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Summary

Section 1 shows how using clustering has a regularization effect on the seen
classes with all samples as well as seen classes with a subset of samples.

Section 2 shows that our approach outperforms prior work with a high statis-
tical significance in most scenarios.

Section 3 shows that our approach is consistently outperforming prior work
when evaluated on the same split.

Section 4 and Figure 3 shows the performance w.r.t. the number of clusters,
which is stable across a wide range of values for this hyper parameter.

Section 5 shows the comparison of aggregation strategies and interaction be-
tween visual and semantic features.

Section 6 and Table 4 report the performance of seen and unseen classes sep-
arately for the case of GZSL.

1 Regularization Effect of Clustering

In the main paper, we showed the regularization effect that clustering had when
using 6, 10 and 51 clusters in comparison to no clusters. Here, we look at the
same effect with 20 and 35 clusters as well. We see consistent improvements
of over 15% in accuracy for the unseen classes using the proposed CLASTER
representation compared to no clustering.

In addition, we show that using only 35% of the data of seen classes for
training also benefits from clustering on the unseen classes. This can be seen in
Figure 2 While in the case of seen classes, using no clustering has the highest
validation accuracy, at test time for the unseen classes, clustering leads to the
best results. There are a few interesting points to note here. First, no cluster-
ing results in clear overfitting. The training accuracy reaches over 80% while
the validation accuracy reaches a peak of 46% before dropping. However, us-
ing clustering results in the training and validation curves to be really close to
each other. Another interesting point is that when there is a limited number of
samples, having more clusters results in better performance at test time. This
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Fig. 1. Left: Learning curve for the seen classes. Right: Accuracy curve for the unseen
classes. The clustering-based representation avoids overfitting, which in the case of seen
classes means that the gap between validation and training accuracy is smaller than in
the vanilla representation. This regularization effect improves the accuracy in unseen
classes.

was not the case when we had all samples for the seen classes. When having all
samples at training time, the number of clusters resulted in the same average
accuracy as can be seen in Section 4.

Fig. 2. Left: Learning curve for the seen classes using 35% of the data. Right: Learn-
ing curve for the unseen classes. The clustering-based representation avoids overfitting,
which in the case of seen classes means that the gap between validation and train-
ing accuracy is smaller than in the vanilla representation. This regularization effect
improves the accuracy in unseen classes.

2 Statistical Significance

We consider the dependent t-test for paired samples. This test is utilized in the
case of dependent samples, in our case different model performances on the same
random data split. This is a case of a paired difference test. This is calculated
as shown in Eq 1.
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t =
X̄D − µ0

sD/
√
n

(1)

Where X̄D is the average of the difference between all pairs and sD is the
standard deviation of the difference between all pairs. The constant µ0 is zero in
case we wish to test if the average of the difference is different; n represents the
number of samples, n = 10 in our case. The comparisons can be seen in Table 1.
The lower the value of ’p’, higher the significance.

As we can see, our results are statistically significant in comparison to both
OD [3] and WGAN [4] in both ZSL and GZSL. We also see that our results
are statistically significant for both HMDB51 and Olympics in comparison to
E2E [1]. In GZSL, OD [3] also achieves results that are significantly different in
comparison to WGAN [4].

Pairs Dataset t-value Statistical significance(p<0.05) Type

CLASTER and OD [3] UCF101 -15.77 Significant, p<0.00001 ZSL
CLASTER and WGAN [4] UCF101 -9.08 Significant, p<0.00001 ZSL
CLASTER and E2E [1] UCF101 -0.67 Not Significant, p = 0.26 ZSL
OD [3] and WGAN [4] UCF101 -1.70 Not Significant, p=0.12278 ZSL

CLASTER and OD [3] HMDB51 -4.33 Significant, p=0.00189 ZSL
CLASTER and WGAN [4] HMDB51 -5.54 Significant, p=0.00036 ZSL
CLASTER and E2E [1] HMDB51 -3.77 Significant, p = 0.00219 ZSL
OD [3] and WGAN [4] HMDB51 -3.71 Significant, p=0.00483 ZSL

CLASTER and OD [3] Olympics -9.06 Significant, p<0.00001 ZSL
CLASTER and WGAN [4] Olympics -11.73 Significant, p<0.00001 ZSL
CLASTER and E2E [1] Olympics -2.72 Significant, p = 0.012 ZSL
OD [3] and WGAN [4] Olympics -2.47 Significant, p=0.03547 ZSL

CLASTER and OD [3] UCF101 -4.51 Significant, p=0.00148 GZSL
CLASTER and WGAN [4] UCF101 -5.49 Significant, p=0.00039 GZSL
OD [3] and WGAN [4] UCF101 -3.16 Significant, p=0.01144 GZSL

CLASTER and OD [3] HMDB51 -5.08 Significant, p=0.00066 GZSL
CLASTER and WGAN [4] HMDB51 -7.51 Significant, p=0.00004 GZSL
OD [3] and WGAN [4] HMDB51 -5.27 Significant, p=0.00051 GZSL

CLASTER and OD [3] Olympics -5.79 Significant, p=0.00026 GZSL
CLASTER and WGAN [4] Olympics -8.39 Significant, p=0.00002 GZSL
OD [3] and WGAN [4] Olympics -6.22 Significant, p=0.00014 GZSL

Table 1. Comparison of the t-test for different pairs of models on the same random
split. Lower the value of ’p’, higher the significance. As we can see, our results are
statistically significant in comparison to both OD [3] and WGAN [4] in both ZSL and
GZSL. For GZSL, OD [3] also achieves results that are significant in comparison to
WGAN [4].
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3 Average of Differences in Performance for Same Splits

Since the performance of the model varies for each random split (as witnessed
by the standard deviation values), we average the difference in performance
between CLASTER, OD, WGAN and E2E on the same splits. We believe that
this gives us a better metric to check the performance of CLASTER with the
other approaches. The results are depicted in Table 2.

Models Setting Olympics HMDB51 UCF101

Ours and WGAN [4] ZSL 17.5 ± 4.5 7.0 ±3.8 17.4 ± 5.7
Ours and OD [3] ZSL 13.6 ± 4.5 2.4 ± 1.6 14.3 ± 2.7
Ours and E2E [1] ZSL 2.6 ± 2.8 3.7 ± 2.8 0.4 ± 1.8

Ours and WGAN [4] GZSL 11.2 ± 4.0 9.3 ± 3.7 8.1 ± 4.4
Ours and OD [3] GZSL 4.6 ± 2.4 5.2 ± 3.1 2.7 ± 1.8

Table 2. Comparing the average of the difference in performance for recent state-
of-the-art approaches in zero-shot and generalized zero-shot action recognition on the
same splits. All results were computed using sen2vec as the embedding. We can see
that we outperform recent approaches in every scenario.

4 Number of Clusters

Fig. 3. Effect of using different number of clusters. The green line represents the stan-
dard deviation. The reported accuracy is on the UCF101 dataset. As can be seen, the
average cluster accuracy increases till about 6 clusters and then remains more or less
constant. The vertical lines correspond to the standard deviation.

We test using different number of clusters on the UCF-101 dataset and show
the results in Figure 3. These are for 5 runs on random splits. As we can see,
the average accuracy increases until 6 clusters, and after that remains more or
less constant. Thus, we use 6 clusters and continue with the same number for
both HMDB51 and Olympics. For images, similarly, we used 5 random splits of
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CUB and found the performance stabilizes after having 9 clusters and use the
same number of clusters for the other image datasets.

5 Comparison of aggregation strategies and interaction
between visual and semantic features

We compare the method with and without semantic features in Table 1 of the
main paper. Below, in Table 3 we show other aggregation options such as aver-
aging and dot product. All results are using ED as semantic embedding.

Method HMDB51

Average 33.1 ± 2.9
Dot Product 33.9 ± 3.2
Weighted Average 35.3 ± 3.6
Concatenation 43.2 ± 1.9

Table 3. Results on different aggregation options for the semantic and visual embed-
dings.

6 Seen and Unseen Class Performance for GZSL

In order to better analyze performance of the model on GZSL, we report the
average seen and unseen accuracies along with their harmonic mean. The results
using different embeddings and on the UCF101, HMDB51 and Olympics datasets
are reported in Table 4. The reported results are on the same splits for fair
comparison [2].
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Model E Olympics HMDB51 UCF-101

u s H u s H u s H

WGAN [4] A 50.8 71.4 59.4 - - - 30.4 83.6 44.6
OD [3] A 61.8 71.1 66.1 - - - 36.2 76.1 49.1

CLASTER A 66.2 71.7 68.8 - - - 40.2 69.4 50.9

WGAN [4] W 35.4 65.6 46.0 23.1 55.1 32.5 20.6 73.9 32.2
OD [3] W 41.3 72.5 52.6 25.9 55.8 35.4 25.3 74.1 37.7

CLASTER W 49.2 71.1 58.1 35.5 52.8 42.4 30.4 68.9 42.1

WGAN [4] S 36.1 66.2 46.7 28.6 57.8 38.2 27.5 74.7 40.2
OD [3] S 42.9 73.5 54.1 33.4 57.8 42.3 32.7 75.9 45.7

CLASTER S 49.9 71.3 58.7 42.7 53.2 47.4 36.9 69.8 48.3

CLASTER C 66.8 71.6 69.1 43.7 53.3 48.0 40.8 69.3 51.3

Table 4. Seen and unseen accuracies for CLASTER on different datasets using differ-
ent embeddings. ’E’ corresponds to the type of embedding used, wherein ’A’, ’W’, ’S’
and ’C’ refers to manual annotations, word2vec, sen2vec and combination of the em-
beddings respectively. ’u’, ’s’ and ’H’ corresponds to average unseen accuracy, average
seen accuracy and the harmonic mean of the two. All the reported results are on the
same splits.
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