
Doubly Deformable Aggregation of Covariance
Matrices for Few-shot Segmentation

Zhitong Xiong 1, Haopeng Li 2, and Xiao Xiang Zhu 1,3

1 Data Science in Earth Observation, Technical University of Munich (TUM)
2 School of Computing and Information Systems, University of Melbourne

3 Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR)

0.910.91

Support Samples Ours (DACM)Baseline Ground Truth Support Samples Ours (DACM)Baseline Ground Truth

Fig. 1. Visualization of the few-shot segmentation results on PASCAL-5i, COCO-20i

[2], and FSS-1000 [1] datasets. From left to right: support samples, results of the base-
line method, results of the DACM, and ground truth labels. It can be clearly seen that
our method can output better results than the baseline method.

1 Few-shot Segmentation Visualization

Three datasets for few-shot segmentation are exploited to evaluate the proposed
method, including the PASCAL-5i [4], COCO-20i [2], and FSS-1000 [1]. As we
can see in Fig. 1, there exist large variations between the support images and
the query images in scale, pose and appearance.

Although only 50 epochs are used for training the proposed DACM method,
the performance of our model is clearly better than that of the baseline method
for some difficult test samples. Compared with HSNet [3], qualitative results in

https://orcid.org/0000-0002-3953-585X
https://orcid.org/0000-0001-8175-5381
https://orcid.org/0000-0001-5530-3613

2 Z. Xiong et al.

Ground
Truth

Similarity
map

Probability
map

Samples
@ Epoch 0

Samples
@ Epoch 40

Ground
Truth

Similarity
map

Probability
map

Samples
@ Epoch 0

Samples
@ Epoch 40

Fig. 2. Visualization of some qualitative examples of the proposed hard example-aware
sampling strategy for training GP models of the DACM model.

Fig. 1 show that DACM can obtain more complete segmentation maps owing to
larger receptive fields of the Transformer architecture. In Fig. 2, we also visualize
more examples of sampled locations during the training process of our DACM
method.

2 Covariance Matrices Analysis

Different from HSNet [3], we use the learned covariance kernel functions to mea-
sure the similarity between the support features and the query features instead
of a fixed cosine similarity. The fixed cosine similarity is computed as follows:

C1(xq, zs) = ReLU

(
xT
q zs

||xq||||zs||

)
, (1)

where xq is the query feature, and zs is the masked support feature.
Theoretically, the cosine similarity used in [3] can be viewed as a special

case of our method, i.e., using a fixed linear kernel. For a more effective similar-
ity measurement, we target at learning the kernel functions k(·, ·) on different
datasets using Gaussian process. The covariance matrices can be computed as
follows:

C2(xq, zs) = ReLU

(
k

(
xq

||xq||
,

zs
||zs||

))
. (2)

To better understand the learned kernel functions in GP, we have visualized the
covariance matrices in Fig. 3. For the cosine similarity mapC1 ∈ RHq×Wq×Hs×Ws ,
we reshape it into C1 ∈ RHq×Wq×HsWs and sum it up along the third dimen-
sion. Then we can get 2D similarity maps of the query image. The 2D similarity
maps are shown in Fig. 3. For the covariance matrices C2 ∈ RHq×Wq×Hs×Ws ,
we conduct the similar computation as the cosine similarity map C1.

From Fig. 3 we can see that covariance matrices learned by the DACM model
are more reasonable than the simple cosine similarity map. Then, the learned
similarity maps can be processed by the proposed DDT model to further enhance
the performance of few-shot segmentation.

DACM for few-shot segmentation 3

Cosine
Similarity

Covariance
Matrix

Ground
Truth

Cosine
Similarity

Covariance
Matrix

Ground
Truth

Cosine
Similarity

Covariance
Matrix

Ground
Truth

Fig. 3. Visualization of the learned variance matrices. For a clear visualization, we pool
the matrices into 2D similarity map along the support dimension. It can be seen that
similarity maps of DACM are more consistent with the ground truth label.

3 Limitations and Failure Cases

In this subsection, we will visualize and analyze some failure cases of the pro-
posed DACM method. In Fig. 4, we can see some failure cases of the learned
covariance matrices. It can be seen that, the similarity between the support
and the background of query samples is clearly low. However, in some cases,
the similarity between the support and foreground objects of query samples is
incorrectly high. From the visualization results, we can find that although the
global representation learning of Transformer is beneficial in most cases, there
still exist some situations where smaller receptive fields work better.

In Fig. 5, we also visualize some segmentation failures. As for the top-left
image, the man holding the bottle is misclassified as a foreground object. Take
the top-right result as an example, DACM incorrectly classify the reflection of
the boat as a foreground object. Note that the baseline method obtains better
mIoU results on these visualized samples than DACM. In the future work, we
believe that studying how to effectively combine global and local representations
can further enhance the performance of the few-shot segmentation task.

4 Details of Gaussian Process

Gaussian process (GP) is a non-linear and non-parametric Bayesian model for
regression and classification [5]. By exploiting the correlation between data sam-

4 Z. Xiong et al.

Cosine
Similarity

Covariance
Matrix

Ground
Truth

Cosine
Similarity

Covariance
Matrix

Ground
Truth

Fig. 4. Visualization of some failure cases of the learned covariance matrices. Compared
with the cosine similarity, it can be seen that the learned covariance matrices fail to
separate the foreground objects and the background.

Support Samples Ours (DACM)Baseline Ground Truth Support Samples Ours (DACM)Baseline Ground Truth

Fig. 5. Visualization of some failure cases of 1-shot segmentation results.

ples, Gaussian process performs probabilistic non-linear prediction that is de-
scribed by Gaussian distribution with estimated mean and covariance. We ex-
plain the details of general GP as follows. Formally, the data set consists of N
samples of dimension D, i.e., {X = {xi}Ni=1,y = {yi}Ni=1}, where xi ∈ RD is a
data point and yi is the corresponding label. The GP regression model assumes
that the outputs yi can be regarded as certain deterministic latent function f(xi)
with zero-mean Gaussian noise ε, i.e., yi = f(xi) + ε, where ε ∼ N (0, σ2). GP
sets a zero-mean prior on f , with covariance k(xi, xj). The covariance function
(kernel) k reflects the smoothness of f . Commonly-used kernels can be found in
Section 5. The hyper-parameters in the kernels are optimized by maximizing the
marginal likelihood of the training data, which is given as follows,

p(y|X) =

∫
p(y|f , X)p(f |X)df , (3)

where f = [f(x1), f(x2), · · · , f(xN)]T. Here, the term marginal likelihood refers
to the marginalization over the function values f . Setting the prior of the Gaus-
sian process model p(f |X) to be a Gaussian distribution N (0,K), the marginal
log-likelihood log p(y|X) can be expressed by,

log p(y|X) = −1

2
log |K| − 1

2
yT(K + σ2IN)−1y − N

2
log 2π, (4)

DACM for few-shot segmentation 5

where y = [y1, y2, · · · , yN]T,Kij = k(xi, xj), and IN is the identity matrix of size
N . For example, the Automatic Relevance Determination Squared Exponential
(ARD SE) kernel function is defined as

k(xi, xj) = σ2
0 exp

{
−1

2

D∑
d=1

((xi)d − (xj)d)
2

l2d

}
, (5)

where σ2, σ2
0 , {ld}

D
d=1 are hyper-parameters. By maximizing Eq. 4, the hyper-

parameters in Eq. 5 for computing the covariance matrices can be optimized.
After the hyper-parameters are optimized, the predictive distribution for the

test case x∗ can be calculated in a closed-form as follows:

µy∗ = kT(K + σ2IN)−1y, (6)

σ2
y∗ = k∗ − kT(K + σ2IN)−1k + σ2, (7)

where k = [k(x1, x
∗), k(x2, x

∗), · · · , k(xN , x∗)]T and k∗ = k(x∗, x∗).

Algorithm 1: Pseudocode for implementation of the Gaussian process
Gaussian process implementation details

class ExactGPModel(models.ExactGP):

def init(self, kernel=’rbf’):

self.mean module = means.ConstantMean() # using constant mean

Different Kernels

if kernel == ’linear’:

Linear kernel is equivalent to cosine similarity.

self.linear kernel = kernels.LinearKernel()

if kernel == ’rbf’:

RBF kernel with automatic relevance determination.

self.rbf kernel = kernels.RBFKernel(ARD)

if kernel == ’additive’:

Additive kernel by summing over multiple kernels.

self.covar module = kernels.LinearKernel() +

kernels.RBFKernel(ARD)

def forward(self, x):

Mean function computation

mean x = self.mean module(x)

Covariance function computation

covar x = self.covar module(x)

return distributions.MultivariateNormal(mean x, covar x)

5 Gaussian Process Implementation

In this section, we present the Pytorch-style implementation of the GP model.
The most critical part of the GP model is the choice of covariance kernel func-

6 Z. Xiong et al.

tions. In algorithm 1, we show three types of kernel functions, including the linear
kernel, the radial basis function (RBF) kernel and the additive mixed kernel.

For two vectors x1,x2 in the feature map, the linear kernel, the RBF ker-
nel, and the additive mixed kernel, with hyperparameters {v,Θ}, are defined as
follows:

kLinear (x1,x2) = vx⊤
1 x2,

kRBF (x1,x2) = exp

(
−1

2
(x1 − x2)

⊤
Θ−2 (x1 − x2)

)
,

kAdditive (x1,x2) = kLinear (x1,x2) + kRBF (x1,x2) .

(8)

Although the RBF kernel is used in this work, here we show that the proposed
framework can be easily extended by using different kernel types or their com-
binations.

References

1. Li, X., Wei, T., Chen, Y.P., Tai, Y.W., Tang, C.K.: Fss-1000: A 1000-class dataset for
few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 2869–2878 (2020)

2. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision. pp. 740–755. Springer (2014)

3. Min, J., Kang, D., Cho, M.: Hypercorrelation squeeze for few-shot segmentation.
arXiv preprint arXiv:2104.01538 (2021)

4. Shaban, A., Bansal, S., Liu, Z., Essa, I., Boots, B.: One-shot learning for semantic
segmentation. arXiv preprint arXiv:1709.03410 (2017)

5. Williams, C.K., Rasmussen, C.E.: Gaussian processes for regression (1996)

	Doubly Deformable Aggregation of Covariance Matrices for Few-shot Segmentation

