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A Theoretical Analysis and Complete Proofs

In this section, we explain the details of Theorem 1 in the main paper, and also
formally describe Theorem 2. We start with giving additional definitions and
providing a useful lemma and its proof, which invoked through the proof of the
theorems. We then formally prove the arguments in Theorem 1 and 2.

A.1 Additional Definition, Lemma, and Theorem

Definition 4 ((&,E, 7) Calibrated Transferability Statistics). The trans-
ferability graph can be further described by the following three components:

a=EEEq+q [)\g:’cc - trans((d, ¢), (', c))} ,
5 =E4EEe 2. [)\Zf ~trans((d, c), (d, c’))} ,
ﬁ = IEdEd’7t$dﬂ4:'cl[<:c’7éc [AZ:;;C/ . trans((d, C), (dlv Cl)):| 3

d.c Ny o \Y . . . .
where X ¢ = ( A‘;; ’) denotes the distance calibration coefficient.
) ,C

Lemma 1. Letn, 7w > 0 and ¢ : R = R, ¢(z) = log(n+7exp(x)). Given a finite
sequence x1,Ts,...,xy € R, it holds that

1 X 1 X

Proof. Note that ¢ is smooth and thus twice differentiable for all x € R. We
obtain the second derivative of ¢ as

N(:E) _ nmexp(z)

—_— R.
ot rep@) 0 €

Therefore, ¢ is convex. Thus, by Jensen’s inequality, we obtain that ﬁ sz\i1 o(x;)

© (ﬁ Zf\il xi), which completes the proof.

Theorem 2 (ZBc,DA as an Upper Bound). Given a multi-domain long-tailed
dataset S with domain label space D and class label space C satisfying |D| > 1
and |C| > 1, let Z be the representation set of all training samples. It holds that

Esoon(2, (1)) > Nlog (1D — 1+ DI(lc] ~ Dy exp (URL .5 — 18 . §— UL 5)) | (5)

where (a, B, v) are the calibrated transferability statistics for S defined in Defini-
tion 4.

Y
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A.2 Proof of Theorem 1

Recall that M =D x C := {(d,c) : d € D,c € C} is the set of all domain-class
pairs. Lgopa is given by

Z Z log €Xp (—a(z“ Md,ciN))

Leooa(Z,{1})

z; eZ deD\{d,-,} Z(d’,d)e/\/{\{(d“ci)} exp (—d(z;, Nd/,c/))
= > loooa(zi, {1}),
z;,€EZ

where lpopa (2, {p}) is the sample-wise BoDA loss. We rewrite fgopy in the fol-
lowing format

1 _a (2] ci
EBODA(Z’h {IJ’}) = _W Z log exp ( (Z Hd, L))
deD\{d;} Do (@ e eM\{(di i)y ©XP (—d(2Zi, par er))

e ooy €D (—d(zi, pa o
~log 2 (e e M\ [(diyer)} P (=d( : )

HdeD\{di} exp (*H(Zi, Hd.c;))

Z(d’,c’)eM\{(di,ci)} exp (—d(z;, B ')
exXp (_\Dl%l ZdeD\{di} d(z;, Nd,ci))

= log (6)

We will first focus on the term in the numerator of Eqn. (6). We can rewrite the
sum into two terms

Z exp (—d(2i, o))

(dlvc/)EM\{(d’ivci)}

= Z Z exp Zz7ﬂd’ C/ +Z Z GXP Zza/»"d’ ’))

d'eD\{d;} c’€{c;} d'€D c’eC\{c;}

T1 T2

Since the exponential function exp(-) is convex, we apply Jensen’s inequality on
both T and T5:

1 ~
Ty = (ID|—1)exp _mi—l Z Z d(z;, pa ')

d’e€D\{d;} c’€{c;}

1 ~
(‘D| - 1) eXp | — |D| 1 Z d(z’iv l"’d/yci) )
d’'eD\{d;}

7 > [Pl = Vexp | ~prar—y |C| 5 Y dmpee)

d’E'D c’eC\{ci}



20 Y. Yang et al.

Thus, by using exp(z)/exp(y) = exp(x — y) and rearranging terms, we bound
lgopa by

Lpopa(Zi, {12})

210!2}(\D\*1+\D|(\C‘*1)CXP<W%1 > d(2i, prar.c,) — PIIe=1) ‘C‘71 Z Z (2i; B o >>
d'eD crec\{

d'eD\{d;}

T(zi{n})

Leveraging Lemma 1, by setting n = |D|—1, 7 = |D|(|C|-1), and x; = T'(z;, {u}),
we further bound Lgepa(Z, {11}) by

Loooa(Z,{p}) = > looa(zi, {1})

z;€Z
> > log (ID| = 1+ [D[(IC] — 1) exp (T'(z, {1})))
z;,€Z
> |Z]log (ID—HIDI(C exp<|z ZTZ“{M}»
2, €2

(7)

Note that the argument of the exp(-) in Eqn. (7) can be expanded and further
rearranged as

‘Z| Z za{iu’} ‘Z‘ Z | Z a(ziaud/,ci)_

7, €2 d’eD\{di}

\Z\Zm |cw §2 > lenmee)

d'eD c'eC\{ci}

Z Z Zu /J'd/ cl -

z,€Z d’eD\{d;}

\Z\ IDI—1

\Z\ Dl(c] - 1) |C|—1 Z Z (24, pa,.er)

z,€Z c’eC\{c;}

Tg

1
‘Z‘ |D| |C| Z Z Z sz#d' c’ . (8)

z,€Z d'e€D\{d;} ¢’€C\{c; }

Ty

Recall that each z; € Z belongs to a domain-class pair (d;,¢;), and Z4 . de-
notes the representation set of Sq . with size Ng .. For simplicity, we remove the
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subscript ¢ in the following derivation. We can further rewrite T, 73, T, as

T“:|Z|\D| D

cec deD d'eD\{d} z€2a,c

1 ~
-z \D| |CHD|(|D| DEEqEy2dBzez, . [ Nac-d(z, pa.c) |
—_—
d(zvf"d',c)
Pl 9
= Tz dBar 24 zezdb[ (2, par )] 9)

T = G ZZ 2 2 dmma)

CEC deD c’eC\{c} zE2q4,c

1 1 N
= ——————|ClID|(|C] - VEGEEy2Esez,. [ Nic - d(z, pao
Zioie - AP = DB B, | fa A8 0]
d(z,p4,c7)
_
= EdEcEc/?ﬁcEZEZd’C I:d(z7 Md,c’)] R (10)

z
T BT ZZ 2D ) dpae)

cec deD d'eD\{d} c’eC\{c} z€24,c
1 [C[D|(|P] —1)(IC] — 1)

= — EqBy2qEcBotcBycz, [ Nac-d(z, pa o)
2] D|(jc] - 1) 7 Fetecta [—,—]

d(Z,Hd’,c')

Cl(ID] -1
= ||(|Z|) EdEd’idEcEc’?écEZEZd,c [d(z’ p’d/ﬂ’)] ’ <11>

~

where (a, 8,7) are the transferability statistics for S as in Definition 3. Finally,
replace |Z| = N and combine Eqn. (7), (8), (9), (10), and (11), we have

Loom(Z, {1}) > Nlog (ID] = 1+ [DI((C] — exp (1421 o — (6] g — EIUBI=D o))

This completes the proof.

A.3 Proof of Theorem 2

We first define a notion of calibrated distance d. Let z € 24, we have

~ '~ N. ' et v
d(zvu’d’,c’) é )\27; . d(Z,[J,d/’C/) = (]\Z) . d(Z,ll,d/_’C/).

From Theorem 1, by substituting d with 8, it holds that

Laoon (2, {1}) = Loaon(Z. {1})],__
>N10g(|D|—1+|D\(|C|—1)exp(T -Tp—1T7)),

(12)
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where T7,, Tj, and T, can be expressed as

C||ID
T, = | H |]E EdEd';edEzezdL[Ndo'd(Z7Md/,c)}

Cl|D ~
= | ‘L\‘] |IE EdEd';édEzezdc[)‘dfcc'Nd,c'd(Z,Md',c)]
T ——
d(Z,Md’,c)

C||D
= | l\\[ |]E EaEa 24 [)\dc Esez,. [d(z7ﬂd’,c)]], (13)

[e3

C
Ty = |N|EdE E ;écEzeZdb[Ndc'd(Z:Hd,c/)}
_ Clgpr,. & AN L d
- N dicllc’ e zEZd,C[ d,c * d,c (Z,Nd,c')]
—_——

d(z,pq,.r)

c c
= | | IEulE Ec '#c |:)\Z c EZEZd,c [d(z7 N'd,c’)]:|7 (14)

B

Cl(|ID| -1 ~
T,; = %EdEd’idEcEc’yﬁcEZGZdﬁ [Nd,c . d(Z, ll/d’,c/):l

C D - ]. ! C/ ~
= %EdEd’;édEcEc’#cEzEZd& [)\Z,; “Ngc-d(z, par o) |
—_— ————
d(z,pqr o)

cl(ID| -1 .
= %EdEd’;édEcEc’yﬁc [Adc “Ezez,. [d(Z,Md/,c/)H7 (15)

=21

where (&, 3,%) are formally defined in Definition 4. Combine Eqn. (12), (13),
(14), and (15), we have

Laoon(Z, {n}) = Nlog (D] = 1+ DI(Ic| — Dexp (YPL -G - K] . 5 LEUURED 7)),

which completes the proof.

B Additional Discussions, Properties, and Interpretations

B.1 Unified Interpretation for Single- and Multi-Domain Imbalance

In the main paper we show that, in the multi-domain setting, label imbalance im-
plicitly brings label divergence across domains, which brings additional challenges
and potentially harms MDLT performance. Here we provide a unified viewpoint
from the label divergence perspective to explain single- and multi-domain data
imbalance.
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To elaborate, in single domain imbalanced learning, we essentially cope with
the divergence between the imbalanced training label distribution and the uni-
form test label distribution:

div(p(y) || U),

where div(+||-) indicates certain divergence measure. In contrast, when extending
to the multi-domain scenario, given |D| domains with (different) imbalanced
label distributions, the target divergence becomes

Zdiv(pd(y) | U) + const - Z div(pa(y) || par (),
d

d#d’

imbalanced training divergence across domains

where one not only needs to tackle the imbalanced training data for each do-
main d € D in order to generalize to the balanced test set, but also takes into
consideration the label divergence across domains.

Such interpretation echoes our BoDA objective: We design the DA loss for
cross-domain distribution alignment to tackle the latter term, and further adapt
it to BoDA via balanced distance to address the former term.

B.2 A Probabilistic Perspective of L;, Derivation

Recall M =D x C the set of all (d, ¢) pairs. Let (x;, ¢;, d;) denote a sample with
feature z;. Following the metric learning setting [17], we model the likelihood
of pg. given z; to decay exponentially with respect to their distance in the
representation space. Such modeling can be viewed as performing a random
walk with transition probability inversely related to distance [16]. For domain-
class pairs that share the same class label but different domain labels with x;
(i.e., (d,c;),d # d;), the normalized likelihood of pg ., given z; can be written
as

exp (—d(zi, Ha,c.))
Z(d',c')e/\/{\{(di,c,;)} exp (—d(zi, par 1))’
where the denominator is a sum over all domain-class pairs except (d;, c;). As
motivated, we want to concentrate all z; from the same class across different
domains (i.e., smaller «), while separating z, from different classes within and
across domains (i.e., larger 3, v). Therefore, the positive domain-class pairs with
X; are those share the same class labels but different domain labels. As a result,
we define the per-sample loss as the average negative log-likelihood over all
positive domain-class pairs:

1 €Xp (_d(zivud c))
boa(zi {p}) = — 75— log — :
Dl-1 dE'D%di} 2o ey M\{(ds )y P (—d(Zi, B )

P((d,ci)|z:) =

Given a set of all training samples with representation set as Z, the total loss
can then be derived as

-1 exp(id(zia“d 0))
Lo(ZAnY) = > =— > log = :
pee IDI=1 Sy Daenem((dieny P (=d(i; par )
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B.3 Intrinsic Hardness-Aware Property of BoDA

Below, we demonstrate an additional property of BoDA: the intrinsic hardness-
aware property. Specifically, we analyze the gradients of BoDA loss with respect
to positive (d,c¢) pairs and different negative (d, ¢) pairs. We observe that the
gradient contributions from hard positives/negatives are larger than that from
the easy ones, indicating that BoDA automatically concentrates on the hard (d, c)
pairs, where penalties are given according to their hardness.

Recall that the sample-wise calibrated BoDA loss fp.pa can be written as

z;30DA(Z2’7 {N})

d,ei
1 exp (_)‘d;,lid(zi’ Hd,cﬂ)
= T T Z log < o
| | - deD\{d:} Z(d/:c,)eM\{(di;Ci)} eXp <_/\di:éid(zi’ Ndﬁc’))

\dei
exp (- R dano i) )

d(zl-,ud.n)

d’,c’

1
TP

1
deD\{d;} Z(d',C')EM\{(di,Ci)} exp <_

i:Ci

d
Ndi,c

where z; € Z4, .,. For convenience, we further define the probability of z; being
recognized as belonging to pq,. as

)\d,‘c(h
exp <— N d (2, ud,c))

P & T , (dyc) € M\ {(di,c;)}.
D (@ ) eM\[(dirci)} P (— N‘Z d(Zmud/,c/))

1%

Note that the essential goal of Eqn. (16) is to align (minimize) positive distances
d(z;, pa,c,) and to separate (maximize) negative distances d(z;, ptar, s ). Therefore,
we analyze the gradients with respect to positive distance and different negative
distances to explore the properties of fgopa. Specifically, we have

6[730“(@, {n})

0d(z4, td,c;)
1 5 9 { Aber S AL
= — % (24, pa.e,) — log exp <7#°’d(z,;,p,d, c/)>
Dl-1 od(z;, pg.c Ny, ¢ T Ny, ¢ ?
DI =1 i,y 040 Hac.) dier ()M dsc)} dies
)\d.cé
1 N[ o (it )
a ‘D‘ -1 Ndx-,cm B

/\d’.z’
deD\{d:} D@ eM\{(diser)} EXP <—ﬁd(zi, Hd/,c'))

1 Nie, ;
= \'D\ —1 Z N(1+u) (1 - Pé,cz)
deD\{d;} ~"dic;

x Z N(’i’,c, (1 - P(g_ﬁ) ’

deD\{d;}
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0d(z;, prar o)
= o [ o a0
== - d(zi, prae,) — log > exp | —~=2d(zi, prar o)
D126d¢7,c/{NC i Ny, e :
PI=1 oy 040 pare) dives (@) EMV{(diyeo)} e
g
1 )\Z/’Z/ exp | — Ndlwlz d(Z,j.,N,],,;m)
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1 Ni o
=- > Pl .
— 14v) ~ d'sc
IP| deD\{d } Né JCi )
o 7Nd”/_’(<./Pd,,c,.
Combine the above results, we have
. 82}3 palZ; ;
positive: M x Z Nj., (1-Pi.), (17)
iy Md,c; deD\{d;}
. 52}3 DA\ Z; i
negative: Obsona (2:, {1}) < =Ng o Py - (18)

od (Zia ll'd/,c’)

Interpretation. Eqn. (17) and (18) illustrate several interesting and important
properties of BoDA:

1. Intrinsic hard positive and negative mining. For positive pairs, we observe that
the gradient magnitudes are proportional to (1— P} . ), where for an easy (d, c;)
pair, Py, ~1and (1— P;,) =0, and for a hard (d,c;) pair, Pj . =~ 0 and
(1- Pé,c,») ~ 1, indicating that the gradient contributions from hard positives
are larger than easy ones. Similarly, for negative pairs, the gradient magnitudes
are proportional to Pé,)c,, where an easy (d’,¢’) pair has Pé,’c, ~ 0 and a hard
(d, ¢;) pair induces Pj,,c, =~ 1, showing that the gradient contribution is large
for hard negatives and small for easy negatives. Therefore, BoDA is a hardness-
aware loss with intrinsic hard positive/negative mining property.

2. Scaling gradients according to the number of samples of each (d,c). Further-
more, as we have shown in Fig. 5, when data are imbalanced across different
(d, ¢) pairs, minority pairs with smaller number of samples would induce worse
Wd,c estimates. We further observe that the gradients for both positive and neg-
ative pairs are proportional to their number of samples (i.e., N, d.c; and Ng o)
This suggests that BoDA automatically adjusts the gradient scale for each (d c)
according to how accurate the estimation of pg . is. The appealing property
highlights that BoDA also implicitly calibrates the gradient scale, emphasizing
gradients from majority pairs (which are more reliable) while suppressing gra-
dients from minority pairs (which are less reliable). Such behavior is essential
for better statistics transfer as we demonstrated in the main paper.

C Pseudo Code for BoDA

We provide the pseudo code of BoDA in Algorithm 1.
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Algorithm 1 Balanced Domain-Class Distribution Alignment (BoDA)

Input: Training set D = {(x, ¢i,d;)}iL1, all domain-class pairs M = {(d,c)}, en-
coder f, classifier g, total training epochs F, calibration parameter v, loss weight w,
momentum o

for all (d,c) € M do

Initialize the feature statistics {u,(j(,)():, Sffi
end for
for e =0 to E do

repeat

Sample a mini-batch {(x;, ¢, d;)}ix; from D
for i = 1 to m (in parallel) do

z; = f(xi)
i =g(z:)
end for

Calculate Lpops using {z;} based on Eqn. (4)
Calculate Lcg using % S LG, )
Do one training step with loss Loz + wLgepa
until iterate over all training samples at current epoch e
/* Update feature statistics with momentum updating */
for all (d,c) € M do
Estimate current feature statistics {pa,c, Xd,c}
pit —axpll+ (11— ) < pa
S ax ZE) +(1-a) x D
end for
end for

D Details of MDLT Datasets

In this section, we provide the detailed information of the curated MDLT datasets
we used in our experiments. Table 10 provides an overview of the datasets. Table
11 provides the image examples across domains for each MDLT dataset.

Digits-MLT. We construct Digits-MLT by combining two digit datasets: (1)
MNIST-M [15], a variant of the original MNIST handwritten digit classification
dataset [26] with colorful background, and (2) SVHN [36]. The original MNIST-
M dataset contains 60,000 training samples and 10,000 testing examples, and the
original SVHN dataset contains 73,257 images for training and 26,032 images
for testing. Both datasets have examples of dimension (3,32, 32) and 10 classes.
We create Digits-MLT with controllable degrees of data imbalance, where we
keep the maximum number of samples each (d, ¢) to be 1,000, and manually vary
the imbalance degree to adjust the number of samples for minority (d,c). For
validation and test set, we use the original test set of the two datasets, but keep
the number of samples each (d, ¢) to be 800.

VLCS-MLT. The original VLCS dataset [14] is an object recognition dataset that
comprises photographic domains d € { Caltech101, LabelMe, SUN09, VOC2007
}, with scenes captured from urban to rural. The dataset contains 5 classes with
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Table 10. Detailed statistics of the curated MDLT datasets used in our experiments.
For the synthetic Digits-MLT dataset, we manually vary the minimum (d,c) size to
simulate different degrees of imbalance.

Dataset # Domains # Classes Max (d,c) size Min (d,c) size # Training set # Val. set # Test set
Digits-NLT 2 10 1,000 10 ~ 1,000 20,000 ~ 4,956 16,000 16,000
VLCS-MLT 4 5 1,454 0 9,872 285 572
PACS-MLT 4 7 741 5 7,891 700 1,400
0fficeHome-MLT 4 65 84 0 11,688 1,300 2,600
Terralnc-MLT 4 10 4,455 0 23,269 353 708
DomainNet-MLT 6 345 778 0 468,574 39,240 78,761

Table 11. Overview of images from different domains in all MDLT datasets. For each
dataset, we pick a single class and show illustrative images from each domain.

Dataset Domains
MNIST-M SVHN
Digits-MLT 3 .
Caltech101 LabelMe SUNO09 VOC2007
VLCS-MLT n .t(
Art Cartoon Photo Sketch
PACS-MLT %AZV\
T
Art Clipart Product

0fficeHome-MLT

b

Photo
[

TerraInc-MLT

(camera trap location)

L43

L46

DomainNet-MLT

Clipart

2

Infographic

Painting
8
- -

QuickDraw Photo Sketch
S

10,729 examples of dimension (3, 224, 224). To construct VLCS-MLT, for each (d, ¢)
we split out a validation set of size 15 and a test set of size 30, and leave the

rest for training.

PACS-MLT. The original PACS dataset [28] is an object recognition dataset that
comprises four domains d € { art, cartoons, photos, sketches } with image style
changes. It contains 7 classes with 9,991 examples of dimension (3,224,224).
We construct PACS-MLT in a simialr manner as VLCS-MLT, where we split out a
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validation set of size 25 and a test set of size 50 for each (d,c), and leave the
rest for training.

OfficeHome-MLT. The original 0fficeHome dataset [47] includes domains d € {
art, clipart, product, real }, containing 15,588 examples of dimension (3, 224, 224)
and 65 classes. We make 0fficeHome-MLT by splitting out a validation set of
size 5 and a test set of size 10 for each (d, ¢), leaving the rest for training.

Terralnc-MLT. TerraInc-MLT is constructed from Terralncognita dataset [2],
a species classification dataset that contains photographs of wild animals taken
by camera traps at locations d € {1100, L38,L43,1L46}. The dataset contains 10
classes with 24,788 examples of dimension (3,224,224). For each (d, ¢), we split
out a validation set of size 10 and a test set of size 20, and use all remaining
samples for training.

DomainNet-MLT. We construct DomainNet-MLT using DomainNet dataset [38],
a large-scale multi-domain dataset for object recognition that consists of six
domains d € { clipart, infograph, painting, quickdraw, real, sketch }, 345 classes,
and 586,575 examples of size (3,224, 224). To construct DomainNet-MLT, for each
(d, c) we split out a validation set of size 20 and a test set of size 40, and leave
the rest for training.

E Experimental Settings

E.1 Implementation Details

For the synthetic Digits-MLT dataset, we fix the network architecture as a small
MNIST CNN [19] for all algorithms, and use no data augmentation. For all other
MDLT datasets, following [19], we use the pretrained ResNet-50 model [21] as the
backbone network for all algorithms, and use the same data augmentation pro-
tocol as [19]: random crop and resize to 224 x 224 pixels, random horizontal flips,
random color jitter, grayscaling the image with 10% probability, and normaliza-
tion using the ImageNet channel statistics. We train all models using the Adam
optimizer [24] for 5,000 steps on all MDLT datasets except DomainNet-MLT, on
which we train longer for 15,000 steps to ensure convergence. We fix a batch size
of 64 per domain for Digits-MLT experiments, a batch size of 32 per domain for
DomainNet-MLT experiments, and a batch size of 24 per domain for experiments
on all other datasets.

For all MDLT datasets except 0fficeHome-MLT and TerraInc-MLT, we de-
fine many-shot (d,c) pairs as with over 100 training samples, medium-shot as
with 20~100 training samples, and few-shot as with under 20 training samples.
For 0fficeHome-MLT, we define many-shot as (d, ¢) pairs with over 60 training
samples, medium-shot as with 20~60 training samples, and few-shot as with un-
der 20 training samples. For TerraInc-MLT, we define many-shot as (d, c¢) pairs
with over 100 training samples, medium-shot as with 25~100 training samples,
and few-shot as with under 25 training samples.
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E.2 Competing Algorithms

We compare BoDA to a large number of algorithms that span different learning
strategies. We group them according to their categories, and provide detailed
descriptions for each algorithm below.

Vanilla: The empirical risk minimization (ERM) [46] minimizes the sum of

errors across all domains and samples.

Distributionally robust optimization: Group distributionally robust optimiza-

tion (GroupDRO) [40] performs ERM while increasing the importance of

domains with larger errors.

Cross-domain data augmentation: Inter-domain mixup (Mixup) [50] per-

forms ERM on linear interpolations of examples from random pairs of do-

mains and their labels. Style-agnostic network (SagNet) [35] disentangles
style encodings from image content by randomizing and augmenting styles.

— Meta-learning: Meta-learning for domain generalization (MLDG) [27] lever-
ages meta-learning to learn how to generalize across domains.

— Domain-invariant representation learning: Invariant risk minimization (IRM)
[1] learns a feature representation such that the optimal linear classifier on top
of that representation matches across domains. Domain adversarial neural
networks (DANN) [15] employ an adversarial network to match feature dis-
tributions. Class-conditional DANN (CDANN) [31] builds upon DANN but
further matches the conditional distributions across domains for all labels.
Deep correlation alignment (CORAL) [45] matches the mean and covariance
of feature distributions. Maximum mean discrepancy (MMD) [29] matches
the MMD [18] of feature distributions.

— Transfer learning: Marginal transfer learning (MTL) [4] estimates a mean
embedding per domain, passed as a second argument to the classifier.

— Multi-task learning: Gradient matching for domain generalization (Fish) [42]
maximizes the inner product between gradients from different domains through
a multi-task objective.

— Imbalanced learning: Focal loss (Focal) [32] reduces the relative loss for well-

classified samples and focuses on difficult samples. Class-balanced loss (CBLoss)

[10] proposes re-weighting by the inverse effective number of samples. The

LDAM loss (LDAM) [6] employs a modified marginal loss that favors mi-

nority samples more. Balanced-Softmax (BSoftmax) [39] extends Softmax

to an unbiased estimation that considers the number of samples of each class.

Self-supervised pre-training (SSP) [52] uses self-supervised learning as a first-

stage pre-training to alleviate the network dependence on imbalanced labels.

Classifier re-training (CRT) [23] decomposes the representation and classifier

learning into two stages, where it fine-tunes the classifier using class-balanced

sampling with representation fixed in the second stage.

E.3 Hyperparameters Search Protocol

For a fair evaluation across different algorithms, following the training protocol
n [19], for each algorithm we conduct a random search of 20 trials over a joint
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Table 12. Hyperparameters search space for all experiments.

Condition Parameter Default value Random distribution
General:
learning rate 0.00005 1QUriform(=5,-3.5)
ResNet dropout 0 RandomChoice([0,0.1,0.5])
generator learning rate 0.00005 Uniform(=5,-3.5)
discriminator learning rate 0.00005 Uniform(=5,-3.5)
learning rate 0.001 1QUniform(=4.5,-3.5)
not ResNet generator learning rate 0.001 1QUniform(—4.5,-2.5)
discriminator learning rate 0.001 1QUniform(=4.5,-2.5)
e weight decay 0 0
Digits-MLT generator weight decay 0 0
. weight decay 0 1QUniform(—6,—2)
t D ts-MLT .
not igits generator weight decay 0 1QUniferm(=6,-2)
Algorithm-specific:
IRM lambda 100 10Uniform(—1,5)
’ iterations of penalty annealing 500 Uniform(0,4)
GroupDRO eta 0.01 1QUniferm(=3,—1)
Mixup alpha 0.2 10Uniform(0,4)
MLDG beta 1 1gUniform(~1,1)
CORAL, MMD gamma 1 1Uriform(-1,1)
lambda 1.0 1QUniform(~2,2)
iserimine : Uniform(—6,—2)
DANN, dfscr%m?na‘tor weight decay 0 18 e
discriminator steps 1 gUniform(0,3)
CDANN —
gradient penalty 0 1(Uniform(=2,1)
adam [ 0.5 RandomChoice([0, 0.5])
MTL ema 0.99 RandomChoice(].5, .9, .99, 1])
SagNet adversary weight 0.1 1QUniferm(=2,1)
Fish meta learning rate 0.5 RandomChoice([.05, .1, .5])
Focal gamma, 1 0.5 % IOUniform(O,l)
CBLoss beta, 0.9999 1 _ 1QUniform(=5,-2)
; Uniform(—1,—0.1)
LDAM max_m 0.5 10 '
scale 30 RandomChoice([10, 30])
nu 1 10Uniform(—0.5,0)
BoDA " ; -
© BoDA loss weight 0.1 1QUniform(-2,-0.5)

distribution of its all hyperparameters. We then use the validation set to select
the best hyperparameters for each algorithm, fix them and rerun the experiments
under 3 different random seeds to report the final average accuracy (and standard
deviation). Such process ensures the comparison is best-versus-best, and the
hyperparameters are optimized for all algorithms.

We detail the hyperparameter choices for each algorithm in Table 12.
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E.4 Settings for DG Experiments

For DG experiments, we strictly follow the training protocols described in [19].
Across all benchmark DG datasets, we keep the same hyperparameter search
space for BoDA as in Table 12. We fix all other training parameters unchanged
so that the results of BoDA are directly comparable to the results in [19].

For model selection, we use the training-domain validation set protocol in
[19] with 80% — 20% training-validation split, and the average out-domain test
performance is reported across all runs for each domain.

F Complete Results for MDLT

We provide complete evaluation results on the five MDLT datasets. In addition
to the reported results in the main paper, for each dataset we also include the
accuracy on each domain together with the averaged and the worst accuracy.

F.1 VLCS-MLT

Table 13. Complete evaluation results on VLCS-MLT.

Accuracy (by domain) Accuracy (by shot)

Algorithm C L S v Average Worst Many Medium Few Zero

ERM 99.3 £0.3  53.6 £1.1 65.9 +1.2 86.4 £0.7 76.3 £0.4 53.6 £1.1 84.6 £0.5 76.6 04 — 32.9 +0.4
IRM 99.1 £0.4 52.3 £0.7 68.8 £1.4 86.0 £0.3 76.5 £0.2 52.3 £0.7 85.3 £0.6 75.5 £1.0 — 33.5 £1.0
GroupDRO 98.7 £0.3 54.1 +1.3 67.5 £1.5 86.7 £0.3 76.7 +0.4 54.1 £1.3 85.3 £0.9 76.2 £1.0 — 34.5 £2.0
Mixup 99.3 £0.3  52.7 £1.3 66.1 +0.0 85.3 £1.1 75.9 +0.1 52.7 £1.3 84.4 £0.2 77.1 06 — 29.2 +1.4
MLDG 99.3 £0.3  53.6 £0.5 68.3 +0.4 86.4 £0.5 76.9 +0.2 53.6 £0.5 84.9 £0.3 77.5 +£1.0 — 34.4 +0.9
CORAL 99.3 £0.3 51.6 £0.7 67.5 £1.8 85.3 £0.9 75.9 £0.5 51.6 £0.7 84.3 £0.6 75.5 £0.5 — 34.5 £0.8
MMD 99.6 £0.2 53.4 £0.3 65.6 £0.8 86.7 £1.1 76.3 £0.6 53.4 £0.3 84.5 £0.8 T7.1 0.5 — 32.7 £0.3
DANN 99.6 £0.2  54.1 £0.3 69.9 +0.2 86.7 £0.0 77.5 £0.1 54.1 £0.3 85.9 £0.5 76.0 £04 — 38.0 +2.3
CDANN 99.6 £0.4 53.6 £0.4 67.5 +0.6 85.8 £0.8 76.6 +0.4 53.6 £0.4 84.4 +0.7 77.3 08 — 35.0 0.8
MTL 99.1 £0.2 529 £0.5 66.7 +0.4 86.7 £0.6 76.3 £0.3 52.9 £0.5 84.8 £0.9 76.2 0.6 — 33.3 £1.4
SagNet 99.6 £0.4 52.3 +0.2 67.2 £0.2 86.2 £1.0 76.3 +0.2 52.3 £0.2 85.3 £0.3 75.1 +0.2 — 32.9 +0.3
Fish 98.7 £0.3 54.3 £0.4 69.4 +0.8 87.6 £0.4 77.5 +0.3 54.3 £0.4 86.2 £0.5 76.0 £04 — 35.6 +2.2
Focal 99.1 £0.4 52.3 £0.2 66.1 +0.8 84.9 +0.2 75.6 £0.4 52.3 £0.2 84.0 £0.2 75.5 £0.6 — 32.7 0.9
CBLoss 99.1 £0.2  52.5 £0.5 68.5 £1.0 87.1 £1.0 76.8 £0.3 52.5 £0.5 84.8 £0.7 77.5 £14 — 33.2 +1.6
LDAM 98.9 0.2 52.9 £0.2 69.4 +1.4 88.0 £1.3 77.5 £0.1 52.9 £0.2 86.5 +0.4 75.5 05 — 35.2 +£0.6
BSoftmax 99.3 £0.3  52.9 £0.9 68.0 £0.2 86.7 £0.8 76.7 £0.5 52.9 £0.9 84.4 +0.9 78.2 £0.6 — 34.3 £0.9
SSpP 99.1 £0.2  52.3 £1.0 68.0 +0.2 85.1 +0.4 76.1 +0.3 52.3 £1.0 83.8 £0.3 76.0 +1.2 — 37.1 +0.7
CRT 99.6 £0.3 51.4 £0.3 66.9 £0.8 86.9 +0.4 76.3 +0.2 51.4 £0.3 84.5 +0.1 T77.3 0.0 — 31L.7 +1.0
BoDA, 99.3 £0.3 51.4 £0.3 70.2 £0.4 86.7 £0.3 76.9 £0.5 51.4 £0.3 85.3 £0.3 77.3 £0.2 — 33.3 £05
BoDA-M,. 100.0 0.0 53.4 £0.3 68.5 £0.4 88.0 +0.8 77.5 £0.3 53.4 £0.3 85.8 £0.2 77.3 0.2 — 35.7 £0.7
BoDA,. . 99.3 £0.3 53.4 +0.3 68.5 +0.4 88.0 +0.4 77.3 +0.2 53.4 +£0.3 85.3 £0.3 78.0 0.2 — 38.6 +0.7
BoDA-M,. . 100.0 +0.0 55.4 +0.5 72.6 +0.3 84.7 +0.5 78.2 +0.4 55.4 +0.5 85.3 £0.3 79.3 +0.6 — 43.3 £1.1

BoDA vs. ERM +0.7 +1.8 +6.7 +1.6 +1.9 +1.8 +0.7 +2.7 — +10.4
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F.2 PACS-MLT

Table 14. Complete evaluation results on PACS-MLT.

Accuracy (by domain) Accuracy (by shot)
Algorithm A C P S Average Worst Many Medium Few Zero
ERM 96.8 £0.1 97.0 £0.3 98.9 £0.3 95.8 £0.2 97.1 +0.1 95.8 £0.2 97.1 £0.0 97.0 £0.0 98.0 £0.9 -
IRM 96.8 £0.1 96.3 £0.7 98.7 £0.2 95.2 £0.4 96.7 £0.2 95.2 £0.4 96.8 £0.2 96.7 £0.7 94.7 £1.4 -
GroupDRO 96.9 £0.2 97.0 £0.4 99.0 £0.1 95.3 +0.4 97.0 +0.1 95.3 £0.4 97.3 +0.1 95.3 £1.2 94.7 +3.6 —
Mixup 96.5 £0.3 96.9 £0.7 98.5 0.2 95.1 0.2 96.7 +0.2 95.1 +0.2 97.0 +0.1 96.7 +0.3 91.3 +2.7 —
MLDG 96.6 £0.2 97.2 +0.3 98.5 £0.1 94.1 £0.3 96.6 £0.1 94.1 £0.3 96.8 +0.1 96.3 £0.7 92.7 +0.5 —
CORAL 96.9 £0.4 97.0 £0.5 98.3 £0.3 94.3 £0.7 96.6 £0.5 94.3 £0.7 96.6 £0.5 97.0 £0.8 94.7 +0.5 -
MMD 96.8 £0.2 97.1 £0.4 97.4 £0.3 96.3 £0.3 96.9 +0.1 96.2 £0.2 96.9 £0.2 97.0 £0.0 96.7 £0.5 -
DANN 95.7 £0.3 97.2 £0.4 98.9 £0.1 94.3 £0.1 96.5 £0.0 94.3 £0.1 96.5 £0.1 98.0 £0.0 94.7 £2.4 -
CDANN 95.5 £0.5 96.7 £0.2 97.2 £0.3 94.9 £0.5 96.1 +0.1 94.5 £0.2 96.1 £0.1 96.3 £0.5 94.0 £0.9 —
MTL 96.3 £0.4 97.9 +0.3 98.2 £0.3 94.6 +0.7 96.7 +0.2 94.5 £0.6 96.8 +0.1 95.3 £1.7 97.3 £1.1 —
SagNet 97.0 £0.2 97.8 +0.4 98.9 +0.1 95.2 +0.3 97.2 +0.1 95.2 £0.3 97.4 +0.1 96.7 £05 95.3 £05  —
Fish 95.5 £0.2 97.9 +0.4 98.2 £0.3 95.9 +0.5 96.9 +0.2 95.2 £0.2 97.0 +0.1 97.0 £0.5 94.7 +1.1 —
Focal 96.6 £0.4 96.6 +0.8 98.1 £0.2 94.6 +0.7 96.5 +0.2 94.6 £0.7 96.6 +0.1 95.0 £1.7 96.7 +0.5 —
CBLoss 97.3 0.1 97.4 +0.5 97.8 £0.6 95.1 £0.4 96.9 +0.1 95.1 +0.4 96.8 £0.2 97.0 £1.2 100.0 0.0 —
LDAM 96.9 £0.1 96.6 £0.6 97.9 0.1 94.7 +0.2 96.5 +0.2 94.7 £0.2 96.6 +0.1 95.7 £1.4 96.0 +0.0 -
BSoftmax 96.0 £0.5 96.9 +0.6 98.8 £0.6 95.9 +0.1 96.9 +0.3 95.6 £0.3 96.6 +0.4 98.7 +0.7 99.3 +0.5 -
SSP 96.2 £0.5 96.8 £0.2 98.9 0.1 95.7 £0.3 96.9 +0.2 95.4 £0.4 96.7 +0.2 98.3 £0.5 98.0 +0.9 —
CRT 95.3 £0.2 96.7 £0.1 98.5 £0.1 94.9 +0.1 96.3 +0.1 94.9 £0.1 96.3 +0.1 97.3 £0.3 94.0 +0.9 —
BoDA, 96.9 £0.4 97.4 +0.2 98.6 +0.2 95.1 +0.4 97.0 +0.1 95.1 £0.4 97.0 £0.1 96.3 £0.5 98.0 £0.9  —
BoDA-M,. 96.6 £0.2 98.0 +0.2 99.1 +0.2 94.9 +0.1 97.1 +0.1 94.9 £0.1 97.3 £0.1 96.3 £0.5 96.0 £0.0  —
BoDA, . 96.3 £0.1 97.4 +0.5 99.4 +0.3 95.7 £0.3 97.2 +0.1 95.7 £0.3 97.4 +0.1 97.0 £0.0 94.7 +1.1 =
BoDA-M,. . 96.3 £0.4 97.7 +0.2 98.1 +0.4 96.4 £0.2 97.1 +0.2 96.3 +0.1 97.1 £0.0 97.0 £0.8 96.0 +0.0 =
BoDA vs. ERM -0.5 +0.7 +0.5 +0.6 +0.1 +0.5 +0.3 +0.0 -2.0 —

F.3 O0OfficeHome-MLT

Table 15. Complete evaluation results on 0fficeHome-MLT.

Accuracy (by domain) Accuracy (by shot)

Algorithm A C P R Average Worst Many Medium Few Zero

ERM 71.3 £0.1 78.4 0.2 89.6 £0.3 83.3 £0.2 80.7 £0.0 71.3 +0.1 87.8 £0.2 81.0 +0.2 63.1 £0.1 63.3 £7.2
IRM 70.7 £0.2 78.5 £0.8 89.4 £0.5 83.8 £0.6 80.6 £0.4 70.7 +0.2 87.6 £0.4 81.5 +0.4 61.1 £0.9 56.7 £1.4
GroupDRO 68.7 £0.9 79.0 £0.2 89.4 +0.4 83.3 £0.5 80.1 £0.3 68.7 £0.9 88.1 £0.2 80.8 £0.4 59.8 £1.2 51.7 £3.6
Mixup 72.3 £0.6 79.1 +0.4 89.7 £0.1 83.9 +0.2 81.2 £0.2 72.3 +0.6 87.9 £0.4 81.8 +0.1 64.1 £0.4 60.0 +4.1
MLDG 70.2 0.6 78.2 £0.5 89.4 £0.4 83.7 £0.3 80.4 +0.2 70.2 +0.6 87.1 +0.1 81.3 +0.3 61.3 £1.0 61.7 +1.4
CORAL 72.7 0.6 80.9 £0.3 89.9 £0.2 84.2 £0.4 81.9 0.1 72.7 £0.6 87.9 £0.1 83.0 £0.1 63.5 £0.7 65.0 £2.4
MMD 67.7 0.8 77.8 £0.2 87.4 +0.5 80.6 £0.4 78.4 +0.4 67.7 £0.8 85.2 £0.2 79.4 £0.7 58.8 £0.4 56.7 +£3.6
DANN 70.2 £0.9 77.3 £0.3 87.3 £0.5 82.1 £0.4 79.2 £0.2 70.2 £0.9 86.2 £0.1 80.0 £0.1 60.3 £1.1 61.7 +5.9
CDANN 69.4 +0.3 T77.2 +0.3 87.7 +0.2 81.5 +0.3 79.0 £0.2 69.4 +0.3 86.4 +0.6 79.8 +0.1 58.9 +0.8 50.0 +4.7
MTL 69.8 +0.6 77.6 £0.3 87.9 0.1 82.4 +0.3 79.5 £0.2 69.8 £0.6 87.3 £0.3 79.8 £0.2 61.1 +0.2 51.7 £2.7
SagNet 70.5 £0.5 79.6 £0.5 89.3 £0.4 83.9 £0.1 80.9 £0.1 70.5 +0.5 87.8 £0.4 81.9 £0.1 61.2 £0.9 56.7 +£3.6
Fish 71.3 £0.7 79.1 £0.1 90.2 +0.6 84.7 +0.4 81.3 £0.3 71.3 +0.7 88.2 +0.2 81.9 +0.3 63.2 +0.8 61.7 £1.4
Focal 67.6 £0.4 76.6 £0.8 87.1 £0.5 80.2 £0.3 77.9 £0.0 67.6 £0.4 86.5 £0.3 78.3 £0.1 57.4 £0.3 46.7 £3.6
CBLoss 69.5 +0.7 78.7 +0.3 88.9 +0.4 82.2 +0.1 79.8 £0.2 69.5 +£0.7 86.6 £0.4 80.6 +0.2 61.1 +£1.4 65.0 +2.4
LDAM 69.9 +0.5 78.9 £0.4 89.4 +0.3 83.0 £0.4 80.3 +0.2 69.9 £0.5 87.1 0.2 81.3 +0.3 61.1 0.2 51.7 +2.7
BSoftmax 70.9 +0.5 78.7 £0.2 89.0 £0.8 83.0 £0.3 80.4 £0.2 70.9 +0.5 86.7 £0.5 81.3 £0.3 62.4 £1.0 60.0 +4.1
SSP 71.1 £0.3 79.6 +0.8 89.4 +£0.3 84.2 +0.2 81.1 £0.3 71.1 £0.3 87.3 £0.6 82.3 £0.3 61.6 £0.7 63.3 £1.4
CRT 72.5 0.2 79.6 £0.2 88.9 +0.1 83.6 £0.2 81.2 £0.0 72.5 +0.2 87.7 £0.1 81.8 +0.1 64.0 £0.1 65.0 +2.4
BoDA, 71.8 +0.1 80.3 £0.3 89.1 +0.4 84.6 +0.2 81.5 0.1 71.8 +0.1 87.7 £0.2 82.3 +0.1 64.2 +0.3 63.3 £1.4
BoDA-M,. 71.6 +0.2 80.5 £0.3 89.2 +£0.2 85.7 £0.4 81.9 +0.2 71.6 +0.2 87.3 £0.3 83.4 +0.2 62.3 £0.3 65.0 £2.4
BoDA,. . 72.3 £0.3 80.8 £0.2 89.4 £0.4 86.3 +0.3 82.3 £0.1 72.3 £0.3 87.1 £0.2 83.9 £0.3 63.2 £0.2 65.0 £2.4
BoDA-M,. . 72.3 £0.3 81.5 +0.4 89.5 £0.3 85.8 £0.2 82.4 +0.2 72.3 +0.3 87.7 £0.1 83.9 +0.6 64.2 £0.3 66.7 +2.7

BoDA wvs. ERM +1.0 +3.1 -0.1 +3.0 +1.7 +1.0 -0.1 +2.9 +1.1 +3.4
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F.4 TerraInc-MLT

Table 16. Complete evaluation results on TerraInc-MLT.

Accuracy (by domain) Accuracy (by shot)

Algorithm L100 L38 L43 L46 Average Worst Many Medium Few Zero

ERM 80.3 +1.3 T71.2 +0.7 82.2 +0.3 67.4 +0.3 75.3 £0.3 67.4 £0.3 85.6 £0.8 69.6 £3.2 66.1 +2.4 14.4 +28
IRM 78.2 £0.9 69.6 £2.0 81.1 0.7 64.3 £1.3 73.3 £0.7 64.3 +1.3 83.5 £0.6 70.0 +1.8 58.3 £3.4 20.1 +1.4
GroupDRO 68.3 £1.0 68.8 £1.3 82.6 £0.2 68.1 £0.8 72.0 £0.4 66.6 £0.2 84.7 +1.1 64.6 £4.7 38.9 +1.2 13.5 +1.1
Mixup 75.4 £1.4 70.2 £1.3 78.3 £0.6 60.4 £1.1 71.1 £0.7 60.4 £1.1 83.2 £0.7 60.0 £0.6 56.1 £3.0 12.2 +2.1
MLDG 82.3 £0.9 73.5 £2.0 83.8 £1.4 66.9 £0.5 76.6 +0.2 66.9 £0.5 86.1 £0.6 73.8 £3.9 70.6 £3.7 18.8 +2.4
CORAL 81.6 +1.0 72.0 £0.6 84.2 +0.2 67.8 £0.9 76.4 +0.5 67.8 £0.9 86.3 £0.3 77.5 £3.1 66.1 £2.0 11.0 +1.4
MMD 78.9 £0.6 68.8 £1.0 81.9 +£0.9 63.7 £1.1 73.3 £0.4 63.7 +1.1 84.0 £0.4 67.9 +2.7 60.6 +£1.6 13.6 +2.6
DANN 74.1 £0.8 63.1 £1.9 75.9 £0.2 61.5 £0.9 68.7 £0.9 61.1 £1.0 79.6 £1.2 62.5 +8.1 48.9 £2.8 13.3 £1.1
CDANN 73.0 £1.3 67.8 £2.0 75.0 £0.6 65.2 £1.1 70.3 £0.5 63.9 £1.0 83.5 £0.8 50.0 +4.2 43.9 £4.7 20.4 +3.1
MTL 79.4 0.8 70.8 £0.6 81.9 +0.8 67.8 £1.4 75.0 £0.7 67.7 +1.4 85.2 +0.7 73.8 +1.6 61.1 +2.8 12.4 +4.0
SagNet 79.4 £1.8 T1.2 +0.7 83.4 £2.4 66.5 £2.1 75.1 £1.6 66.5 +2.1 85.5 £0.9 T77.1 £5.0 57.8 £4.3 13.0 +3.4
Fish 80.1 £1.9 70.2 £0.2 84.4 £0.9 66.3 £0.5 75.3 £0.5 66.3 £0.5 85.8 £0.2 73.3 £3.9 61.1 £3.0 13.7 +£3.3
Focal 80.9 +0.7 71.6 £1.6 84.4 £1.3 66.1 £1.7 75.7 £0.4 65.3 £1.1 85.7 £0.3 76.2 £3.9 68.9 £3.2 12.6 +1.9
CBLoss 84.9 +0.6 78.0 £1.2 80.7 £0.3 68.3 £2.0 78.0 £0.4 68.3 £2.0 85.0 £0.1 89.2 £1.2 83.9 £25 9.3 £3.9
LDAM 83.0 £0.9 70.6 +0.6 81.3 +1.1 64.1 +1.4 74.7 0.9 64.1 +1.4 85.1 +0.6 70.8 £3.5 67.8 +£1.2 11.1 +24
BSoftmax 83.5 £2.1 75.5 £0.4 82.1 £0.7 65.6 £1.3 76.7 £1.0 65.6 £1.3 83.4 £0.8 90.8 £0.9 78.3 £3.9 12.6 +2.4
SSpP 82.6 £1.3 80.7 £1.8 83.2 £0.6 67.3 £0.4 78.5 +£0.7 67.3 £0.4 85.5 £1.0 87.8 £0.9 82.6 £1.2 13.2 +2.8
CRT 89.0 +0.1 81.8 £0.3 85.8 £0.3 70.0 £0.4 81.6 +0.1 70.0 £0.4 89.7 +0.2 90.4 +0.3 83.9 £0.5 12.9 +0.0
BoDA, 86.7 +0.7 74.1 +1.1 85.2 +0.7 68.5 +0.3 78.6 +£0.4 68.5 +£0.3 86.4 £0.1 85.0 £1.0 80.0 £0.9 13.7 +2.1
BoDA-M,. 87.8 £0.9 76.5 £0.9 82.2 £0.3 71.3 £0.4 79.4 +0.6 71.3 £0.4 88.4 £0.3 76.2 £2.7 88.3 £1.6 14.4 +1.4
BoDA, . 88.3 +0.6 82.9 +£0.5 89.3 £0.9 68.5 £0.6 82.3 £0.3 68.5 £0.6 89.2 £0.2 92.5 +0.9 88.3 £1.2 21.3 +0.7
BoDA-M,. . 90.4 +0.3 81.2 £0.7 85.8 £0.4 74.6 +£0.7 83.0 £0.4 74.6 0.7 89.2 £0.2 91.2 £0.6 91.7 +2.0 21.7 +1.4
BoDA vs. ERM  +10.1 +11.7 +7.1 +7.2 +7.7 +7.2 +3.6 +22.9 +25.6 +7.3

F.5 DomainNet-MLT

Table 17. Complete evaluation results on DomainNet-MLT.

Accuracy (by domain) Accuracy (by shot)

Algorithm clip info paint quick real sketch Average Worst Many Medium Few Zero

ERM 68.6 £0.1 29.4 +0.3 57.1 £0.2 62.8 £0.3 72.1 £0.2 61.7 £0.2 58.6 +0.2 29.4 +0.3 66.0 £0.1 56.1 +0.1 35.9 +0.5 27.6 +0.3
IRM 66.7 £0.2 27.6 +0.1 56.0 0.2 60.1 £0.1 72.0 £0.0 60.2 £0.2 57.1 £0.1 27.6 £0.1 64.7 £0.1 54.3 £0.3 33.5 £0.3 25.8 £0.3
GroupDRO 60.1 £0.2 25.9 £0.2 50.3 £0.1 63.9 £0.2 64.9 £0.2 56.7 £0.3 53.6 £0.1 25.9 £0.2 61.8 £0.1 49.1 £0.3 30.7 £0.7 22.0 0.1
Mixup 67.6 £0.2 28.7 £0.0 56.4 £0.2 60.0 £0.4 72.1 +0.1 60.9 £0.1 57.6 +0.1 28.7 £0.0 64.9 +0.2 54.5 +0.1 35.6 £0.2 27.3 +0.3
MLDG 68.0 £0.2 28.7 +0.1 57.2 £0.1 61.6 £0.2 73.3 £0.1 61.9 +0.2 58.5 £0.0 28.7 £0.1 66.0 £0.1 55.7 £0.1 35.3 £0.2 26.9 +0.3
CORAL 69.1 £0.3 30.1 £0.4 57.8 £0.2 63.4 £0.2 72.8 £0.2 63.3 £0.3 59.4 +0.1 30.1 0.4 66.4 £0.1 57.1 +0.0 37.7 £0.6 29.9 +0.2
MMD 66.1 £0.1 27.2 +0.2 55.9 +0.1 59.3 £0.2 71.9 0.1 60.0 £0.2 56.7 £0.0 27.2 0.2 64.2 £0.1 54.0 £0.0 33.9 £0.2 25.4 +0.2
DANN 65.5 £0.3 26.9 £0.4 55.2 £0.1 57.4 £0.2 70.6 £0.1 59.0 £0.2 55.8 £0.1 26.9 0.4 63.0 £0.1 52.7 £0.1 34.2 0.4 26.8 £0.4
CDANN 65.9 0.1 27.7 £0.1 55.3 £0.1 57.6 £0.2 70.9 £0.2 58.7 £0.1 56.0 £0.1 27.7 0.1 63.2 £0.0 52.7 +0.2 34.3 £0.5 27.6 +0.1
MTL 68.2 +£0.2 29.3 +0.2 57.3 £0.1 62.1 £0.1 72.9 0.1 61.8 +0.2 58.6 £0.1 29.3 £0.2 65.9 £0.1 56.0 £0.4 35.4 £0.1 28.2 +0.3
SagNet 68.5 +£0.1 29.4 +0.2 57.8 £0.2 62.1 £0.2 73.3 £0.1 62.4 £0.1 58.9 £0.0 29.4 £0.2 66.3 £0.1 56.4 £0.0 36.2 £0.3 27.2 +0.4
Fish 68.7 £0.1 29.1 £0.1 58.4 £0.1 64.1 £0.1 73.9 £0.1 63.7 £0.1 59.6 +0.1 29.1 +0.1 67.1 £0.1 57.2 +0.1 36.8 +0.4 27.8 +0.3
Focal 67.6 £0.1 27.5 +0.1 56.5 £0.3 62.3 £0.3 T71.7 £0.3 61.4 +0.3 57.8 £0.2 27.5 +0.1 65.2 £0.2 55.1 £0.2 35.8 £0.1 26.3 +0.1
CBLoss 68.3 £0.2 30.1 £0.1 57.8 £0.1 60.8 0.1 73.3 £0.2 63.3 £0.1 58.9 £0.1 30.1 0.1 64.3 £0.0 61.0 £0.3 42.5 £0.4 28.1 +0.2
LDAM 68.8 £0.2 29.2 +0.2 57.1 £0.1 65.0 £0.0 72.3 +0.1 63.1 £0.1 59.2 +0.0 29.2 0.2 66.6 +£0.0 57.0 +0.0 37.1 +0.2 27.8 +0.3
BSoftmax 68.5 0.1 29.9 +0.1 57.8 £0.1 60.5 £0.3 73.4 £0.1 63.3 £0.0 58.9 £0.1 29.9 £0.1 64.3 £0.1 60.9 £0.3 42.4 £0.6 28.2 £0.1
SSP 69.7 £0.1 31.6 £0.2 58.8 £0.1 59.7 £0.3 73.9 £0.1 64.2 £0.1 59.7 £0.0 31.6 £0.2 64.3 £0.1 62.6 £0.1 45.0 £0.3 30.5 £0.0
CRT 70.0 £0.1 31.6 £0.1 59.2 £0.2 64.0 £0.1 73.4 +0.1 64.4 £0.1 60.4 £0.2 31.6 0.1 66.8 £0.0 61.6 +0.1 45.7 £0.1 29.7 +0.1
BoDA.,. 70.0 £0.1 32.6 £0.1 59.1 £0.1 61.2 0.4 73.3 £0.1 64.1 £0.1 60.1 £0.2 32.6 £0.1 65.7 £0.2 60.6 £0.1 42.6 £0.3 30.5 +0.2
BoDA-M,. 70.6 £0.1 32.2 £0.2 57.7 £0.3 65.5 +£0.3 70.2 £0.1 64.5 £0.1 60.1 £0.2 32.2 0.2 65.9 £0.2 60.7 £0.1 42.9 £0.3 30.0 +0.1
BoDA,.. 72.0 £0.2 33.4 £0.1 60.7 £0.2 63.6 +£0.2 74.6 +0.1 65.5 £0.2 61.7 +0.1 33.4 £0.1 67.0 £0.1 62.7 £0.1 46.0 £0.2 32.2 +0.3

BoDA-M,. . 71.8 £0.1 33.3 £0.1 60.8 £0.1 63.7 £0.3 74.6 +0.1 65.8 £0.2 61.7 +0.2 33.3 £0.1 67.0 £0.1 63.0 £0.3 46.6 +0.4 31.8 +0.2
BoDA vs. ERM  +3.4 +4.0 +3.7 +0.9 +2.5 +4.1 +3.1 +4.0 +1.0 +6.9 +10.7 +4.6
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G Complete Results for DG

We provide detailed results of Table 9 across five DG benchmarks [19]. Results
for all algorithms except BoDA are directly copied from [19].

G.1 VLCS

Table 18. Complete domain generalization results on VLCS.

Algorithm C L S \% ‘ Avg
ERM 97.7 £0.4 64.3 £0.9 73.4 +0.5 74.6 £1.3 | 77.5
IRM 98.6 £0.1 64.9 0.9 73.4 +0.6 77.3 £0.9 | 78.5
GroupDRO  97.3 £0.3 63.4 £0.9 69.5 0.8 76.7 £0.7 | 76.7
Mixup 98.3 £0.6 64.8 £1.0 72.1 0.5 T74.3 +0.8 | 774
MLDG 97.4 +0.2 65.2 £0.7 T71.0 £1.4 75.3 £1.0 | 77.2
CORAL 98.3 +0.1 66.1 +1.2 73.4 +0.3 T77.5 +1.2 | 78.8
MMD 97.7 £0.1  64.0 £1.1  72.8 +0.2 75.3 £3.3 | 77.5
DANN 99.0 £0.3 65.1 +1.4 73.1 £0.3 77.2 +0.6 | 78.6
CDANN 97.1 0.3 65.1 1.2 70.7 0.8 77.1 £1.5 | 77.5
MTL 97.8 £0.4 64.3 £0.3 71.5 0.7 75.3 £1.7 | 77.2
SagNet 97.9 +04 64.5 +0.5 71.4 +1.3 T77.5 +0.5 | 77.8
ARM 98.7 0.2 63.6 0.7 71.3 £1.2 76.7 +0.6 | 77.6
VREx 98.4 +0.3 64.4 +1.4 74.1 04 76.2 £1.3 | 78.3
RSC 97.9 0.1 62.5 +0.7 72.3 £1.2 75.6 +0.8 | 77.1
BoDA 98.1 +0.3 64.5 +0.4 74.3 +0.3 78.0 0.6 | 785
G.2 PACS

Table 19. Complete domain generalization results on PACS.

Algorithm A C P S Avg
ERM 84.7 £0.4 80.8 £0.6 97.2 +0.3 79.3 £1.0 | 85.5
IRM 84.8 £1.3 76.4 1.1 96.7 +0.6 76.1 £1.0 | 83.5
GroupDRO  83.5 0.9 79.1 0.6 96.7 £0.3 78.3 £2.0 | 84.4
Mixup 86.1 +£0.5 78.9 0.8 97.6 +£0.1 75.8 £1.8 | 84.6
MLDG 85.5 +1.4 80.1 £1.7 974 +0.3 76.6 £1.1 | 84.9
CORAL 88.3 +0.2 80.0 0.5 97.5 0.3 78.8 +1.3 | 86.2
MMD 86.1 +1.4 79.4 +0.9 96.6 +0.2 76.5 +0.5 | 84.6
DANN 86.4 +0.8 77.4 0.8 97.3 £04 73.5 +2.3 | 83.7
CDANN 84.6 +£1.8 75.5 £0.9 96.8 £0.3 73.5 +0.6 | 82.6
MTL 87.5 +0.8 77.1 £0.5 96.4 +0.8 77.3 £1.8 | 84.6
SagNet 87.4 +£1.0 80.7 0.6 97.1 0.1  80.0 £0.4 | 86.3
ARM 86.8 £0.6 76.8 +0.5 97.4 +0.3 79.3 £1.2 | 85.1
VREx 86.0 +1.6 79.1 £0.6 96.9 +0.5 77.7 £1.7 | 84.9
RSC 85.4 +£0.8 79.7 £1.8 97.6 £0.3 78.2 £1.2 | 85.2

BoDA 88.2 £0.2 81.7 +0.3 97.8 +0.2 80.2 +0.3 | 86.9
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G.3 O0OfficeHome

Table 20. Complete domain generalization results on 0fficeHome.

Algorithm A C P R ‘ Avg
ERM 61.3 £0.7 52.4 +0.3 75.8 £0.1 76.6 £0.3 | 66.5
IRM 58.9 +2.3 522416 72.1 £2.9 T74.0 +2.5 | 64.3
GroupDRO  60.4 0.7 52.7 £1.0 75.0 £0.7 76.0 £0.7 | 66.0
Mixup 62.4 £0.8 54.8 +0.6 76.9 4£0.3 78.3 +0.2 | 68.1
MLDG 61.5 £0.9 53.2 £0.6 75.0 £1.2 77.5 +0.4 | 66.8
CORAL 65.3 £0.4 54.4 +0.5 76.5 £0.1 78.4 +0.5 | 68.7
MMD 60.4 0.2 53.3 £0.3 T74.3 +0.1 77.4 +0.6 | 66.3
DANN 59.9 +1.3 53.0 £0.3 73.6 £0.7 76.9 +0.5 | 65.9
CDANN 61.5 £1.4 50.4 £2.4 744 0.9 76.6 £0.8 | 65.8
MTL 61.5 +0.7 52.4 +0.6 74.9 +04 76.8 £0.4 | 66.4
SagNet 63.4 +0.2 54.8 +04 75.8 £0.4 78.3 £0.3 | 68.1
ARM 58.9 0.8 51.0 0.5 74.1 0.1  75.2 £0.3 | 64.8
VREx 60.7 £0.9 53.0 £0.9 75.3 +0.1 76.6 +0.5 | 66.4
RSC 60.7 +1.4 51.4 +0.3 74.8 £1.1  75.1 £1.3 | 65.5
BoDA 65.4 +0.1 55.4 0.3 T77.1 +0.1 79.5 +0.3 | 69.3

G.4 Terralnc

Table 21. Complete domain generalization results on Terralnc.

Algorithm L100 L38 L43 L46 Avg
ERM 49.8 +4.4 42.1 £1.4 56.9 +1.8 35.7 +£3.9 | 46.1
IRM 54.6 £1.3 39.8 £1.9 56.2 +1.8 39.6 £0.8 | 47.6
GroupDRO  41.2 +0.7 38.6 2.1  56.7 £0.9 36.4 +2.1 | 43.2
Mixup 59.6 £2.0 422 +14 559 +0.8 33.9 +1.4 | 47.9
MLDG 54.2 £3.0 44.3 £1.1  55.6 £0.3 36.9 £2.2 | 47.7
CORAL 51.6 +2.4 42.2 +1.0 57.0 1.0 39.8 £2.9 | 47.6
MMD 41.9 £3.0 34.8 £1.0 57.0 +£1.9 35.2 +1.8 | 42.2
DANN 51.1 +3.5 40.6 0.6 57.4 +0.5 37.7 +£1.8 | 46.7
CDANN 47.0 £1.9 41.3 +48 54.9 +1.7 39.8 +£2.3 | 45.8
MTL 49.3 +1.2  39.6 £6.3 55.6 +1.1 37.8 +£0.8 | 45.6
SagNet 53.0 £2.9 43.0 £2.5 57.9 0.6 40.4 £1.3 | 48.6
ARM 49.3 0.7 38.3 £2.4 55.8 0.8 38.7 £1.3 | 45.5
VREx 48.2 +4.3 41.7 +1.3 56.8 +£0.8 38.7 +3.1 | 46.4
RSC 50.2 +2.2  39.2 +1.4 56.3 £1.4 40.8 +0.6 | 46.6

BoDA 54.0 £0.3 46.5 +0.2 59.5 +0.3 41.0 +0.4 \ 50.2

35
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G.5 DomainNet

Table 22. Complete domain generalization results on DomainNet.

Algorithm clip info paint quick real sketch ‘ Avg
ERM 58.1 £0.3 18.8 +£0.3 46.7 £0.3 12.2 +0.4 59.6 0.1  49.8 0.4 | 40.9
IRM 48.5 £2.8 15.0 £1.5 38.3 +4.3 10.9 +0.5 48.2 +£5.2 42.3 £3.1 | 33.9
GroupDRO  47.2 405 17.5 £0.4 33.8 £0.5 9.3 +0.3 51.6 0.4  40.1 0.6 | 33.3
Mixup 55.7 £0.3 18.5 +0.5 44.3 0.5 12.5 04 55.8 £0.3 48.2 +0.5 | 39.2
MLDG 59.1 £0.2  19.1 £0.3 45.8 £0.7 13.4 +0.3 59.6 £0.2  50.2 +0.4 | 41.2
CORAL 59.2 +0.1  19.7 +0.2  46.6 £0.3 13.4 04 59.8 £0.2 50.1 +0.6 | 41.5
MMD 32.1 £13.3  11.0 4.6 26.8 +11.3 8.7 +2.1  32.7 +13.8 28.9 +11.9 | 234
DANN 53.1 £0.2  18.3 0.1 44.2 +0.7 11.8 0.1 55.5 +0.4 46.8 0.6 | 38.3
CDANN 54.6 £0.4 17.3 £0.1  43.7 0.9 12.1 0.7 56.2 £0.4 45.9 +0.5 | 38.3
MTL 57.9 +0.5 18.5 +£04 46.0 £0.1  12.5 +0.1  59.5 +£0.3  49.2 +0.1 | 40.6
SagNet 57.7 £0.3 19.0 +0.2 45.3 £0.3 12.7 0.5 58.1 0.5 48.8 +0.2 | 40.3
ARM 49.7 +0.3 16.3 +£0.5 409 +1.1 9.4 +0.1 53.4 +0.4  43.5 +0.4 | 35.5
VREx 47.3 £35 16.0 £1.5 35.8 +4.6 10.9 +£0.3 49.6 +4.9 42.0 +£3.0 | 33.6
RSC 55.0 +1.2  18.3 +0.5 44.4 +0.6 12.2 +0.2 55.7 0.7 47.8 £0.9 | 38.9
BoDA 62.1 +0.4 20.5 +0.7 48.0 0.1 13.8 +0.6 60.6 0.4 51.4 +0.3 \ 42.7

G.6 Averages

Table 23. Complete domain generalization results over all DG benchmarks.

Algorithm VLCS PACS OfficeHome Terralnc DomainNet | Avg
ERM 77.5 0.4 85.5 +0.2 66.5 +0.3 46.1 +1.8  40.9 +0.1 63.3
IRM 78.5 £0.5 83.5 £0.8 64.3 +2.2 47.6 £0.8  33.9 £2.8 61.6
GroupDRO  76.7 0.6 84.4 +0.8 66.0 +0.7 43.2 +1.1 33.3 0.2 | 60.7
Mixup 774 +0.6 84.6 +0.6 68.1 +0.3 47.9 0.8  39.2 +0.1 | 63.4
MLDG 77.2 £0.4 84.9 £1.0 66.8 +0.6 47.7 £0.9  41.2 +0.1 63.6
CORAL 78.8 £0.6 86.2 +0.3 68.7 +0.3 47.6 £1.0 41.5 +0.1 64.5
MMD 77.5 +£0.9 84.6 +0.5 66.3 +0.1 42.2 +1.6 23.4 +9.5 58.8
DANN 78.6 £0.4 83.6 +0.4 65.9 +0.6 46.7 £0.5  38.3 +0.1 62.6
CDANN 77.5 £0.1  82.6 +£0.9 65.8 +1.3 45.8 +£1.6  38.3 +0.3 62.0
MTL 77.2 £0.4 84.6 +0.5 66.4 +0.5 45.6 +1.2  40.6 +0.1 62.9
SagNet 77.8 £0.5 86.3 +0.2 68.1 +0.1 48.6 £1.0  40.3 £0.1 | 64.2
ARM 77.6 £0.3 85.1 £0.4 64.8 +0.3 45.5 0.3  35.5 +0.2 | 61.7
VREx 78.3 £0.2 84.9 +0.6 66.4 +0.6 46.4 +0.6  33.6 £2.9 61.9
RSC 77.1 0.5 85.2 £0.9 65.5 +£0.9 46.6 £1.0 38.9 +0.5 | 62.7
BoDA 78.5 +0.3 86.9 0.4 69.3 +0.1 50.2 +0.4 42.7 +0.1 | 65.5
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H Additional Analysis and Studies
H.1 Ablation Studies for BoDA

Effect of Balanced Distance. We study the effect of adding balanced distance
in BoDA compared to the vanilla DA loss. As Table 24 demonstrates, incorporating
balanced distance in BoDA is essential for addressing MDLT: we observe that
BoDA improves over DA by a large margin, resulting in an averaged improvements
of 2.3% over all MDLT benchmarks. The improvements are especially large on
datasets with severe data imbalance across domains (e.g., TerraInc-MLT).

Table 24. Ablation study on effect of adding balanced distance in BoDA.

VLCS-MLT PACS-MLT OfficeHome-MLT TerralInc-MLT DomainNet-MLT ‘ Avg

DA 76.6 £0.4 96.8 +0.2 80.7 +0.3 76.4 +0.5 58.9 +0.2 77.9
BoDA  77.3 £0.2 97.2 +0.1 82.3 +0.1 82.3 +0.3 61.7 +0.1 80.2
Gains ~ +0.7 +0.4 +1.6 +5.9 +2.8 | +2.3

Effect of Different Distance Calibration Coefficient )\d <. We further
1nvest1gate the effect of different distance calibration coefﬁmentb in BoDA. Recall
that )\3 C° = (Ng ' /Na,)” indicates how much we would like to transfer (d, c)
o (d',¢), based on their relative sample sizes. We vary the value of v, and
study its effect on BoDA performance across all MDLT datasets. Table 25 reveals
several interesting findings. First, when v = 0 (i.e., no calibration is used as
the coefficient is always equal to 1), BoDA performance is lower than those with
a positive v, confirming the effectiveness of the calibrated distance. Moreover,
when we vary v between 0.5 — 1.5, the overall performance gains are similar
across different choices, where v around 0.9 seems to achieve the best results.
Finally, when compared to ERM, we demonstrate that BoDA consistently obtains
notable gains across different v.

Table 25. Ablation study on effect of distance calibration coefficient /\ “ in BoDA.
We vary the value of v and report the averaged results over all five MDLT datasets.

v 0 0.5 0.7 0.9 1 1.1 1.2 1.5 ‘ ERM
BoDA 78.9 80.1 80.0 80.2 80.1 79.8 79.6 79.2 ‘ 77.6

H.2 Absolute Accuracy Gains on All MDLT Benchmarks

We provide additional results for understanding how BoDA performs across all
domain-class pair when cross-domain imbalance occurs. Similar to Fig. 7 in the
main text, we plot the absolute gains of BoDA over ERM on all five MDLT
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datasets, shown in Figs. 9, 10, 11, 12, and 13. Across all datasets, we observe

that BoDA establishes large improvements w.r.t. all regions, especially for the
few-shot and zero-shot ones.
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Fig. 9. The absolute accuracy gains of BoDA vs. ERM over all domain-class pairs on
VLCS-MLT.
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Fig. 10. The absolute accuracy gains of BoDA vs. ERM over all domain-class pairs on
PACS-MLT.
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Fig. 11. The absolute accuracy gains of BoDA vs. ERM over all domain-class pairs on
0fficeHome-MLT.
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Fig. 12. The absolute accuracy gains of BoDA vs. ERM over all domain-class pairs on
TerraInc-MLT.
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Fig. 13. The absolute accuracy gains of BoDA vs. ERM over all domain-class pairs on
DomainNet-MLT.

H.3 Robustness to Diverse Skewed Label Distributions

We investigate how BoDA performs under arbitrary label imbalance across do-
mains, especially when the cross-domain label distributions are both imbalance
and divergent. We again employ the Digits-MLT dataset, and manually vary the
label proportions for each domain.

As Fig. 14 demonstrates, when the label distributions for two domains are
balanced and identical, both ERM and BoDA maintains discriminative represen-
tations. If the label distributions become imbalanced but still identical across
domains, ERM is still able to align similar classes in the two domains, but with
majority classes being closer in terms of transferability than minority classes.
In contrast, BoDA maintains consistent transferability regardless of number of
samples within each class. Finally, as the label distributions become further mis-
matched across domains, ERM is not able to align the domains and produces
a clear gap; by contrast, BoDA maintains consistent and transferable representa-
tions even under severe data imbalance. As a result, BoDA substantially boosts
the performance upon ERM, with an average gains of 6.4% across all label con-
figurations.
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Fig. 14. The evolving patterns of the transferability graph of BoDA vs. ERM across
different label configurations on Digits-MLT. Label distributions for two domains are
(a) balanced and identical; (b)(c) imbalanced and identical; (d)(e) imbalanced and
divergent. BoDA maintains consistent and transferable representations across all label
configurations, and leads to much better test accuracy.
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Fig. 15. Correspondence between (3+7)—a quantity and test accuracy across different
MDLT datasets. Each point within each plot corresponds to a model trained with ERM
using different hyperparameters.

H.4 Transferability vs. Generalization on More Datasets

We provide further results on transferability statistics vs. generalization on real
MDLT datasets, in addition to results on Digits-MLT as we showed in the main
text.

Specifically, on all five MDLT datasets, we train 20 ERM models with varying
hyperparameters, calculate the (a, 8,7) statistics for each model, and plot its
classification accuracy against (5 + ) — «. Fig. 15 reveals similar and consistent
findings, that the (a, 8,7) statistics characterize model performance in MDLT.
Across all datasets, the (8+v)—a quantity displays a very strong correlation with
test performance across the entire range, suggesting that the («, 8,7) statistics
govern the success of learning in MDLT.

H.5 Additional Visualization of Feature Discrepancy

We provide additional results for understanding BoDA, i.e., how BoDA calibrates
the feature statistics. Fig. 16 shows the feature discrepancy of BoDA vs. ERM
across different label configurations on Digits-MLT. In addition to the mean
distance we showed in the main text, we show also the feature covariance distance
between training and test data, and plot them for both domains. Similarly, solid
lines plot the distance between training and test data from the same domain-
class pairs. Dashed lines plot the distance between test data from a particular
domain-class pair and the training data with which it shares the same class but
differs in the domain. The figure also shows regions with different data densities
using colors blue, , .

As the figure confirms, across different label distributions, BoDA consistently
learns better representations especially for the tail data (i.e., the red regions),
where the feature mean/covariance distance between training and test data be-
comes smaller and more aligned across domains. Comparing BoDA with ERM
further demonstrates that BoDA maintains consistent and transferable represen-
tations with smaller feature discrepancy.
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Fig. 16. Feature discrepancy of BoDA vs. ERM across different label configurations on
Digits-MLT. Each row plots a per-domain label distribution, and the feature mean /
covariance distance between training and test data on each domain for both ERM and
BoDA. BoDA enables better learned tail (d, ¢) with smaller feature discrepancy.



