◦,
180◦, 270◦] and outputs a rotated Q̃ = {(x̃q

i , ỹ
q
i )}

mq×4
i=1 . Each support subset Sk and a

rotated query image x̃q are fed through the feature extractor backbone fθ and tSF gθ,
and produces the class feature P k = 1

|Sk|
∑

xs
i∈Sk gθ(fθ(x

s
i )) and query feature Q̃ =

gθ(fθ(x̃
q)) ∈ Rc×h×w, respectively. Then the Metric classifier fM makes classification

via measuring the similarity between each pair-features (P k, Q̃). Finally, PatchProto
network is trained by optimizing the multi-task loss contributing from meta loss and
auxiliary loss. In inductive inference phase, with the embedding learned in train set, the
Metric classifier predicts the query xq as YM based on cosine similarity measurement.

Objective functions Meta loss: As a metric-based meta learner, the Metric classifier
predicts the query into N support categories by measuring cosine similarity. Following
[17], we adopt the patch-wise classification mechanism to generate precise embeddings.
Specifically, each local feature Q̃m at mth spatial position of Q̃, is predicted into N
categories. Formally, the probability of recognizing Q̃m as kth category is:

Ŷ (y = k|Q̃m) = σ
(
d
(
Q̃m,GAP

(
P k

)))
, (11)
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where GAP denotes global average pooling, d is cosine distance. Then the metric clas-
sification loss with the few-shot label ỹq is:

LM = −
mq∑
i=1

h×w∑
m=1

log Ŷ (y = ỹqi |(Q̃m)i). (12)

Auxiliary loss: The Global classifier predicts the query into all C categories of train set,
thus its loss is:

LG = PCE(Q̃, Cq) = −
mq∑
i=1

h×w∑
n=1

Cq
i log

(
σ(Wl(Q̃m)i)

)
. (13)

where, Wl is a linear layer, Cq
i is the global category of x̃q

i with all C categories, and
PCE denotes the patch-wise cross-entropy function. Similarly, the loss of Rotation
classifier is derived by LR = PCE(Q̃, Bq), where Bq

i is the rotation category of x̃q
i

with four categories.
Multi-task loss: Therefore, inspired by [19], the overall classification loss is:

L =
1

2
LM +

∑
j=G,R

(
(λ+ wj)Lj + log

1

(λ+ wj)

)
, (14)

where, w = 1
2α2 , α is learnable variable, λ is a hyper-parameter to balance the effects

of the losses of few-shot task and auxiliary tasks. The influence of λ is studied in Tab. 3.

5 tSF for Few-Shot Segmentation and Detection

As shown in Fig. 2, the proposed tSF is stacked after the backbone architecture (i.e.
Backbone + tSF) for few-shot learning tasks, such as classification, segmentation and
detection. To verify the effectiveness and the university of our tSF module, we insert
the tSF into the current state-of-the-art few-shot segmentation and detection methods.
And the details are introduced in the next.
RePRI+tSF for Segmentation RePRI (Region Proportion Regularized Inference)
[29] approach leverages the statistics of unlabeled pixels for the input image. It op-
timizes three complementary loss terms, including cross-entropy on labeled support
pixels, Shannon entropy on unlabeled query pixels and a global KL-divergence regular-
izer on predicted foreground. RePRI achieves state-of-the-art on few-shot segmentation
benchmark PASCAL-5i built from PASCAL VOC [9]. Based on the RePRI framwork,
we simply stack our tSF behind its backbone which obtains the RePRI+tSF approach.
DeFRCN+tSF for Detection DeFRCN (Decoupled Faster R-CNN) [37] is a simple
yet effective fine-tuned approach for few-shot object detection, which proposes Gradi-
ent Decoupled Layer and Prototypical Calibration Block to alleviate the contradictions
of Faster R-CNN in FSL scenario. Due to its simplicity and effective, DeFRCN achieves
state-of-the-art on PASCAL VOC [9] and COCO [23]. To verify the effectiveness of tSF
module in few shot object detection task, we use DeFRCN as baseline, and insert the
tSF into the ResNet-101 backbone to obtain the DeFRCN+tSF approach, specifically,
tSF module is followed in the 5th residual block. For the hyperparameter settings, we
use the default parameter as same with DeFRCN.
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Table 1. Comparison with existing methods on 5-way classification task on benchmark miniIm-
ageNet and tieredImageNet datasets.

model Backbone
miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot
MatchingNet [55] Conv4 43.44 ± 0.77 60.60 ± 0.71 - -
ProtoNet [46] Conv4 49.42 ± 0.78 68.20 ± 0.66 53.31 ± 0.89 72.69 ± 0.74
RelationNet [50] Conv4 50.44 ± 0.82 65.32 ± 0.70 54.48 ± 0.93 71.32 ± 0.78
PatchProto Conv4 54.71 ± 0.46 70.67 ± 0.38 56.90 ± 0.51 71.47 ± 0.42
PatchProto+tSF Conv4 57.39 ± 0.47 73.34 ± 0.37 59.79 ± 0.51 74.56 ± 0.41
CAN [17] ResNet-12 63.85 ± 0.48 79.44 ± 0.34 69.89 ± 0.51 84.23 ± 0.37
MetaOpt+ArL [16] ResNet-12 65.21 ± 0.58 80.41 ± 0.49 - -
DeepEMD [73] ResNet-12 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.58
IENet [41] ResNet-12 66.82 ± 0.80 84.35 ± 0.51 71.87 ± 0.89 86.82 ± 0.58
DANet [67] ResNet-12 67.76 ± 0.46 82.71 ± 0.31 71.89 ± 0.52 85.96 ± 0.35
PatchProto ResNet-12 68.46 ± 0.47 82.65 ± 0.31 70.50 ± 0.50 83.60 ± 0.37
PatchProto+tSF ResNet-12 69.74 ± 0.47 83.91 ± 0.30 71.98 ± 0.50 85.49 ± 0.35

wDAE-GNN [14] WRN-28 61.07 ± 0.15 76.75 ± 0.11 68.18 ± 0.16 83.09 ± 0.12
LEO [42] WRN-28 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 81.44 ± 0.09
PSST [79] WRN-28 64.16 ± 0.44 80.64 ± 0.32 - -
FEAT [72] WRN-28 65.10 ± 0.20 81.11 ± 0.14 70.41 ± 0.23 84.38 ± 0.16
CA [1] WRN-28 65.92 ± 0.60 82.85 ± 0.55 74.40 ± 0.68 86.61 ± 0.59
PatchProto WRN-28 69.34 ± 0.46 83.46 ± 0.30 73.40 ± 0.50 86.85 ± 0.35
PatchProto+tSF WRN-28 70.23 ± 0.46 84.55 ± 0.29 74.87 ± 0.49 88.05 ± 0.32

6 Experiments

To prove the effectiveness and universality of the proposed tSF, massive experiments
are conducted on differnet few-shot learning tasks, including classification, semantic
segmentation and object detection. Overall, the results show that tSF can make 2%−3%
improvements on these tasks.

6.1 Few-Shot Classification

Datasets miniImageNet dataset is a subset of ImageNet [21], which consists of 100
classes. We split the 100 classes following the setting in [50, 17, 67], i.e. 64, 16 and 20
classes for training, validation and test respectively. tieredImageNet dataset [40] is also
a subcollection of ImageNet [21]. It contains 608 classes, which are separated into 351
classes for training, 97 for validation and 160 for testing.
Evaluation and Implementation details We conduct experiments under 5-way 1-
shot and 5-shot settings. We report the average accuracy and 95% confidence interval
over 2000 episodes sampled from the test set. Horizontal flipping, random cropping,
random erasing [81] and color jittering are employed for data augmentation in training.
According to the ablation study results in Tab. 3, the hyperparameter λ in Eq. 14 is set
to 0.5 and 1.5 for ResNet-12 and WRN-28 respectively. The detailed info of optimizer,
learning-rate and training-epochs are referred to our public source code.
Comparison with State-of-the-arts Tab. 1 compares our methods with existing few-
shot classification algorithms on miniImageNet and tieredImageNet, which shows that
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Table 2. The results on 5-way miniImageNet classification about the structure (refers to Fig.1
(a) and Fig.1 (b)) influence of tSF, which utilize PatchProto+tSF framework under ResNet-12
backbone. The dimension n of θ in tSF is set to 5. The Metric and Global loss weights are set to
0.5 and 1.0 respectively, and the Rotation classifier is not applied.

Neck Q,K, V
Attention

Param
miniImageNet

Heads 1-shot 5-shot
None - - 7.75M 67.47 ± 0.47 81.85 ± 0.32

Transformer Q=K=V =f 1 8.75M 63.25 ± 0.45 79.44 ± 0.33
Transformer Q=WQf ,K=WKf ,V =WV f 1 9.75M 62.96 ± 0.47 78.92 ± 0.33
Transformer Q=K=V =f 4 8.75M 62.68 ± 0.47 78.98 ± 0.34
Transformer Q=WQf ,K=WKf ,V =WV f 4 9.75M 62.70 ± 0.47 78.33 ± 0.34

DETR Q=θ,K=V =f 1 8.75M 63.55 ± 0.45 79.65 ± 0.33
tSF-V Q=K=f ,V =θ 1 9.00M 61.84 ± 0.48 76.11 ± 0.36
tSF-K Q=V =f ,K=θ 1 9.00M 64.73 ± 0.45 80.43 ± 0.33

tSF Q=f ,K=V =θ 1 8.75M 68.37 ± 0.46 83.08 ± 0.31
tSF Q=WQf ,K=WKθ,V =WV θ 1 9.75M 68.27 ± 0.47 83.01 ± 0.31
tSF Q=f ,K=V =θ 4 8.75M 68.60 ± 0.47 83.26 ± 0.31
tSF Q=WQf ,K=WKθ,V =WV θ 4 9.75M 68.49 ± 0.47 82.95 ± 0.31
tSF Q=f ,K=V =θ 8 8.75M 68.46 ± 0.46 83.14 ± 0.31
tSF Q=WQf ,K=WKθ,V =WV θ 8 9.75M 68.42 ± 0.47 83.12 ± 0.31
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Fig. 4. The results on miniImageNet classification about the influence of dimension n of
θ ∈ Rn×c in tSF, which utilize PatchProto+tSF framework under ResNet-12 backbone without
Rotation classifier.

the proposed PatchProto and PatchProto+tSF mthods outperform the existing SOTAs
under different backbones. And PatchProto+tSF shows obviously accuracy improve-
ments under different backbones on 1-shot and 5-shot tasks than the strong baseline
PatchProto, which demonstrates the effectiveness of the proposed tSF. The proposed
PatchProto+tSF performs better than the optimization-based MetaOpt+ArL [16] and
parameter-generating method wDAE-GCNN [14], with an improvement up to 4.53%
and 9.16% respectively. Comparing to the competitive metric-based DeepEMD [73],
PatchProto+tSF achieves 3.83% higher accuracy. Some metric-based methods [67, 17]
employing cross attention mechanism, and our PatchProto+tSF still surpasses the best
DANet [67] with an performance improvement up to 1.98% on 1-shot. Overall our
PatchProto+tSF obtains a new SOTA performance on both 1-shot and 5-shot classifi-
cation tasks on miniImageNet and tieredImageNet, which demonstrates the strength of
our framework and the effectiveness of the proposed tSF.
Ablation Study Structure Influence of tSF: As shown in Tab. 2, by comparing our
tSF to the baseline without neck in first row, it shows consistent improvements on 1-
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Table 3. The results on 5-way miniImageNet classification about the influence of multi-task loss
employed in PatchProto+tSF under ResNet-12 and WRN-28 backbones. As introduced in Eq. 14,
λ is the hyper-parameter, and wG, wR are learnable weights.

λ
Loss weights ResNet-12 WRN-28

Metric Global Rotation 1-shot 5-shot 1-shot 5-shot
- 0.5 - - 62.76 ± 0.49 80.07 ± 0.34 61.71 ± 0.50 77.53 ± 0.36
- 0.5 - 1.0 65.57 ± 0.49 80.81 ± 0.34 63.97 ± 0.50 79.25 ± 0.37
- 0.5 1.0 - 68.60 ± 0.47 82.98 ± 0.31 67.73 ± 0.47 82.59 ± 0.31
- 0.5 1.0 1.0 69.41 ± 0.46 83.82 ± 0.30 69.64 ± 0.47 84.01 ± 0.30

0.0 0.5 λ+wG λ+wR 68.19 ± 0.47 83.00 ± 0.31 68.55 ± 0.48 83.30 ± 0.31
0.5 0.5 λ+wG λ+wR 69.74 ± 0.47 83.91 ± 0.30 69.20 ± 0.46 84.03 ± 0.30
1.0 0.5 λ+wG λ+wR 69.44 ± 0.46 83.90 ± 0.31 70.05 ± 0.46 84.17 ± 0.29
1.5 0.5 λ+wG λ+wR 69.30 ± 0.45 83.82 ± 0.30 70.23 ± 0.46 84.55 ± 0.29
2.0 0.5 λ+wG λ+wR 69.50 ± 0.45 83.86 ± 0.30 70.02 ± 0.45 83.61 ± 0.30

Table 4. The results on 1-way PASCAL-5i segmentation using mean-IoU. The dimension n of θ
in tSF is set to 5.

1 shot 5 shot

Method Backbone Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

PANet [57]
VGG-16

42.3 58.0 51.1 41.2 48.1 51.8 64.6 59.8 46.5 55.7
RPMM [27] 47.1 65.8 50.6 48.5 53.0 50.0 66.5 51.9 47.6 54.0
RePRI [29]

VGG-16
49.7 63.4 58.2 42.8 53.5 54.5 67.2 63.7 48.8 58.6

RePRI+tSF 53.0 65.3 58.3 44.2 55.2 57.0 67.9 63.9 50.8 59.9
CANet [75]

ResNet-50

52.5 65.9 51.3 51.9 55.4 55.5 67.8 51.9 53.2 57.1
PGNet [74] 56.0 66.9 50.6 50.4 56.0 57.7 68.7 52.9 54.6 58.5
RPMM [69] 55.2 66.9 52.6 50.7 56.3 56.3 67.3 54.5 51.0 57.3
PPNet [27] 47.8 58.8 53.8 45.6 51.5 58.4 67.8 64.9 56.7 62.0
RePRI [29]

ResNet-50
60.8 67.8 60.9 47.5 59.3 66.0 70.9 65.9 56.4 64.8

RePRI+tSF 62.4 68.6 61.4 49.4 60.5 66.4 71.1 66.4 58.3 65.6

shot and 5-shot tasks, because tSF can transfer the knowledge from base set to novel
set and generates more discriminative representations via focusing on the foreground
regions. Comparing to the baseline without neck, the self-attention based transformer
shows performance degradation due to overfitting on base dataset. Instead of behaving
self-attention as standard transformer do, the proposed dataset-attention based tSF is
able to prevent overfitting and generalize well on novel task, which is illustrated by the
large accuracy improvement of tSF.
Dimension Influence of θ in tSF: As shown in Fig.4, with a wide range [1, 1024] di-
mension n of θ ∈ Rn×c in tSF, the accuracy differences are within 0.5% on 1-shot and
5-shot tasks, i.e. our PatchProto+tSF framework is not sensitive to the dimension of θ.
Considering the accuracy performance and computational complexity, we recommend
to set the dimension n = 5. The n is interpreted as number of semantic groups. As n go-
ing larger, semantic groups become more fine-grained. The setting of n = 1 represents
one foreground group and is still able to obtain impressive performance.
Influence of multi-task loss: As illustrated in Tab. 3, the proposed PatchProto+tSF ob-
tains its best results as setting λ to 0.5 and 1.5 under ResNet-12 and WRN-28 backbones
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Table 5. The results on 1-way COCO-20i segmentation using mean-IoU. The dimension n of θ
in tSF is set to 5.

1 shot 5 shot

Method Backbone Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

PPNet [27]
ResNet-50

34.5 25.4 24.3 18.6 25.7 48.3 30.9 35.7 30.2 36.2
RPMM [69] 29.5 36.8 29.0 27.0 30.6 33.8 42.0 33.0 33.3 35.5
PFENet [52] 36.5 38.6 34.5 33.8 35.8 36.5 43.3 37.8 38.4 39.0
RePRI [29]

ResNet-50
36.1 40.0 34.0 36.1 36.6 43.3 48.7 44.0 44.9 45.2

RePRI+tSF 38.4 41.3 35.2 37.7 38.2 45.0 49.9 45.5 45.6 46.5

Table 6. The results on VOC dataset. we evaluate the performance(AP50) of DeFRCN under
ResNet-101 with tSF module on three novel splits over multiple runs. The term w/G denotes
whether using G-FSOD setting [59]. The dimension n of θ in tSF is set to 5.

Novel Set 1 Novel Set 2 Novel Set 3
Method / Shots w/G

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

MetaDet [61] % 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1
TFA [59] % 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8

DeFRCN [37] % 53.6 57.5 61.5 64.1 60.8 30.1 38.1 47.0 53.3 47.9 48.4 50.9 52.3 54.9 57.4
DeFRCN+tSF % 53.6 58.1 61.5 63.8 60.8 31.5 39.3 47.0 52.1 47.3 48.5 50.5 52.8 54.5 58.0

TFA [59] " 25.3 36.4 42.1 47.9 52.8 18.3 27. 30.9 34.1 39.5 17.9 27.2 34.3 40.8 45.6
FSDetView [65] " 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6

DeFRCN [37] " 40.2 53.6 58.2 63.6 66.5 29.5 39.7 43.4 48.1 52.8 35.0 38.3 52.9 57.7 60.8
DeFRCN+tSF " 43.6 57.4 61.2 65.1 65.9 31.0 40.3 45.3 49.6 52.5 39.3 51.4 54.8 59.8 62.1

respectively. Comparing to the baseline (i.e. with Metric classification task only) in first
row, our multi-task framework achieves large improvements on 1-shot and 5-shot tasks
under different backbones. These results indicate that the auxiliary tasks (i.e. Global
classification and Rotation classification) are useful for training a more robust embed-
ding leading to an accuracy improvement, and the weights of the auxiliary tasks have a
great influence on the overall few-shot classification performance.

6.2 Few-Shot Semantic Segmentation

Datasets and Setting PASCAL-5i and COCO-20i Datasets: PASCAL-5i is built from
PASCAL VOC [9]. The 20 object categories are split into 4 folds. For each fold, 15
categories are utilized for training and the remaining 5 classes for testing. COCO-20i

is built from MS-COCO [24]. COCO-20i dataset is divided into 4 folds with 60 base
classes and 20 test classes in each fold.
Evaluation Setting: Following [27], the mean Intersection over Union (mIoU) is adopted
for evaluation, and we report the average mIoU over 5 runs of 1000 tasks.
Comparison with State-of-the-arts Tab. 4 and Tab. 5 present our evaluation results on
PASCAL-5i and COCO-20i. Comparing with existing few-shot semantic segmentation
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methods, the RePRI+tSF approach achieves new state-of-the-art results. With the help
of our tSF module, the RePRI+tSF obtains consistent performance improvement than
RePRI, on 1-way 1-shot and 5-shot tasks under VGG-16 and ResNet-50 backbones.

6.3 Few-Shot Object Detection

Datasets and Setting PASCAL VOC and COCO Datasets: PASCAL VOC [9] are
randomly sampled into 3 splits, and each contains 20 categories. For each split, there
are 15 base and 5 novel categories. Each novel class has K = 1, 2, 3, 5, 10 objects
sampled from the train/val set of VOC2007 and VOC2012 for training, and the test set
of VOC2007 for testing. COCO [23] use 60 categories disjoint with VOC as base set,
and the remaining 20 categories are novel set with K = 1, 2, 3, 5, 10, 30 shots. The total
5k images randomly sampled from the validation set are utilized for testing, while the
rest for training.

Table 7. The results on COCO dataset. we re-
port the performance (mAP ) of DeFRCN under
ResNet-101 with tSF module over multiple runs.
The dimension n of θ in tSF is set to 5.

Shot NumberMethod / Shots w/G 1 2 3 5 10 30

TFA [59] % 4.4 5.4 6.0 7.7 10.0 13.7
FSDetView [65] % 4.5 6.6 7.2 10.7 12.5 14.7

DeFRCN [37] % 9.3 12.9 14.8 16.1 18.5 22.6
DeFRCN+tSF % 9.9 13.5 14.8 16.3 18.3 22.5

TFA [59] " 1.9 3.9 5.1 7.0 9.1 12.1
FSDetView [65] " 3.2 4.9 6.7 8.1 10.7 15.9

DeFRCN [37] " 4.8 8.5 10.7 13.6 16.8 21.2
DeFRCN+tSF " 5.0 8.7 10.9 13.6 16.6 20.9

Evaluation Setting: Following [59, 65,
20, 68, 37], we conduct experiments on
two evaluation protocols: few-shot ob-
ject detection (FSOD) and generalized
few-shot object detection (G-FSOD).
The setting of FSOD only observes the
performance of novel set. More com-
prehensively, that of G-FSOD consid-
ers both novel set and base set.
Comparison with State-of-the-arts
Tab. 6 and Tab. 7 present our evalua-
tion results on VOC and COCO. Com-
paring with existing few-shot object de-
tection methods, the DeFRCN+tSF ap-
proach achieves new state-of-the-art on
VOC and COCO. On VOC three dif-
ferent data splits, under the FSOD and
G-FSOD setting, the indicators of all
shots have been improved to a certain extent afer adding tSF module. We achieve around
2.6AP improvement over the DeFRCN in all shots under G-FSOD setting. On COCO
dataset, DeFRCN+tSF consistently outperforms DeFRCN in 1, 2, 3 and 5 shots.

7 Conclusions

In this paper, we propose a transformer-based semantic filter (tSF) for few-shot learn-
ing problem. tSF leverages a well-designed transformer-based structure to encode the
knowledge from base dataset and novel samples. In this way, a target-aware and image-
aware feature can be generated via tSF. Moreover, tSF is a universal module, which
can be applied into multiple few-shot learning tasks, e.g., classification, segmentation
and detection. In addition, the parameter size of tSF is half of that of a standard trans-
former (less than 1M ). The experimental results show that tSF is able to improve the
performances about 2% in multiple classic few-shot learning tasks.



tSF: Transformer-based Semantic Filter for Few-Shot Learning 15

References
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