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1 More Implementation Details

1.1 Matching Network Architecture

We adopt the multi-relation head from FSOD [3] as our matching network (MN),
which consists of three relation heads for learning to match support and query
features {fs, fq} ∈ R1×C×7×7 in multiple levels.

Global-relation head. Designed to learn a global matching embedding,
this head first concatenates fs and fq along the channel dimension to feature

f
′

c ∈ R1×2C×7×7, which is then average pooled to fc ∈ R1×2C×1×1. Finally, a
MLP M containing three fully connected layers with ReLU (except the last one)
is applied to fc to predict the matching score sg = M(fc).

Patch-relation head. Designed to learn a non-linear metric to capture the
complex relation between patches, this head is derived from the RelationNet [5]
where the concatenated feature f

′

c is fed to a small convolution network, which
consists of two 3 × 3 average pooling operators at the first and last layers sep-
arately, two 1 × 1 convolutional layers for reducing and then restoring dimen-
sions, and one 3 × 3 convolutional layer (all convolutional layers are equipped
with ReLU). Note that all these operations and layers use one stride and zero
padding to generate the final feature vector fq ∈ R1×C×1×1. Finally, a fully con-
nected layer is employed to generate the matching score sp, and a sibling fc layer
to generate the box prediction for better supervision from multi-task learning.

Local-relation head. Designed to capture the pixel-level relation between
support and query features, fs and fq are first processed using a weight-shared
convolution layer with ReLU. Then their pixel-wise relation is calculated by
depth-wise correlation [4] with the resulting feature vector fd ∈ R1×C×1×1 fed
to a fully connected layer to generate the matching score sl.

These three relation heads cooperate together to capture the relation be-
tween support and query features in different levels. The final matching score is
obtained by summing all the aforementioned matching scores: s = sg + sp + sl.

1.2 Deformable RoIAlign

Deformable RoIAlign dynamically changes its sample locations according to the
input features. In our implementation, two frame features are concatenated and
sent to the deformable RoIAlign so that it is aware of the object positions in
both frames and therefore dynamically adapt the sample locations to enlarge
the search region to capture objects in both frames.
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1.3 Training Details

The stride of the Res5 block is reduced to 1 to increase feature map resolution.
We replace its regular convolutional layer with the dilated convolutional layer
to keep the effective receptive field. Following common practices, the low-level
layers (Res1 and Res2) are fixed and only the high-level layers are trained. As
for the inputs, the query image is resized to (600, 1000) where the shorter and
longer sizes are respectively no longer than 600 and 1000 pixels. We also adopt
the multi-scale training for query images during training. As for the support
and aligning query images, they are cropped and resized to 320× 320 size with
extended 16-pixels around the target object and the cropped images are saved
to the disk for efficient training to avoid repeating the crop for the same image.

1.4 Evaluation Details

During inference, the final score of each box is obtained by multiplying the
matching score predicted by TMN and the corresponding objectness score gen-
erated by TPN to suppress the scores of boxes containing hard background1.

Instead of setting a fixed support set which is only used for support images,
we exploit a support set which can fully utilize the val and test set in a dynamic
manner for more comprehensive evaluation on all videos.

The following description applies to the val set which is similar to the test set.
Our dynamic support set contains “offline” and “online” support sets. The sup-
port images in the offline support set are derived from the randomly selected val
set videos Voffline. The support features foffline are pre-computed and saved to the
hard drive for efficient evaluation2. Then we can load the pre-computed support
features to the model to perform detection on query videos. When performing
evaluation on Voffline, we build the online support sets by randomly selecting im-
ages from the remaining videos, and the support features are online generated for
the evaluation3. In this way, we avoid the “cheap matching” between same ob-
jects which is degraded to the single object tracking task. The dynamic support
set can dynamically decide the support sets for different videos, and therefore
efficiently utilizes the entire val set to perform evaluation without leaving a frac-
tion of videos as the specialized support set. Note that the video-level annotation
is much more expensive and time-consuming than the image-level annotation.
With our dynamic support set we can avoid wastage of valuable video data.

Note that the finetuning-based methods cannot be directly compared with
matching-based methods because of the former’s high requirement for support
sets, which requires training on novel classes in a reserved support set. This

1 The background may have high matching score because of the similar appearance
with supports. The low objectness score predicted by TPN can down-weigh the
overall score to alleviate this influence.

2 One class has one corresponding support feature in the C × 1× 1 size and C is the
channel number.

3 We only use them for Voffline with a small number of videos without reusing again.
It is also feasible to first save them to the hard drive.
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Fig. 1. Error type analysis of different methods on FSVOD-500 val set. Lower is better.

limits the application of the finetuning-based methods, because it is impossible
to exhaustively annotate all videos4 for each novel class. This issue can be solved
by annotating a special support set (it is very time and money consuming) to
finetune these models.

2 Error Type Analysis

To conduct an in-depth investigation of different models on the FSVOD task,
we analyze the error types on four representative models, namely, FSOD [3],
RDN [2], CenterTrack [6] and our FSVOD using a general toolbox TIDE [1]
which segments object detection errors into six types and measures the contri-
bution of each error by isolating its effect on overall performance (refer to [1] for
more details).

Figure 1 indicates that all methods suffer from classification errors on our
FSVOD-500 dataset, revealing that the core problem of FSVOD lies on few-shot
learning in distinguishing and classifying novel classes, which cannot be replaced
by other video understanding tasks.

For individual performances: FSOD has the lowest localization and missing
error thanks to the high-quality proposals generated by its attention RPN; the
VID-based model RDN mainly suffers from classification error because it gen-
erates too many background proposals which exacerbate the following matching
procedure; the MOT-based model CenterTrack has lower classification error ben-
efiting from the robust tube-based feature, but it suffers higher localization and
missing errors caused by its lower recall. Our approach has the lowest classifica-
tion error benefiting from our strategically designed TMN+ which leverages the
representative tube-based features generated by TPN.

4 In our case, for a novel class, we need to annotate at least one video and one support
image containing a different object belonging to the same class to avoid “cheap
matching”.
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Way Shot AP AP50 AP75

1 1 44.0 68.6 45.7
1 5 46.5 71.9 48.3
2 1 39.6 61.0 41.3
2 5 45.2 69.7 47.0
5 1 31.9 49.1 33.1
5 5 42.8 65.7 44.7

Table 1. Experimental results on FSVOD-500 val set of our model under different
few-shot evaluation settings.

Fig. 2. Class hierarchy of FSVOD train set.

From the above error analysis, we conclude that solving the few-shot match-
ing problem is the most essential future direction for FSVOD. We show more
experimental results under different few-shot evaluation settings in Table 1.

3 Full Dataset Hierarchy

The full dataset hierarchy of FSVOD is shown in Figure 2 (train set) and Figure 3
(val and test sets).
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Fig. 3. Class hierarchy of FSVOD val and test sets.

4 Object Localization in Massive Videos

In the main paper, we propose a common realistic problem: Given a bunch of
videos, how can we index and localize all novel objects of interest as video clips?.

The practical solution is to detect objects in these videos and index/localize
frames based on the detection results. Specifically, if there is a detection predic-
tion for the target class, we index/localize this video frame.

The fully-supervised methods (e.g., object detection and multiple object
tracking) can not solve this problem, because the interested objects can belong
to arbitrary classes.

The single object tracking tasks can not solve this problem, because the
video is massive and arbitrary, while the single object tracking requires the per-
video annotated template for the first frame. Furthermore, the interested class
may occur in discrete video clips and there are possibly multiple objects for
the target class. Thus the single object tracking methods cannot handle these
realistic cases.
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The image-level few-shot learning tasks (e.g., few-shot image/video classifica-
tion) can not solve this problem, because the interested objects is probably very
small, while the image classification cannot properly represent small objects.

The few-shot image object detection cannot properly solve this problem,
because its methods are specifically designed for still images without the consid-
eration for the temporal information.

The video object detection based methods are better than image detection
based method because of their better detection results. The multi-object tracking
methods significantly improve the precision/recall/F1 performance thanks to the
tube-based tracking. Note these methods are all adapted for few-shot learning.
Our method has the best performance thanks to our tube proposal network and
temporal matching strategy.
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