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Abstract. Real-world data often exhibit imbalanced label distributions. Ex-
isting studies on data imbalance focus on single-domain settings, i.e., sam-
ples are from the same data distribution. However, natural data can originate
from distinct domains, where a minority class in one domain could have abun-
dant instances from other domains. We formalize the task of Multi-Domain
Long-Tailed Recognition (MDLT), which learns from multi-domain imbal-
anced data, addresses label imbalance, domain shift, and divergent label dis-
tributions across domains, and generalizes to all domain-class pairs. We first
develop the domain-class transferability graph, and show that such transfer-
ability governs the success of learning in MDLT. We then propose BoDA, a
theoretically grounded learning strategy that tracks the upper bound of trans-
ferability statistics, and ensures balanced alignment and calibration across im-
balanced domain-class distributions. We curate five MDLT benchmarks based
on widely-used multi-domain datasets, and compare BoDA to twenty algorithms
that span different learning strategies. Extensive and rigorous experiments ver-
ify the superior performance of BoDA. Further, as a byproduct, BoDA establishes
new state-of-the-art on Domain Generalization benchmarks, highlighting the
importance of addressing data imbalance across domains, which can be crucial
for improving generalization to unseen domains. Code and data are available
at: https://github.com/YyzHarry/multi-domain-imbalance.

1 Introduction

Real-world data often exhibit label imbalance – i.e., instead of a uniform label
distribution over classes, in reality, data are by their nature imbalanced: a few
classes contain a large number of instances, whereas many others have only a
few instances [5, 6, 52]. This phenomenon poses a challenge for deep recognition
models, and has motivated several prior solutions [6,10,33,39,52,53]. Such prior
solutions focus on single domain scenarios, i.e., samples are from the same data
distribution; they propose techniques for learning from imbalanced training data
and generalizing to a balanced test set.

In contrast, this paper formulates the problem of Multi-Domain Long-Tailed
Recognition (MDLT) as learning from multi-domain imbalanced data, with each
domain having its own imbalanced label distribution, and generalizing to a test
set that is balanced over all domain-class pairs. MDLT is a natural extension of
the single domain case. It arises in real-world scenarios, where data targeted for
one task can originate from different domains. For example, in visual recognition
problems, minority classes from “photo” images could be complemented with
potentially abundant samples from “sketch” images. Similarly, in autonomous

https://github.com/YyzHarry/multi-domain-imbalance
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Fig. 1. Multi-Domain Long-Tailed Recognition (MDLT) aims to learn from imbalanced
data from multiple distinct domains, tackle label imbalance, domain shift, and divergent
label distributions across domains, and generalize to all domain-class pairs.

driving, the minority accident class in “real” life could be enriched with acci-
dents generated in “simulation”. Also, in medical diagnosis, data from distinct
populations could enhance each other, where minority samples from one insti-
tution could be enriched with instances from others. In the above examples,
different data types act as distinct domains, and such multi-domain data could
be leveraged to tackle the inherent data imbalance within each domain.

We note that MDLT has key differences from its single-domain counterpart:

– First, the label distribution for each domain is likely different from other do-
mains. For example, in Fig. 1, both “Photo” and “Cartoon” domains exhibit
imbalanced label distributions; Yet, the “horse” class in “Cartoon” has many
more samples than in “Photo”. This creates challenges with divergent label
distributions across domains, in addition to in-domain data imbalance.

– Second, multi-domain data inherently involves domain shift. Simply treating
different domains as a whole and applying traditional data-imbalance methods
is unlikely to yield the best results, as the domain gap can be arbitrarily large.

– Third, MDLT naturally motivates zero-shot generalization within and across
domains – i.e., to generalize to both in-domain missing classes (Fig. 1 right
part), as well as new domains with no training data, where the latter case is
typically denoted as Domain Generalization (DG).

To deal with the above issues, we first develop the domain-class transferability
graph, which quantifies the transferability between different domain-class pairs
under data imbalance. In this graph, each node refers to a domain-class pair, and
each edge refers to the distance between two domain-class pairs in the embed-
ding space. We show that the transferability graph dictates the performance of
imbalanced learning across domains. Inspired by this, we design BoDA (Balanced
Domain-Class Distribution Alignment), a new loss function that encourages sim-
ilarity between features of the same class in different domains, and penalizes
similarity between features of different classes within and across domains. BoDA
does so while accounting for that different classes have very different number of
samples, and hence the statistics of their features are intrinsically imbalanced.
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Analytically, we prove that minimizing the BoDA loss optimizes an upper bound
of the balanced transferability statistics, corroborating the effectiveness of BoDA
for learning multi-domain imbalanced data.

For MDLT evaluation, we curate five MDLT benchmarks based on datasets
widely used for domain generalization (DG). These datasets naturally exhibit
heavy class imbalance within each domain and data shift across domains, high-
lighting that the MDLT problem is widely present in current benchmarks. We
compare BoDA against twenty algorithms that span different learning strategies.
Extensive experiments across benchmarks and algorithms verify that BoDA con-
sistently outperforms all these baselines on all datasets.

Additionally, we examine how BoDA performs in the DG setting. We show
that combining BoDA with the DG state-of-the-art (SOTA) consistently brings
further gains, yielding a new SOTA for DG. These results shed light on how
label imbalance can affect out-of-distribution generalization and highlight the
importance of integrating label imbalance into practical DG algorithm design.

Our contributions are as follows:

– We formulate the MDLT problem as learning from multi-domain imbalanced
data and generalizing across all domain-class pairs.

– We introduce the domain-class transferability graph, a unified model for in-
vestigating MDLT. We further show that the transferability statistics induced
from such graph are crucial and govern the success of MDLT algorithms.

– We design BoDA, a simple, effective, and interpretable loss function for MDLT.
We prove theoretically that minimizing the BoDA loss is equivalent to optimiz-
ing an upper bound of balanced transferability statistics.

– Extensive experiments on benchmark datasets verify the superior and con-
sistent performance of BoDA. Further, combined with DG algorithms, BoDA
establishes a new SOTA on DG benchmarks, highlighting the importance of
tackling cross-domain data imbalance for domain generalization.

2 Related Work

Long-Tailed Recognition. The literature is rich with research on long-tailed
recognition [33, 57]. Proposed solutions include re-balancing the data by over-
sampling/under-sampling [9,20], re-weighting or adjusting the loss functions [6,
10, 12, 22], as well as leveraging relevant learning paradigms such as transfer
learning [33], metric learning [55], meta-learning [43], two-stage training [23],
ensemble learning [48, 56], and self-supervised learning [30, 52]. Recent studies
have also explored imbalanced regression [53]. In contrast to these past works,
we extend long-tailed recognition to the multi-domain setting, and introduce
new techniques suitable for learning from multi-domain imbalanced data.

Multi-Domain Learning.Multi-domain learning (MDL) aims to learn a model
of minimal risk from datasets drawn from different underlying distributions [13],
and is a specific case of transfer learning [37]. In contrast to domain adaptation
(DA) [3,37], which aims to minimize the risk over a single “target” domain, MDL
minimizes the risk over all “source” domains, and considers both average and
worst risks over all distributions [41]. Past solutions for MDL include designing
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shared and domain-specific models [13, 49], leveraging multi-task learning [51],
and learning domain-invariant features [15, 31, 41, 45]. Our work falls under the
MDL framework, but considers the practical and realistic setting where the label
distribution is imbalanced within each domain and across domains.

Domain Generalization. Unlike MDL which focuses on in-domain generaliza-
tion, domain generalization (DG) aims to learn from multiple training domains
and generalize to unseen domains [59]. Previous approaches include learning
domain-invariant features [15, 31, 34], learning transferable model parameters
using meta-learning [27,54], data augmentation [7,60], and capturing causal re-
lationships [1,25]. Past work on DG has not investigated label imbalance within
a domain and across domains. This paper shows that label imbalance plays a
crucial role in DG, and that by combating data imbalance, we substantially
boost DG performance on standard benchmarks.

3 Domain-Class Transferability Graph

When learning from MDLT, a natural question arises: How do we model MDLT
in the presence of both domain shift and class imbalance within and across
domains? We argue that in contrast to single-domain imbalanced learning where
the basic unit one cares about is a class (i.e., minority vs. majority classes), in
MDLT, the basic unit naturally translates to a domain-class pair.

Problem Setup. Given a multi-domain classification task with a discrete label
space C = {1, . . . , C} and a domain spaceD = {1, . . . , D}, let S = {(xi, ci, di)}Ni=1

be the training set, where xi ∈ Rl denotes the input, ci ∈ C is the class la-
bel, and di ∈ D is the domain label. We denote as z = f(x; θ) the represen-
tation of x, where f : X → Z maps the input into a representation space
Z ⊆ Rh. The final prediction ĉ = g(z) is given by a classification function
g : Z → C. We denote the set of samples belonging to domain d and class c
(i.e., the domain-class pair (d, c)) as Sd,c ⊆ S, with Nd,c ≜ |Sd,c| as the number
of samples. Similarly, Zd,c ⊆ Z denotes the representation set for (d, c). We use
M = D× C := {(d, c) : d ∈ D, c ∈ C} to denote the set of all domain-class pairs.

Definition 1 (Transferability). Given a learned model and a distance function
d : Rh × Rh → R in the feature space, the transferability from domain-class pair
(d, c) to (d′, c′) is:

trans
(
(d, c), (d′, c′)

)
≜ Ez∈Zd,c

[
d (z,µd′,c′)

]
,

where µd′,c′ ≜ Ez′∈Zd′,c′ [z
′] is the first order statistics (i.e., mean) of (d′, c′).

Intuitively, the transferability between two domain-class pairs is the average
distance between their learned representations, characterizing how close they are
in the feature space. By default, d is chosen as the Euclidean distance, but it can
also represent the higher order statistics of (d, c). For example, the Mahalanobis
distance [11] uses the covariance Σd,c ≜ Ez∈Zd,c

[
(z− µd,c)(z− µd,c)

⊤]. In the
remainder of the paper, with a slight abuse of the notation, we allow µd,c to
represent both the first and higher order statistics for (d, c).



Multi-Domain Long-Tailed Recognition 5

#
of

sa
m

pl
es

#
of

sa
m

pl
es

Domain 1 Domain 2

(a) Full Transferability Graph as a Distance Matrix

domain-class
pairs

Distance function

(c) Transferability Statistics 

Class 1
(dog)

Class 2
(horse)

Domain 1
(photo)

Domain 2
(cartoon)

Statistics Example

d1, c1
d1, c2…

d2, c1…

(b) 2D Graph Visualization
d1, c1 d2, c1… …

MDS0

200

400

600

800

1000

nu
m

be
ro

fs
am

pl
es

Domain 1 (MNIST-M)

0 1 2 3 4 5 6 7 8 9

class index

0

200

400

600

800

1000

nu
m

be
ro

fs
am

pl
es

Domain 2 (SVHN)

0

1

2
3

4
5

6

7

8

9

0

1

2

3

4
5

6

7

8

9

Domain 1
Domain 2

Fig. 2. Overall framework of transferability graph. (a) Distribution statistics {µd,c} is
computed for all domain-class pairs, by which we generate a full transferability matrix.
(b) MDS is used to project the graph into a 2D space for visualization. (c) We define
(α, β, γ) transferability statistics to further describe the whole transferability graph.

Definition 2 (Transferability Graph). The transferability graph for a learned
model is defined as G = (V, E), where the vertices, V ⊆ {µd,c}, represents the
domain-class pairs, and the edges, E ⊆ V × V, are assigned weights equal to
trans ((d, c), (d′, c′)).

Transferability Graph Visualization. It is convenient to visualize the trans-
ferability graph of a learned model in a 2D Cartesian space. To do so, we use the
average of trans ((d, c), (d′, c′)) and trans ((d′, c′), (d, c)) as a similarity measure
between them. We can then visualize this similarity and the underlying trans-
ferability graph using multidimensional scaling (MDS) [8]. Figs. 2a and 2b show
this process, where for each (d, c) pair, we estimate its distribution statistics
{µd,c} from the learned model, then compute the model transferability graph as
a distance matrix. We then use MDS to project it into a 2D space, where each
dot refers to one (d, c), and the distance represents transferability.

Definition 3 ((α, β, γ) Transferability Statistics). The transferability graph
can be summarized by the following transferability statistics:

Different domains, same class: α = EcEdEd′ ̸=d

[
trans

(
(d, c), (d′, c)

)]
.

Same domain, different classes: β = EdEcEc′ ̸=c

[
trans

(
(d, c), (d, c′)

)]
.

Different domains, different classes: γ = EdEd′ ̸=dEcEc′ ̸=c

[
trans

(
(d, c), (d′, c′)

)]
.

As illustrated in Fig. 2c, (α, β, γ) captures the similarity between features of
the same class across domains and different classes within and across domains.

4 What Makes for Good Representations in MDLT?

4.1 Divergent Label Distributions Hamper Transferable Features

MDLT has to deal with differences between the label distributions across do-
mains. To understand the implications of this issue we start with an example.

Motivating Example. We construct Digits-MLT, a two-domain toy MDLT
dataset that combines two digit datasets: MNIST-M [15] and SVHN [36]. The
task is 10-class digit classification. Details of the datasets are in Appendix D.
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Fig. 3. The evolving pattern of transferability graph when varying label proportions
of Digits-MLT. (a) Label distribution for two domains are balanced and identical. (b)
Label distribution for two domains are imbalanced but identical. (c) Label distribution
for two domains are imbalanced and divergent.

We manually vary the number of samples for each domain-class pair to simulate
different label distributions, and train a plain ResNet-18 [21] using empirical risk
minimization (ERM) for each case. We keep all test sets balanced and identical.

The results in Fig. 3 reveal interesting observations. When the per-domain
label distributions are balanced and identical across domains, although a domain
gap exists, it does not prohibit the model from learning discriminative features
of high accuracy (90.5%), as shown in Fig. 3a. If the label distributions are
imbalanced but identical, as in Fig. 3b, ERM is still able to align similar classes
in the two domains, where majority classes (e.g., class 9) are closer in terms of
transferability than minority classes (e.g., class 0). In contrast, when the labels
are both imbalanced and mismatched across domains, as in Fig. 3c, the learned
features are no longer transferable, resulting in a clear gap across domains and
the worst accuracy. This is because divergent label distributions across domains
produce an undesirable shortcut; the model can minimize the classification loss
simply by separating the two domains.

Transferable Features are Desirable. As the results indicate, transferable
features across (d, c) pairs are needed, especially when imbalance occurs. In
particular, the transferability link between the same class across domains should
be greater than that between different classes within or across domains. This
can be captured via the (α, β, γ) transferability statistics, as we show next.

4.2 Transferability Statistics Characterize Generalization

Motivating Example. Again, we use Digits-MLT with varying label distribu-
tions. We consider three imbalance types to compose different label configura-
tions: (1) Uniform (i.e., balanced labels), (2) Forward-LT, where the labels
exhibit a long tail over class ids, and (3) Backward-LT, where labels are in-
versely long-tailed with respect to the class ids. For each configuration, we train
20 ERM models with varying hyperparameters. We then calculate the (α, β, γ)
statistics for each model, and plot its classification accuracy against (β+γ)−α.

Fig. 4 reveals the following findings: (1) The (α, β, γ) statistics characterize
a model’s performance in MDLT. In particular, the (β+γ)−α quantity displays
a very strong correlation with test performance across the entire range and
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Fig. 4. Correspondence between (β+γ)−α quantity and test accuracy across different
label configurations of Digits-MLT. Each plot refers to specific label distributions for
two domains (e.g., (a) employs “Uniform” for domain 1 and “Uniform” for domain 2).
Each point corresponds to a model trained with ERM using different hyperparameters.

every label configuration. (2) Data imbalance increases the risk of learning less
transferable features. When the label distributions are similar across domains
(Fig. 4a), the models are robust to varying parameters, clustering in the upper-
right region. However, as the labels become imbalanced (Figs. 4b, 4c) and further
divergent (Figs. 4d, 4e), chances that the model learns non-transferable features
(i.e., lower (β + γ) − α) increase, leading to a large drop in performance. We
provide further evidence in Appendix H.4 showing that these observations hold
regardless of datasets and training regimes.

4.3 A Loss that Bounds the Transferability Statistics

We use the above findings to design a new loss function particularly suitable for
MDLT. We will first introduce the loss function then prove that it minimizes
an upper bound of the (α, β, γ) statistics. We start from a simple loss inspired
by the metric learning objective [17, 44]. We call this loss LDA since it aims for
Domain Alignment, i.e., aligning the features of the same class across domains.
Let (xi, ci, di) denote a sample with feature zi. Given a set of training samples
with feature set Z, we have

LDA(Z, {µ}) =∑zi∈Z
−1

|D|−1

∑
d∈D\{di} log

exp (−d(zi,µd,ci
))∑

(d′,c′)∈M\{(di,ci)}
exp (−d(zi,µd′,c′ ))

. (1)

Intuitively, LDA tackles label divergence, as (d, c) pairs that share same class
would be pulled closer, and vice versa. It is also related to (α, β, γ) because
the numerator represents positive cross-domain pairs (α), and the denominator
represents negative cross-class pairs (β, γ). A detailed probabilistic interpretation
of LDA is provided in Appendix B.2.

But, LDA does not address label imbalance. Note that (α, β, γ) is defined in
a balanced way, independent of the number of samples of each (d, c). However,
given an imbalanced dataset, most samples will come from majority domain-class
pairs, which would dominate LDA and cause minority pairs to be overlooked.

Balanced Domain-Class Distribution Alignment (BoDA). To tackle data
imbalance across (d, c) pairs, we modify the loss in Eqn. (1) to the BoDA loss:

LBoDA(Z, {µ}) = ∑
zi∈Z

−1
|D|−1

∑
d∈D\{di}

log
exp (−d̃(zi,µd,ci

))∑
(d′,c′)∈M\{(di,ci)}

exp (−d̃(zi,µd′,c′ ))
, d̃(zi,µd,c) =

d(zi,µd,c)
Ndi,ci

. (2)
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BoDA scales the original d by a factor of 1/Ndi,ci , i.e., it counters the effect

of imbalanced domain-class pairs by introducing a balanced distance measure d̃.

Theorem 1 (LBoDA as an Upper Bound). Given a multi-domain long-tailed
dataset S with domain label space D and class label space C satisfying |D| > 1
and |C| > 1, let Z be the representation set of all training samples, and (α, β, γ)
be the transferability statistics for S defined in Definition 3. It holds that

LBoDA(Z, {µ}) ≥ N log
(
|D| − 1 + |D|(|C| − 1) exp

(
|C||D|
N · α− |C|

N · β − |C|(|D|−1)
N · γ

))
. (3)

The proof of Theorem 1 is in Appendix A.2. Theorem 1 has the following
interesting implications: (1) LBoDA upper-bounds (α, β, γ) statistics in a desired
form that naturally translates to better performance. By minimizing LBoDA, we
ensure a low α (attract same classes) and high β, γ (separate different classes),
which are essential conditions for generalization in MDLT. (2) The constant
factors correspond to how much each component contributes to the transferability
graph. Zooming on the arguments of exp(·), we observe that the objective is

proportional to α− ( 1
|D|β + |D|−1

|D| γ). According to Definition 3, we note that α

summarizes data similarity for the same class, while ( 1
|D|β+

|D|−1
|D| γ) summarizes

data similarity across different classes, using the weighted average of β and γ,
where their weights are proportional to the number of associated domains (i.e.,
1 for β, (|D| − 1) for γ).

4.4 Calibration for Data Imbalance Leads to Better Transfer

BoDA works by encouraging feature transfer for similar classes across domains,
i.e., if (d, c) and (d′, c) refer to the same class in different domains, then we
want to transfer their features to each other. But, minority domain-class pairs
naturally have worse µd,c estimates due to data scarcity, and forcing other pairs
to transfer to them hurts learning. Thus, when bringing two domain-class pairs
closer in the embedding space, we want the minority (d, c) to transfer to majority
ones, not the inverse. The following example further clarifies this point.

Motivating Example. We use Digits-MLT with divergent labels (Fig. 5). We
focus on feature discrepancy, i.e., the distance between training and test features
for the same class. For each class in domain 1, we compute the distance in the
feature space between the means of the training set and test set (solid line). We
also compute the distance between the training data of domain 2 and test data
of domain 1 (dashed line), for the same class.

As shown by the solid orange line in Fig. 5b, for minority domain-class pairs
such as class “8” and “9” in domain 1, the distance in the feature space between
training and testing is large. In fact, the test set of these minority domain-class
pairs is closer to the training data for “8” and “9” in domain 2 than in their
own domain, as shown by the dashed purple line. This example indicates that a
better training would try to transfer the features of minority domain-class pairs
to majority pairs with which they share the same class, as shown by the grey
arrow in Fig. 5b. Such transfer will improve generalization to the test set.
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Fig. 5. The need for calibration. (a) Per-domain label distribution. (b) Distance bet-
ween training and test data. Solid plots the distance between training and test data
from the same domain-class pairs. Dashed plots the distance between test data from
a particular domain-class pair and the training data with which it shares the same
class but differs in the domain. The blue and red background colors refer to majority
and minority domain-class pairs, respectively. (c) Correspondence between the feature
distance ratio and the sample size ratio for two domain-class pairs.

BoDA with Calibrated Distance. The above discussion motivates a modifica-
tion to BoDA to favor transfer to majority domain-class pairs:

L̃BoDA(Z, {µ}) = ∑
zi∈Z

−1
|D|−1

∑
d∈D\{di}

log
exp

(
−λ

d,ci
di,ci

d̃(zi,µd,ci
)
)

∑
(d′,c′)∈M\{(di,ci)}

exp
(
−λd′,c′

di,ci
d̃(zi,µd′,c′ )

) , λd′,c′

d,c =
(

Nd′,c′

Nd,c

)ν
, (4)

where ν is a constant that allows for a sublinear relation (default ν = 1). λd′,c′

d,c

indicates how much we would like to transfer (d, c) to (d′, c′), based on their
relative sample size. Fig. 5c verifies that the ratio of the sample size is highly
correlated with the ratio of the distance between testing and training. Further,
Theorem 2 in Appendix A shows that L̃BoDA is an upper bound of the calibrated
transferability statistics.

Variants of BoDA: Matching Higher Order Statistics. The distance d can
be set to the Euclidean distance d(z,µd,c) =

√
(z− µd,c)⊤(z− µd,c), which

captures the first order statistics. To match higher order statistics such as co-

variance, we set d(z, {µd,c,Σd,c}) =
√

(z− µd,c)⊤Σ
−1
d,c (z− µd,c), resembling the

Mahalanobis distance [11]. We refer to these variants as L̃BoDA and L̃BoDA-M.

Joint Loss. BoDA serves as a representation learning scheme for MDLT, which
operates over Z. For classification, we train deep networks by combining L̃BoDA

and the standard cross-entropy (CE) loss in an end-to-end fashion, where CE
is applied to the output layer, and BoDA is applied to the latent features. We
combine the losses as LCE + ωL̃BoDA, with ω as a trade-off hyperparameter.

5 What Makes for Good Classifiers in MDLT?

In the long-tailed recognition literature, an important finding is that decoupling
representation learning and classifier learning leads to better results [23,58]. In
particular, instance-balanced sampling is used during the first stage of learning,
while class-balanced sampling is used for re-training the classifier (with the repre-
sentation fixed) in the second stage [23]. Motivated by this, we explore whether a
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similar decoupling benefits MDLT. We use three learning algorithms, ERM [46],
DANN [31], and CORAL [45]. We train each algorithm with and without the
second stage classifier learning, and report the average accuracy over all MDLT
datasets (presented later).

Table 1. The benefits of decou-
pling the classifier.

Algorithm w/o decouple w/ decouple

ERM [46] 77.6 ±0.2 79.2 ±0.3

DANN [15] 77.7 ±0.6 79.0 ±0.1

CORAL [45] 78.0 ±0.1 79.6 ±0.2

As Table 1 shows, similar to what has been
observed in the single domain case [23,58], re-
gardless of algorithm, decoupling the classifier
learning consistently improves performance.
Since BoDA can support both coupled and de-
coupled classifier learning, we use BoDAr to re-
fer to models that couple representation and classifier learning, and BoDAr,c for
models that decouple representation from classifier learning. In the classifier
learning stage, we simply use class-balanced sampling.

6 Benchmarking MDLT

Datasets. We curate five multi-domain datasets typically used in DG and adapt
them for MDLT evaluation. To do so, for each dataset, we create two balanced
datasets one for validation and the other for testing, and leave the rest for
training. The size of the validation and test data sets is 5% and 10% of original
data, respectively. Table 10 in Appendix D provides the statistics of each MDLT
dataset. Fig. 6 shows the label distributions across domains in the five datasets.

1. VLCS-MLT. We construct VLCS-MLT using the VLCS dataset [14], which is an
object recognition dataset with 10,729 images from 4 domains and 5 classes.

2. PACS-MLT. PACS-MLT is constructed from the PACS dataset [28], an object recog-
nition dataset with 9,991 images from 4 domains and 7 classes.

3. OfficeHome-MLT. We set up OfficeHome-MLT using the OfficeHome dataset
[47] which contains 15,588 images from 4 domains and 65 classes.

4. TerraInc-MLT. TerraInc-MLT is created from TerraIncognita [2], a species
classification dataset including 24,788 images from 4 domains and 10 classes.

5. DomainNet-MLT. We construct DomainNet-MLT using DomainNet [38], a large-
scale multi-domain dataset for object recognition. It contains 586,575 images
from 345 classes and 6 domains.

Network Architectures. For experiments on the synthetic Digits-MLT data-
set, we use a simple CNN architecture as in [19]. For the MDLT datasets, we
follow [19], and use ResNet-50 [21] for all algorithms.

Competing Algorithms. We compare BoDA to a large number of algorithms
that span different learning strategies and categories, including (1) vanilla: ERM
[46], (2) distributionally robust optimization: GroupDRO [40], (3) data augmen-
tation: Mixup [50], SagNet [35], (4) meta-learning: MLDG [27], (5) domain-
invariant feature learning: IRM [1], DANN [15], CDANN [31], CORAL [45],
MMD [29], (6) transfer learning: MTL [4], (7) multi-task learning: Fish [42],
and (8) imbalanced learning: Focal [32], CBLoss [10], LDAM [6], BSoft-
max [39], SSP [52], CRT [23]. We provide detailed descriptions in Appendix E.
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Fig. 6. Overview of training set label distribution for five MDLT datasets. We set up
MDLT benchmarks from datasets traditionally used for DG, and make validation/test
sets balanced across all domain-class pairs. More details are provided in Appendix D.

Table 2. Results on VLCS-MLT.

Accuracy (by domain) Accuracy (by shot)

Algorithm Average Worst Many Medium Few Zero

ERM [46] 76.3 ±0.4 53.6 ±1.1 84.6 ±0.5 76.6 ±0.4 − 32.9 ±0.4

IRM [1] 76.5 ±0.2 52.3 ±0.7 85.3 ±0.6 75.5 ±1.0 − 33.5 ±1.0

GroupDRO [40] 76.7 ±0.4 54.1 ±1.3 85.3 ±0.9 76.2 ±1.0 − 34.5 ±2.0

Mixup [50] 75.9 ±0.1 52.7 ±1.3 84.4 ±0.2 77.1 ±0.6 − 29.2 ±1.4

MLDG [27] 76.9 ±0.2 53.6 ±0.5 84.9 ±0.3 77.5 ±1.0 − 34.4 ±0.9

CORAL [45] 75.9 ±0.5 51.6 ±0.7 84.3 ±0.6 75.5 ±0.5 − 34.5 ±0.8

MMD [29] 76.3 ±0.6 53.4 ±0.3 84.5 ±0.8 77.1 ±0.5 − 32.7 ±0.3

DANN [15] 77.5 ±0.1 54.1 ±0.3 85.9 ±0.5 76.0 ±0.4 − 38.0 ±2.3

CDANN [31] 76.6 ±0.4 53.6 ±0.4 84.4 ±0.7 77.3 ±0.8 − 35.0 ±0.8

MTL [4] 76.3 ±0.3 52.9 ±0.5 84.8 ±0.9 76.2 ±0.6 − 33.3 ±1.4

SagNet [35] 76.3 ±0.2 52.3 ±0.2 85.3 ±0.3 75.1 ±0.2 − 32.9 ±0.3

Fish [42] 77.5 ±0.3 54.3 ±0.4 86.2 ±0.5 76.0 ±0.4 − 35.6 ±2.2

Focal [32] 75.6 ±0.4 52.3 ±0.2 84.0 ±0.2 75.5 ±0.6 − 32.7 ±0.9

CBLoss [10] 76.8 ±0.3 52.5 ±0.5 84.8 ±0.7 77.5 ±1.4 − 33.2 ±1.6

LDAM [6] 77.5 ±0.1 52.9 ±0.2 86.5 ±0.4 75.5 ±0.5 − 35.2 ±0.6

BSoftmax [39] 76.7 ±0.5 52.9 ±0.9 84.4 ±0.9 78.2 ±0.6 − 34.3 ±0.9

SSP [52] 76.1 ±0.3 52.3 ±1.0 83.8 ±0.3 76.0 ±1.2 − 37.1 ±0.7

CRT [23] 76.3 ±0.2 51.4 ±0.3 84.5 ±0.1 77.3 ±0.0 − 31.7 ±1.0

BoDAr 76.9 ±0.5 51.4 ±0.3 85.3 ±0.3 77.3 ±0.2 − 33.3 ±0.5

BoDA-Mr 77.5 ±0.3 53.4 ±0.3 85.8 ±0.2 77.3 ±0.2 − 35.7 ±0.7

BoDAr,c 77.3 ±0.2 53.4 ±0.3 85.3 ±0.3 78.0 ±0.2 − 38.6 ±0.7

BoDA-Mr,c 78.2 ±0.4 55.4 ±0.5 85.3 ±0.3 79.3 ±0.6 − 43.3 ±1.1

BoDA vs. ERM +1.9 +1.8 +0.7 +2.7 − +10.4

Table 3. Results on PACS-MLT.

Accuracy (by domain) Accuracy (by shot)

Algorithm Average Worst Many Medium Few Zero

ERM [46] 97.1 ±0.1 95.8 ±0.2 97.1 ±0.0 97.0 ±0.0 98.0 ±0.9 −
IRM [1] 96.7 ±0.2 95.2 ±0.4 96.8 ±0.2 96.7 ±0.7 94.7 ±1.4 −
GroupDRO [40] 97.0 ±0.1 95.3 ±0.4 97.3 ±0.1 95.3 ±1.2 94.7 ±3.6 −
Mixup [50] 96.7 ±0.2 95.1 ±0.2 97.0 ±0.1 96.7 ±0.3 91.3 ±2.7 −
MLDG [27] 96.6 ±0.1 94.1 ±0.3 96.8 ±0.1 96.3 ±0.7 92.7 ±0.5 −
CORAL [45] 96.6 ±0.5 94.3 ±0.7 96.6 ±0.5 97.0 ±0.8 94.7 ±0.5 −
MMD [29] 96.9 ±0.1 96.2 ±0.2 96.9 ±0.2 97.0 ±0.0 96.7 ±0.5 −
DANN [15] 96.5 ±0.0 94.3 ±0.1 96.5 ±0.1 98.0 ±0.0 94.7 ±2.4 −
CDANN [31] 96.1 ±0.1 94.5 ±0.2 96.1 ±0.1 96.3 ±0.5 94.0 ±0.9 −
MTL [4] 96.7 ±0.2 94.5 ±0.6 96.8 ±0.1 95.3 ±1.7 97.3 ±1.1 −
SagNet [35] 97.2 ±0.1 95.2 ±0.3 97.4 ±0.1 96.7 ±0.5 95.3 ±0.5 −
Fish [42] 96.9 ±0.2 95.2 ±0.2 97.0 ±0.1 97.0 ±0.5 94.7 ±1.1 −
Focal [32] 96.5 ±0.2 94.6 ±0.7 96.6 ±0.1 95.0 ±1.7 96.7 ±0.5 −
CBLoss [10] 96.9 ±0.1 95.1 ±0.4 96.8 ±0.2 97.0 ±1.2 100.0 ±0.0 −
LDAM [6] 96.5 ±0.2 94.7 ±0.2 96.6 ±0.1 95.7 ±1.4 96.0 ±0.0 −
BSoftmax [39] 96.9 ±0.3 95.6 ±0.3 96.6 ±0.4 98.7 ±0.7 99.3 ±0.5 −
SSP [52] 96.9 ±0.2 95.4 ±0.4 96.7 ±0.2 98.3 ±0.5 98.0 ±0.9 −
CRT [23] 96.3 ±0.1 94.9 ±0.1 96.3 ±0.1 97.3 ±0.3 94.0 ±0.9 −
BoDAr 97.0 ±0.1 95.1 ±0.4 97.0 ±0.1 96.3 ±0.5 98.0 ±0.9 −
BoDA-Mr 97.1 ±0.1 94.9 ±0.1 97.3 ±0.1 96.3 ±0.5 96.0 ±0.0 −
BoDAr,c 97.2 ±0.1 95.7 ±0.3 97.4 ±0.1 97.0 ±0.0 94.7 ±1.1 −
BoDA-Mr,c 97.1 ±0.2 96.3 ±0.1 97.1 ±0.0 97.0 ±0.8 96.0 ±0.0 −

BoDA vs. ERM +0.1 +0.5 +0.3 +0.0 -2.0 −

Implementation and Evaluation Metrics. For a fair evaluation, following
[19], for each algorithm we conduct a random search of 20 trials over a joint
distribution of all hyperparameters (see Appendix E.3 for details). We then use
the validation set to select the best hyperparameters for each algorithm, fix them
and rerun the experiments under three different random seeds to report the final
average accuracy with standard deviation. Such process ensures the comparison
is best-versus-best, and the hyperparameters are optimized for all algorithms.
In addition to the average accuracy across domains, we also report the worst
accuracy over domains, and further divide all domain-class pairs into many-shot
(pairs with over 100 training samples), medium-shot (pairs with 20∼100 training
samples), few-shot (pairs with under 20 training samples), and zero-shot (pairs
with no training data), and report the results for these subsets.

6.1 Main Results

We report the main results in this section for all MDLT datasets. The complete
results and all additional experiments are provided in Appendix F and H.

Benchmark Results on MDLT Datasets. The performance of all methods
on VLCS-MLT, PACS-MLT, OfficeHome-MLT, TerraInc-MLT and DomainNet-MLT
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Table 4. Results on OfficeHome-MLT.

Accuracy (by domain) Accuracy (by shot)

Algorithm Average Worst Many Medium Few Zero

ERM [46] 80.7 ±0.0 71.3 ±0.1 87.8 ±0.2 81.0 ±0.2 63.1 ±0.1 63.3 ±7.2

IRM [1] 80.6 ±0.4 70.7 ±0.2 87.6 ±0.4 81.5 ±0.4 61.1 ±0.9 56.7 ±1.4

GroupDRO [40] 80.1 ±0.3 68.7 ±0.9 88.1 ±0.2 80.8 ±0.4 59.8 ±1.2 51.7 ±3.6

Mixup [50] 81.2 ±0.2 72.3 ±0.6 87.9 ±0.4 81.8 ±0.1 64.1 ±0.4 60.0 ±4.1

MLDG [27] 80.4 ±0.2 70.2 ±0.6 87.1 ±0.1 81.3 ±0.3 61.3 ±1.0 61.7 ±1.4

CORAL [45] 81.9 ±0.1 72.7 ±0.6 87.9 ±0.1 83.0 ±0.1 63.5 ±0.7 65.0 ±2.4

MMD [29] 78.4 ±0.4 67.7 ±0.8 85.2 ±0.2 79.4 ±0.7 58.8 ±0.4 56.7 ±3.6

DANN [15] 79.2 ±0.2 70.2 ±0.9 86.2 ±0.1 80.0 ±0.1 60.3 ±1.1 61.7 ±5.9

CDANN [31] 79.0 ±0.2 69.4 ±0.3 86.4 ±0.6 79.8 ±0.1 58.9 ±0.8 50.0 ±4.7

MTL [4] 79.5 ±0.2 69.8 ±0.6 87.3 ±0.3 79.8 ±0.2 61.1 ±0.2 51.7 ±2.7

SagNet [35] 80.9 ±0.1 70.5 ±0.5 87.8 ±0.4 81.9 ±0.1 61.2 ±0.9 56.7 ±3.6

Fish [42] 81.3 ±0.3 71.3 ±0.7 88.2 ±0.2 81.9 ±0.3 63.2 ±0.8 61.7 ±1.4

Focal [32] 77.9 ±0.0 67.6 ±0.4 86.5 ±0.3 78.3 ±0.1 57.4 ±0.3 46.7 ±3.6

CBLoss [10] 79.8 ±0.2 69.5 ±0.7 86.6 ±0.4 80.6 ±0.2 61.1 ±1.4 65.0 ±2.4

LDAM [6] 80.3 ±0.2 69.9 ±0.5 87.1 ±0.2 81.3 ±0.3 61.1 ±0.2 51.7 ±2.7

BSoftmax [39] 80.4 ±0.2 70.9 ±0.5 86.7 ±0.5 81.3 ±0.3 62.4 ±1.0 60.0 ±4.1

SSP [52] 81.1 ±0.3 71.1 ±0.3 87.3 ±0.6 82.3 ±0.3 61.6 ±0.7 63.3 ±1.4

CRT [23] 81.2 ±0.0 72.5 ±0.2 87.7 ±0.1 81.8 ±0.1 64.0 ±0.1 65.0 ±2.4

BoDAr 81.5 ±0.1 71.8 ±0.1 87.7 ±0.2 82.3 ±0.1 64.2 ±0.3 63.3 ±1.4

BoDA-Mr 81.9 ±0.2 71.6 ±0.2 87.3 ±0.3 83.4 ±0.2 62.3 ±0.3 65.0 ±2.4

BoDAr,c 82.3 ±0.1 72.3 ±0.3 87.1 ±0.2 83.9 ±0.3 63.2 ±0.2 65.0 ±2.4

BoDA-Mr,c 82.4 ±0.2 72.3 ±0.3 87.7 ±0.1 83.9 ±0.6 64.2 ±0.3 66.7 ±2.7

BoDA vs. ERM +1.7 +1.0 -0.1 +2.9 +1.1 +3.4

Table 5. Results on TerraInc-MLT.

Accuracy (by domain) Accuracy (by shot)

Algorithm Average Worst Many Medium Few Zero

ERM [46] 75.3 ±0.3 67.4 ±0.3 85.6 ±0.8 69.6 ±3.2 66.1 ±2.4 14.4 ±2.8

IRM [1] 73.3 ±0.7 64.3 ±1.3 83.5 ±0.6 70.0 ±1.8 58.3 ±3.4 20.1 ±1.4

GroupDRO [40] 72.0 ±0.4 66.6 ±0.2 84.7 ±1.1 64.6 ±4.7 38.9 ±1.2 13.5 ±1.1

Mixup [50] 71.1 ±0.7 60.4 ±1.1 83.2 ±0.7 60.0 ±0.6 56.1 ±3.0 12.2 ±2.1

MLDG [27] 76.6 ±0.2 66.9 ±0.5 86.1 ±0.6 73.8 ±3.9 70.6 ±3.7 18.8 ±2.4

CORAL [45] 76.4 ±0.5 67.8 ±0.9 86.3 ±0.3 77.5 ±3.1 66.1 ±2.0 11.0 ±1.4

MMD [29] 73.3 ±0.4 63.7 ±1.1 84.0 ±0.4 67.9 ±2.7 60.6 ±1.6 13.6 ±2.6

DANN [15] 68.7 ±0.9 61.1 ±1.0 79.6 ±1.2 62.5 ±8.1 48.9 ±2.8 13.3 ±1.1

CDANN [31] 70.3 ±0.5 63.9 ±1.0 83.5 ±0.8 50.0 ±4.2 43.9 ±4.7 20.4 ±3.1

MTL [4] 75.0 ±0.7 67.7 ±1.4 85.2 ±0.7 73.8 ±1.6 61.1 ±2.8 12.4 ±4.0

SagNet [35] 75.1 ±1.6 66.5 ±2.1 85.5 ±0.9 77.1 ±5.0 57.8 ±4.3 13.0 ±3.4

Fish [42] 75.3 ±0.5 66.3 ±0.5 85.8 ±0.2 73.3 ±3.9 61.1 ±3.0 13.7 ±3.3

Focal [32] 75.7 ±0.4 65.3 ±1.1 85.7 ±0.3 76.2 ±3.9 68.9 ±3.2 12.6 ±1.9

CBLoss [10] 78.0 ±0.4 68.3 ±2.0 85.0 ±0.1 89.2 ±1.2 83.9 ±2.5 9.3 ±3.9

LDAM [6] 74.7 ±0.9 64.1 ±1.4 85.1 ±0.6 70.8 ±3.5 67.8 ±1.2 11.1 ±2.4

BSoftmax [39] 76.7 ±1.0 65.6 ±1.3 83.4 ±0.8 90.8 ±0.9 78.3 ±3.9 12.6 ±2.4

SSP [52] 78.5 ±0.7 67.3 ±0.4 85.5 ±1.0 87.8 ±0.9 82.6 ±1.2 13.2 ±2.8

CRT [23] 81.6 ±0.1 70.0 ±0.4 89.7 ±0.2 90.4 ±0.3 83.9 ±0.5 12.9 ±0.0

BoDAr 78.6 ±0.4 68.5 ±0.3 86.4 ±0.1 85.0 ±1.0 80.0 ±0.9 13.7 ±2.1

BoDA-Mr 79.4 ±0.6 71.3 ±0.4 88.4 ±0.3 76.2 ±2.7 88.3 ±1.6 14.4 ±1.4

BoDAr,c 82.3 ±0.3 68.5 ±0.6 89.2 ±0.2 92.5 ±0.9 88.3 ±1.2 21.3 ±0.7

BoDA-Mr,c 83.0 ±0.4 74.6 ±0.7 89.2 ±0.2 91.2 ±0.6 91.7 ±2.0 21.7 ±1.4

BoDA vs. ERM +7.7 +7.2 +3.6 +22.9 +25.6 +7.3

Table 6. Results on DomainNet-MLT.

Accuracy (by domain) Accuracy (by shot)

Algorithm Average Worst Many Medium Few Zero

ERM [46] 58.6 ±0.2 29.4 ±0.3 66.0 ±0.1 56.1 ±0.1 35.9 ±0.5 27.6 ±0.3

IRM [1] 57.1 ±0.1 27.6 ±0.1 64.7 ±0.1 54.3 ±0.3 33.5 ±0.3 25.8 ±0.3

GroupDRO [40] 53.6 ±0.1 25.9 ±0.2 61.8 ±0.1 49.1 ±0.3 30.7 ±0.7 22.0 ±0.1

Mixup [50] 57.6 ±0.1 28.7 ±0.0 64.9 ±0.2 54.5 ±0.1 35.6 ±0.2 27.3 ±0.3

MLDG [27] 58.5 ±0.0 28.7 ±0.1 66.0 ±0.1 55.7 ±0.1 35.3 ±0.2 26.9 ±0.3

CORAL [45] 59.4 ±0.1 30.1 ±0.4 66.4 ±0.1 57.1 ±0.0 37.7 ±0.6 29.9 ±0.2

MMD [29] 56.7 ±0.0 27.2 ±0.2 64.2 ±0.1 54.0 ±0.0 33.9 ±0.2 25.4 ±0.2

DANN [15] 55.8 ±0.1 26.9 ±0.4 63.0 ±0.1 52.7 ±0.1 34.2 ±0.4 26.8 ±0.4

CDANN [31] 56.0 ±0.1 27.7 ±0.1 63.2 ±0.0 52.7 ±0.2 34.3 ±0.5 27.6 ±0.1

MTL [4] 58.6 ±0.1 29.3 ±0.2 65.9 ±0.1 56.0 ±0.4 35.4 ±0.1 28.2 ±0.3

SagNet [35] 58.9 ±0.0 29.4 ±0.2 66.3 ±0.1 56.4 ±0.0 36.2 ±0.3 27.2 ±0.4

Fish [42] 59.6 ±0.1 29.1 ±0.1 67.1 ±0.1 57.2 ±0.1 36.8 ±0.4 27.8 ±0.3

Focal [32] 57.8 ±0.2 27.5 ±0.1 65.2 ±0.2 55.1 ±0.2 35.8 ±0.1 26.3 ±0.1

CBLoss [10] 58.9 ±0.1 30.1 ±0.1 64.3 ±0.0 61.0 ±0.3 42.5 ±0.4 28.1 ±0.2

LDAM [6] 59.2 ±0.0 29.2 ±0.2 66.6 ±0.0 57.0 ±0.0 37.1 ±0.2 27.8 ±0.3

BSoftmax [39] 58.9 ±0.1 29.9 ±0.1 64.3 ±0.1 60.9 ±0.3 42.4 ±0.6 28.2 ±0.1

SSP [52] 59.7 ±0.0 31.6 ±0.2 64.3 ±0.1 62.6 ±0.1 45.0 ±0.3 30.5 ±0.0

CRT [23] 60.4 ±0.2 31.6 ±0.1 66.8 ±0.0 61.6 ±0.1 45.7 ±0.1 29.7 ±0.1

BoDAr 60.1 ±0.2 32.6 ±0.1 65.7 ±0.2 60.6 ±0.1 42.6 ±0.3 30.5 ±0.2

BoDA-Mr 60.1 ±0.2 32.2 ±0.2 65.9 ±0.2 60.7 ±0.1 42.9 ±0.3 30.0 ±0.1

BoDAr,c 61.7 ±0.1 33.4 ±0.1 67.0 ±0.1 62.7 ±0.1 46.0 ±0.2 32.2 ±0.3

BoDA-Mr,c 61.7 ±0.2 33.3 ±0.1 67.0 ±0.1 63.0 ±0.3 46.6 ±0.4 31.8 ±0.2

BoDA vs. ERM +3.1 +4.0 +1.0 +6.9 +10.7 +4.6

Table 7. Results over all MDLT benchmarks.

Algorithm VLCS-MLT PACS-MLT OfficeHome-MLT TerraInc-MLT DomainNet-MLT Avg

ERM [46] 76.3 ±0.4 97.1 ±0.1 80.7 ±0.0 75.3 ±0.3 58.6 ±0.2 77.6
IRM [1] 76.5 ±0.2 96.7 ±0.2 80.6 ±0.4 73.3 ±0.7 57.1 ±0.1 76.8
GroupDRO [40] 76.7 ±0.4 97.0 ±0.1 80.1 ±0.3 72.0 ±0.4 53.6 ±0.1 75.9
Mixup [50] 75.9 ±0.1 96.7 ±0.2 81.2 ±0.2 71.1 ±0.7 57.6 ±0.1 76.5
MLDG [27] 76.9 ±0.2 96.6 ±0.1 80.4 ±0.2 76.6 ±0.2 58.5 ±0.0 77.8
CORAL [45] 75.9 ±0.5 96.6 ±0.5 81.9 ±0.1 76.4 ±0.5 59.4 ±0.1 78.0
MMD [29] 76.3 ±0.6 96.9 ±0.1 78.4 ±0.4 73.3 ±0.4 56.7 ±0.0 76.3
DANN [15] 77.5 ±0.1 96.5 ±0.0 79.2 ±0.2 68.7 ±0.9 55.8 ±0.1 75.5
CDANN [31] 76.6 ±0.4 96.1 ±0.1 79.0 ±0.2 70.3 ±0.5 56.0 ±0.1 75.6
MTL [4] 76.3 ±0.3 96.7 ±0.2 79.5 ±0.2 75.0 ±0.7 58.6 ±0.1 77.2
SagNet [35] 76.3 ±0.2 97.2 ±0.1 80.9 ±0.1 75.1 ±1.6 58.9 ±0.0 77.7
Fish [42] 77.5 ±0.3 96.9 ±0.2 81.3 ±0.3 75.3 ±0.5 59.6 ±0.1 78.1
Focal [32] 75.6 ±0.4 96.5 ±0.2 77.9 ±0.0 75.7 ±0.4 57.8 ±0.2 76.7
CBLoss [10] 76.8 ±0.3 96.9 ±0.1 79.8 ±0.2 78.0 ±0.4 58.9 ±0.1 78.1
LDAM [6] 77.5 ±0.1 96.5 ±0.2 80.3 ±0.2 74.7 ±0.9 59.2 ±0.0 77.7
BSoftmax [39] 76.7 ±0.5 96.9 ±0.3 80.4 ±0.2 76.7 ±1.0 58.9 ±0.1 77.9
SSP [52] 76.1 ±0.3 96.9 ±0.2 81.1 ±0.3 78.5 ±0.7 59.7 ±0.0 78.5
CRT [23] 76.3 ±0.2 96.3 ±0.1 81.2 ±0.0 81.6 ±0.1 60.4 ±0.2 79.2
BoDAr 76.9 ±0.5 97.0 ±0.1 81.5 ±0.1 78.6 ±0.4 60.1 ±0.2 78.8
BoDA-Mr 77.5 ±0.3 97.1 ±0.1 81.9 ±0.2 79.4 ±0.6 60.1 ±0.2 79.2
BoDAr,c 77.3 ±0.2 97.2 ±0.1 82.3 ±0.1 82.3 ±0.3 61.7 ±0.1 80.2
BoDA-Mr,c 78.2 ±0.4 97.1 ±0.2 82.4 ±0.2 83.0 ±0.4 61.7 ±0.2 80.5

BoDA vs. ERM +1.9 +0.1 +1.7 +7.7 +3.1 +2.9

are in Table 2, 3, 4, 5 and 6, respectively. We highlight rows in gray for BoDA

and its variants, and bolden the best result in each column. First, as all tables
indicate, BoDA consistently achieves the best average accuracy across all datasets.
It also achieves the best worst-case accuracy most of the time. Moreover, on
certain datasets (e.g., OfficeHome-MLT), MDL methods perform better (e.g.,
CORAL), while on others (e.g., TerraInc-MLT), imbalanced methods achieve
higher gains (e.g., CRT); Nevertheless, regardless of dataset, BoDA outperforms
all methods, highlighting its effectiveness for the MDLT task. Finally, compared
to ERM, BoDA slightly improves the average and many-shot performance, while
substantially boosting the performance for the medium-shot, few-shot, and zero-
shot pairs. Table 7 summarizes the averaged accuracy across all datasets, where
BoDA brings large overall improvements of ∼ 3%.

A Closer Look at Accuracy Gains. We further explore how BoDA performs
across all domain-class pairs. Fig. 7 shows the absolute accuracy gains of BoDA
over ERM on OfficeHome-MLT, where BoDA consistently improves the perfor-
mance over all domains. The improvements are especially large for domain “Art”,
where most of the classes lie in the few-shot region. For certain classes, BoDA can
improve up to 50% accuracy, indicating its effectiveness on tackling MDLT.
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Fig. 7. The absolute accuracy gains of BoDA vs. ERM over all domain-class pairs on
OfficeHome-MLT. BoDA establishes large improvements w.r.t. all regions, especially for
the few-shot and zero-shot ones. Results for other datasets are in Appendix H.2.

0

200

400

600

800

1000

nu
m

be
ro

fs
am

pl
es

Domain 1 (MNIST-M)

0 1 2 3 4 5 6 7 8 9

class index

0

200

400

600

800

1000

nu
m

be
ro

fs
am

pl
es

Domain 2 (SVHN)

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

Transferability Graph

0

200

400

600

800

1000

#
of

sa
m

pl
es

Domain 1 (MNIST-M)
label distribution
many-shot region
medium-shot region
few-shot region

0 1 2 3 4 5 6 7 8 9

class index

0

200

400

600

800

1000

#
of

sa
m

pl
es

Domain 2 (SVHN)

0 1 2 3 4 5 6 7 8 9

class index

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

fe
at

ur
e

m
ea

n
di

st
an

ce

mean difference w.r.t. domain 1 test set
∞∞µtr

1,c ° µte
1,c

∞∞
∞∞µtr

2,c ° µte
1,c

∞∞

Transferability Graph

Test acc gains (vs. ERM): +9.5%

Domain 1

Domain 2

# of samples:

<20

>100

20~100

(a) (c)

0

200

400

600

800

1000

#
of

sa
m

pl
es

Domain 1 (MNIST-M)
label distribution
many-shot region
medium-shot region
few-shot region

0 1 2 3 4 5 6 7 8 9

class index

0

200

400

600

800

1000

#
of

sa
m

pl
es

Domain 2 (SVHN)

0 1 2 3 4 5 6 7 8 9

class index

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
fe

at
ur

e
m

ea
n

di
st

an
ce

mean difference w.r.t. domain 1 test set
∞∞µtr

1,c ° µte
1,c

∞∞
∞∞µtr

2,c ° µte
1,c

∞∞

(b)

Fig. 8. BoDA analysis. (a) Label distribution setup. (b) Distance of feature mean be-
tween train and test data. BoDA enables better learned tail (d, c) with smaller feature
discrepancy. (c) BoDA learns features that are more aligned across domains even in the
presence of divergent labels, and significantly improves upon ERM by 9.5%.

Ablation Studies on BoDA Components (Appendix H.1). We study the
effects of (1) adding balanced distance (i.e., BoDA vs. vanilla DA), and (2) different

choices of distance calibration coefficient λd′,c′

d,c in BoDA. We observe that BoDA

improves over DA by a large margin (2.3% on average over all MDLT datasets),

highlighting the importance of using balanced distance. Interestingly, as for λd′,c′

d,c ,
we find that BoDA is pretty robust to different choices within a given range, and
obtain similar gains (1.9% to 2.9% over ERM).

6.2 Understanding the Behavior of BoDA on MDLT

To better understand how the design of BoDA contributes to its superior perfor-
mance, we revisit the Digits-MLT dataset and run BoDA as opposed to ERM.

Better Learned Representations for Minority Data. Similar to Fig. 5, we
plot in Fig. 8b the feature mean distance between training and test data for BoDA
on Digits-MLT. The plot shows that, in BoDA, the distance between training and
test data for minority classes (class “8” and “9”) becomes smaller.

Improved Transferability against Severe Imbalance. Fig. 8c plots the
transferability graph induced by BoDA for the label distributions in Fig. 8a. It
shows that even in the presence of severe and divergent label imbalance, BoDA
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Table 9. BoDA strengthens performance on Domain Generalization (DG) benchmarks.
The full tables including detailed results for each dataset are in Appendix G.

Algorithm VLCS PACS OfficeHome TerraInc DomainNet Avg

ERM 77.5 ±0.4 85.5 ±0.2 66.5 ±0.3 46.1 ±1.8 40.9 ±0.1 63.3
Current SOTA [45] 78.8 ±0.6 86.2 ±0.3 68.7 ±0.3 47.6 ±1.0 41.5 ±0.1 64.5
BoDAr,c 78.5 ±0.3 86.9 ±0.4 69.3 ±0.1 50.2 ±0.4 42.7 ±0.1 65.5

BoDAr,c + Current SOTA [45] 79.1 ±0.1 87.9 ±0.5 69.9 ±0.2 50.7 ±0.6 43.5 ±0.3 66.2

BoDA vs. ERM +1.6 +2.4 +3.4 +4.6 +2.6 +2.9

learns transferable features. Further, BoDA learns a balanced feature space that
separates different classes away. The better learned features translates to better
accuracy (9.5% gains vs. ERM in Fig. 3c). More results are in Appendix H.3.

Table 8. BoDA bound.

LBoDA

Empirical 2.92947 ±7.3e-3

Theoretical 2.92513 ±7.8e-3

Tightness of the Bound. We study whether the BoDA
bound derived in Theorem 1 is tight. We train a ResNet-
18 on Digits-MLT for 5,000 steps to ensure convergence.
We compute the loss over all samples, and combine the
results over 3 random seeds. Table 8 confirms the bound is empirically tight.

7 Beyond MDLT: (Imbalanced) Domain Generalization

Domain Generalization (DG) refers to learning from multiple domains and gen-
eralizing to unseen domains. Since naturally the learning domains differ in their
label distributions and may even have class imbalance within each domain, we
study whether BoDA can improve performance for DG. Note that all datasets we
adapted for MDLT are standard benchmarks for DG, which confirms that data
imbalance is an intrinsic problem in DG, but has been overlooked by past works.

To test BoDA, we follow the DG evaluation protocol in [19], and compare to
the current SOTA [45]. Table 9 reveals the following findings: First, BoDA alone
can improve upon the current SOTA on four out of the five datasets, and achieves
notable average performance gains. Moreover, combined with the current SOTA,
BoDA further boosts the result by a notable margin across all datasets, suggesting
that label imbalance is orthogonal to existing DG-specific algorithms. Finally,
similar to MDLT, the gains depend on how severe the imbalance is within a
dataset – e.g., TerraInc exhibits the most severe label imbalance across domains,
on which BoDA achieves the highest gains. The intriguing results shed light on the
importance of integrating label imbalance for practical DG algorithm design.

8 Conclusion

We formalize MDLT as learning from multi-domain imbalanced data, and gen-
eralizing to all domain-class pairs. We introduce the domain-class transferability
graph, and propose BoDA, a theoretically grounded loss that tackles MDLT. Ex-
tensive results on real-world MDLT benchmarks verify its superiority. Further-
more, BoDA establishes a new SOTA on DG benchmarks. Our work opens up new
avenues for realistic multi-domain learning in the presense of data imbalance.
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