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Supplementary Material:
Dense Cross-Query-and-Support Attention Weighted

Mask Aggregation for Few-Shot Segmentation

A. More Results

Stability and robustness to trials and hyperparameter. In addition to
the 4-fold cross validation in Table 1, we conduct three repeated trials on Fold-0
of PASCAL-5i and obtain stable IoUs (72.1±0.25). We further experiment with
three hyperparamter pairs of batch size and learning rate (bs/lr) and obtain
stable IoUs, too: 72.2 (48/0.001), 71.9 (24/0.001), and 71.9 (24/0.0005).

Region-wise over- and under-segmentation measures. We further em-
ploy the region-wise over-segmentation measure (ROM) and region-wise under-
segmentation measure (RUM) [51] for quantitative evaluation. ROM and RUM
are two novel threshold-free metrics assessing region-based over- and under-
segmentation, and expected to lend greater explainability to semantic segmen-
tation performance in real-world applications. A smaller ROM (RUM) value in-
dicates less over- (under-) segmentation and is preferred. The 1-shot ROM and
RUM values are tabulated in Table S1, where our DCAMA slightly outperforms
the competent HSNet in both metrics overall.

Table S1. One-shot evaluation results in terms of ROM and RUM [51]. HSNet†: our
reimplementation based on the official codes.

Method Backbone
PASCAL-5i COCO-20i FSS-100 Overall
ROM RUM ROM RUM ROM RUM ROM RUM

HSNet† [24] Swin-B 0.26 0.06 0.15 0.07 0.12 0.03 0.177 0.053
DCAMA Swin-B 0.21 0.07 0.13 0.06 0.15 0.02 0.163 0.050

Computational efficiency. In addition to what is reported in the main
text, below we provide more metrics regarding computational efficiency in Table
S2. Our DCAMA has slightly larger FLOPS but comparable times with HSNet
for training an epoch and inference, and converges in substantially fewer epochs
thus needing much less time for training.

Table S2. Computational efficiency (1-shot on COCO-20i). HSNet†: our reimplemen-
tation based on the official codes.

Method Backbone Epoch to converge Epoch time FLOPS Inference time

HSNet† [24] Swin-B 355 ∼4 min 103.8 G 0.13 s
DCAMA Swin-B 90 ∼4 min 109.4 G 0.13 s
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Fig. S1. Memory and latency analysis for n-shot inference.

Memory and latency analysis for n-shot inference. The analysis for
n = 1 to 5 is presented in Fig. S1. The increases in memory and latency are
approximately linear with n.

B. Further Ablation Studies

Configuration of skip connections. In Section 3.2 of the main text, we pro-
pose to skip connect (concatenate) extracted features of the input images to the
integrated output of the multi-scale multi-layer Dense Cross-query-and-support
Attention weighted Mask Aggregation (DCAMA) blocks, following successful ex-
perience of previous works [30, 52]. Here, we empirically determine the optimal
configuration of the skip connections, by comparing the effects of concatenating
(or not) the 1

4 ,
1
8 , and

1
16 scale features individually and jointly. As shown in

Table S3, concatenating either 1
4 or 1

8 scale features individually brings notable
performance improvement upon the baseline of no skip connection, and their
joint concatenation brings further improvement to achieve the optimal perfor-
mance (+3.1% and +1.1% with respect to the baseline in mIoU and FB-IoU,
respectively). On the other hand, concatenating the 1

16 scale features, either in-
dividually or jointly with the shallower features, leads to obvious performance

Table S3. Ablation study on feature skip-connection configuration (1-shot on
PASCAL-5i [31] with Swin-B [21] as backbone).

Feature scale
1/4 1/8 1/16

Fold-0 Fold-1 Fold-2 Fold-3 mIoU FB-IoU

70.6 72.6 61.4 64.5 66.2 77.4
✓ 71.0 73.3 61.7 67.0 68.2 78.1

✓ 70.7 74.0 63.9 65.7 68.6 77.9
✓ ✓ 72.2 73.8 64.3 67.1 69.3 78.5

✓ 66.7 62.6 49.6 60.1 59.8 71.9
✓ ✓ ✓ 67.3 59.6 50.6 58.1 58.9 72.2
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deterioration. Similar findings were also reported in previous works [38, 48], with
the possible explanation that semantic information contained in high-level fea-
tures is more class-specific and less generalizable. Based on these results, we
choose to skip connect the 1

4 and 1
8 scale features in our DCAMA framework for

comparison with other methods.

Contribution of multi-scale attention. In Section 3.2 of the main text,
we implement the multi-layer DCAMA blocks at all scales (i.e., 1

8 ,
1
16 , and

1
32 )

allowed by our hardware, as the multi-scale strategy has proven effective in
various computer vision applications. Here, to empirically evaluate the impact
of the multi-scale attention, we conduct experiments to ablate the multi-scale
attention—one scale at a time, following [24]. The results are shown in Table
S4. As we can see, removing 1

8 scale attention results in modest and slight de-
creases in mIoU and FB-IoU by 2.1% and 1.4%, respectively, and consecutively
removing 1/16 scale attention leads to further, substantial performance degra-
dation in both metrics by 8.5% and 6.6%, respectively. These results indicate
the indispensable role of the multi-scale attention to our proposed framework.

Table S4. Ablation study on the multi-scale attention strategy (1-shot on PASCAL-
5i [31] with Swin-B [21] as backbone).

Attention scale
1/8 1/16 1/32

Fold-0 Fold-1 Fold-2 Fold-3 mIoU FB-IoU

✓ 62.0 66.8 49.4 56.7 58.7 70.5
✓ ✓ 70.0 73.3 61.5 64.0 67.2 77.1

✓ ✓ ✓ 72.2 73.8 64.3 67.1 69.3 78.5

Impact of skip-connecting support features/the number of support
foreground and background pixels. The ablation results in Table S5 show
that both excluding support features from skip connection (row a) and normal-
izing foreground and background region sizes (to 600 pixels following CyCTR;
row b) impair the performance. Specifically, the high-level feature maps that are
skip connected have relative large receptive fields, hence are helpful even not
aligned.

Table S5. Ablation study on skip-connecting support features and the number of
support foreground and background pixels (1-shot on PASCAL-5i [31] with Swin-B
[21] as backbone).

Ablation Supp. feat. Num pix. Fold-0 Fold-1 Fold-2 Fold-3 mIoU FB-IoU

a ✗ All 71.1 73.6 63.5 67.5 68.9 77.9
b ✓ 600 70.7 66.6 62.9 62.6 65.7 75.9

DCAMA ✓ All 72.2 73.8 64.3 67.1 69.3 78.5
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Fig. S2. Example 5-shot segmentation results by the proposed DCAMA framework
(with Swin-B [21] as backbone) on PASCAL-5i, in the presence of intra-class variations,
size differences, complex background, and occlusions.

C. More Visual Analysis

Visualization of more segmentation results. Fig. S2 shows example 5-shot
segmentation results by our proposed DCAMA framework, complementary to
the 1-shot segmentation results shown in the main text.

Qualitative limitation analysis. We empirically explore the limitations of
the proposed DCAMA framework, based on qualitative analysis of failure cases
in the 1-shot settings. Above all, as shown in Fig. S3, all the failure cases in the 1-
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Fig. S3. Left: some representative failure cases on PASCAL-5i in 1-shot setting. Right:
the same cases in 5-shot setting, where the extra support images and masks help
our DCAMA framework produce accurate segmentation of the query images in these
challenging cases.

shot setting are accurately segmented with the extra support images in the 5-shot
setting, in accordance with the findings of Min et al. [24]. As this finding clearly
demonstrates the efficacy of 5-shot segmentation and is expected, it is interesting
to dig deeper to find out why the 1-shot segmentation fails in these cases and
how the extra support images help. Systematically, we roughly categorize the
1-shot failures into three types of limitations: limited representativeness of the
support image, intra-class variation, and inter-class similarity, which sometimes
occur together, too.

Limited representativeness happens when the target class is under-represented
in the support image, e.g., the object is largely occluded (row (a) of Fig. S3),
too small (row (b)), or in a quite different perspective (row (c)). In contrast, for
intra-class variation, although the object in the support image is complete and
in normal size and view, the instance in the query image can look differently
despite belonging to the same major class (rows (d) and (e)). The third type
of limitation is inter-class similarity, i.e., the similarity between different classes
causing difficulty in differentiating them (rows (f)–(h)). We can also observe its
concurrence with the other two types (rows (f) and (h)). These limitations are
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Fig. S4. Control experiment on fixing 1-shot failures by adding one extra support
image: (a) the same cases as shown in Fig. S3 (left); (b) the failures are effectively fixed
with an informative support image added; and (c) adding a non-informative support
image helps little.

inherent in Few-Shot Learning (FSL) and faced by all FSL algorithms. Theocrat-
ically, these limitations can be effectively overcome by introducing the missing
support information with a few additional, informative support images.

To validate this, we pick only one extra informative support image and use it
together with the original 1-shot support image for a 2-shot inference. As shown
in Fig. S4(b), by providing more completed information about the target class
and extra information about the within-class variance and inter-class differenti-
ation, respectively, the 1-shot failures are fixed, as expected. On the other hand,
we also experiment with replacing the added informative support image with a
non-informative one as a control group, and the corresponding results in Fig.
S4(c) are apparently inferior to those in Fig. S4(b), with little or no improve-
ment upon the original 1-shot results. This suggests that the actual information
contained in the support images may matter more than the absolute number of
them. To this end, it is desirable to integrate active learning with the few-shot
segmentation for practical application.

Visualization of point-wise attention maps. For an intuitive perception
of how a specific point in the query image correlates to all pixels of a support im-
age, we visualize the attention weight maps for two query pixels—one foreground
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Fig. S5. Point-wise attention weight maps for two pixels (red dot: foreground; and
green dot: background) in the query image, to all pixels of a support image. The
attention maps are obtained by averaging all the multi-scale multi-layer attention maps
(upsampled where applicable).

and one background—in Fig. S5. As we can see, both of the query pixels have
the strongest attention weights around their most similar regions in the support
image, i.e., the dark cat’s eye and below the dark cat’s hind legs, respectively,
while faint responses can also be observed around similar regions of the orange
cats.
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Fig. S6. T-SNE plots for a testing class “plane”: blue (red) indicates foreground (back-
ground).

T-SNE visualization. For an intuitive perception of how well the model
learns the metric space, we employ t-SNE for qualitative analysis (Fig. S6).
The penultimate-layer features of DCAMA are more separable than those of the
frozen backbone (Swin-B), indicating effective learning of the metric space.


