
Meta Learning Less Forgetting 19

A Dataset Details

Miniimagenet [56] A dataset selected from ImageNet with 100 different classes,
each with 600 images. All images are the same size of 84×84. We adopt the same
splits of [46] with meta train/validation/test splits being 64/16/20 classes.

CIFARFS [12] A dataset randomly sampled from CIFAR-100. The meta train/validation/test
splits are of 64/16/20 classes respectively. We follow the split of [12].

Omniglot [32] An image dataset of 1623 handwritten characters from 50 different
alphabets, with 20 examples per class. We follow the setup and data split in [56]
and use this dataset as OOD data.

CUB [67] A dataset for fine-grained classification on 200 different bird species.
The meta train/validation/test splits are of 100/50/50 classes respectively. We
follow the same split of [17].

AIRCRAFT [38] A dataset of images for aircrafts model classification consisting
of 102 categories, with 100 images per class. The dataset is split into 70/15/15
classes for meta- training/validation/test. We follow the split in [59].

Plantae [28] A large dataset consisting of approximately 100K images with 200
randomly selected plant species. We follow the split of [55] and split the dataset
into 100/50/50 classes for meta- training/validation/test.

Butterfly [16] A large scale fine-grained dataset of Butterfly, they have col-
lected 25279 butterfly images from 200 species, with each species containing
at least 30 images. We only keep the classes with more than 50 images and
got 185 classes. We randomly split the dataset into 100/40/45 classes for meta-
training/validation/test.

Vggflower [43] there are 102 flower categories and contains between 40 and 258
images for each class. We use this dataset for OOD data.

Fish [70] A large scale dataset of fish species. It consists of 1000 fish categories
with a total of 54,459 images, we use this dataset for OOD data.

B Implementation details

Memory buffer update
The memory is updated by online reservoir sampling (RS) [58], at each

time step t, RS operates on task unit level. RS ensures each task has the same
probability to be stored in the memory buffer without knowing the total number
of tasks in advance. The algorithm works by maintaining a reservoir of size k
tasks. As long as the memory buffer is not full, each new incoming task will be

20 Z. Wang et al.

stored in the memory buffer. When the memory buffer is full, at time step i,
when the task i arrives, the algorithm then generates a random number j between
(and including) 1 and i. If j is at most k, then the task is selected and replaces
one task in the reservoir. Otherwise, the task i is discarded. The memory buffer
is updated online and real time. Whether each task is determined to be stored in
the memory or not depends on whether the random number j is less than k or
not.

Implementation details. We use a five-layer CNN with 64 filters of kernel
size being 3 for meta-learning. Similar architecture is commonly used in existing
meta-learning literature. We do not use any pre-trained network feature extractors,
which assume all the training tasks data are available before training, and this
violates our problem setting that future incoming tasks are completely unknown.
Methods are evaluated on the proposed benchmark described in Section 3. We
perform experiments on different dataset ordering, with the default ordering
being Plantae, CUB, MiniImagenet, CIFARFS, Aircraft, Butterfly. For each
dataset, we randomly sample 12K tasks, we thus have 72K tasks in total. This
task sequence is much larger than existing continual learning models considered.
The evolving episodes are constructed and described in Section 3. All experiments
are averaged over five independent runs. We create an additional split for each
dataset to separate the images of each class into disjoint labeled and unlabeled
sets. Following [47], we sample 40% of the images of each class to form the
labeled split, and the remaining 60% can only be used in the unlabeled portion of
episodes. We randomly sample 10 data points from the unlabeled portion of each
chosen class to form the unlabeled ID data Uid for each episode. The unlabeled
OOD data Uood for each episode is produced by sampling R unlabeled data from
the mixture OOD dataset of Omniglot [32], Vggflower [43] and Fish [70]. R = 50
by default. This way of constructing multimodal OOD data is more challenging
and more realistic than existing SSFSL works, which sample OOD data from the
same meta training dataset. More implementation details are given in Appendix
B. We provide code in supplementary materials.

We randomly sample 12000 tasks from each dataset. We sequentially train
on each dataset for 6000 iterations in the dataset sequence. At each iteration,
we randomly sample 2 tasks (meta batch size) from current dataset. The hyper-
parameter is determined by grid search, with λ = {1e − 4, 1e − 5, 1e − 6} and
β = {0.01, 0.005, 0.003, 0.001}. The grid search results for 5-way 5-shot learning
are in Table 8. The adopted values are λ = 1e − 5 and β = 0.5. The OOD
sampling is performed by uniformly sampling equal number of OOD data from
each OOD dataset. We use Adam optimizer [30] to optimize the model with
learning rate of 1e-3. For theorem 3, we set a(y) = 1 for simplicity. The function
in f(eid,pc′) is one layer network with 10 hidden units.

C More experimental results

Effect of domain ordering

Meta Learning Less Forgetting 21

Order 2 : Butterfly, CUB, CIFARFS, Plantae, MiniImagenet, Aircraft. 5-way,
1-shot and 5-shot learning results are shown in Table 4 and Table 5.

Order 3 : CUB, CIFARFS, Plantae, MiniImagenet, Butterfly, Aircraft. Results
are shown in Table 6 and Table 7

Table 4: 5-way, 1-shot and 5-shot classification accuracy comparing
to meta-learning baselines with domain order 2. Top rows are meta
learning without unlabeled data, bottom rows are meta learning meth-
ods with unlabeled data.

Algorithm 1-Shot 5-Shot

ProtoNet 27.91± 0.95 39.12± 0.76

ANIL 27.25± 0.82 38.58± 0.65

MSKM 30.15± 0.89 41.02± 0.75

LST 32.51± 0.71 41.78± 0.85

TPN 31.81± 0.72 42.81± 0.62

Ours 42.49± 0.57 55.37± 0.71

Table 5: 5-way, 1-shot and 5-shot classification accuracy compared
to continual learning baselines.

Algorithm 1-Shot 5-Shot

Semi-ER 39.05± 0.91 51.28± 0.78

Semi-AGEM 39.48± 0.97 51.51± 0.83

Semi-MER 39.65± 0.82 51.42± 0.68

Semi-GPM 38.89± 0.85 51.03± 0.71

Semi-DEGCL 39.81± 0.73 51.68± 0.62

Ours 42.49± 0.57 55.37± 0.71

Joint-training 49.91± 0.79 61.78± 0.75

22 Z. Wang et al.

Table 6: 5-way, 1-shot and 5-shot classification accuracy comparing
to meta-learning baselines with domain order 2. Top rows are meta
learning without unlabeled data, bottom rows are meta learning meth-
ods with unlabeled data.

Algorithm 1-Shot 5-Shot

ProtoNet 28.55± 1.03 40.41± 0.97

ANIL 28.24± 1.15 39.97± 0.83

MSKM 31.17± 0.96 41.46± 0.69

LST 31.61± 0.81 41.31± 0.80

TPN 32.80± 0.71 42.83± 0.71

Ours 43.36± 0.61 56.89± 0.58

Table 7: 5-way, 1-shot and 5-shot classification accuracy compared
to continual learning baselines.

Algorithm 1-Shot 5-Shot

Semi-ER 38.87± 0.76 52.75± 0.82

Semi-AGEM 39.29± 0.73 52.97± 0.94

Semi-MER 39.41± 0.68 53.08± 0.87

Semi-GPM 39.09± 0.81 52.83± 0.76

Semi-DEGCL 39.46± 0.77 53.37± 0.73

Ours 43.36± 0.61 56.89± 0.58

Joint-training 49.91± 0.79 61.78± 0.75

Table 8: Sensitivity analysis on hyper parameters

λ
β 0.001 0.003 0.005 0.01

1e-4 52.86± 0.79 53.28± 0.75 53.49± 0.67 52.65± 0.79

1e-5 52.61± 0.85 53.96± 0.71 53.60± 0.82 52.73± 0.93

1e-6 51.85± 0.58 52.06± 0.49 52.15± 0.70 52.03± 0.67

Sensitivity analysis on hyper parameters
We performed sensitivity analysis on hyperparameters, the result is summa-

rized in Table 8. β controls the magnitude of optimal transport regularization,
the result indicate the model performance is positively correlated with β when it

Meta Learning Less Forgetting 23

increases until optimal trade-off is reached, after which performance deteriorates
with over regularization when β reaches 0.01. Similar trend is observed in mutual
information regularization with λ.

Effect of memory size
Table 9 shows the effect of different memory size. With memory size increases,

the model performance also increases accordingly.

Table 9: 5-way, 1-shot and 5-shot classification accuracy with different
memory size.

Memory size 1-Shot 5-Shot

50 40.11± 0.73 52.75± 0.77

100 40.79± 0.58 53.28± 0.65

200 41.25± 0.64 53.96± 0.71

Ablation Study results

Fig. 2: Sensitivity of baselines and our
method to OOD data

Table 10: Running time (seconds).
Algorithm 5-Shot (250 OOD) 5-Shot (50 OOD)

MSKM 85 43
TPN 149 86
LST 137 79

ORDER (Ours) 122 71

24 Z. Wang et al.

Efficiency Evaluation To investigate the computational efficiency, we report
the time cost of baselines and our method running on 200 iterations. The results
are reported in Table 10. Our method is more efficient than TPN and LST, but
slower than MSKM.

Table 11: Ablation study of model components.

MI OT ACC (5 shot 50 OOD) ACC (5 shot 250 OOD)

✗ ✗ 50.35± 0.76 46.25± 0.91
✗ ✓ 51.18± 0.82 47.69± 0.87
✗ ✓(Uid) 51.72± 0.61 48.57± 0.80
✓ ✗ 52.63± 0.77 50.23± 0.62
✓ ✓(Uid) 53.96± 0.71 51.87± 0.68

Table 12: Fine-grained ablation study analysis of using different parts of
unlabeled data and mutual information regularizer.

Uid Uood Iid Iood ACC (5 shot 50 OOD) ACC (5 shot 250 OOD)

✓ ✓ ✗ ✗ 50.35± 0.76 46.25± 0.91
✓ ✗ ✗ ✗ 51.67± 0.85 48.36± 0.82
✓ ✗ ✓ ✗ 52.87± 0.89 49.98± 0.70
✓ ✓ ✓ ✓ 53.96± 0.71 51.87± 0.68

D Theorem Proof

Theorem 1 For a task T = {S,U ,Q}, suppose the unlabeled OOD data
embedding eood = hθ(x),x ∈ Uood. The nearest prototype corresponds to
eood is pc′ , where c′ = argminc || eood −pc ||. Given a collection of samples
{(eiood,pi

c′)}i=L
i=1 ∼ P (eood,pc′), the variational upper bound of mutual infor-

mation I(eood,pc′) is

I(eood,pc′)

≤
i=L∑
i=1

logP (pi
c′ | eiood)−

i=L∑
i=1

j=L∑
j=1

logP (pi
c′ | e

j
ood)

= Iood. (10)

The bound is tight (equality holds) when pc′ and eood are independent.

Meta Learning Less Forgetting 25

Proof

EP (eood,pc′)
[logP (pc′ | eood)]

− EP (pc′)P (eood)[logP (pc′ | eood)]− I(eood,pc′)

= EP (eood,pc′)
[logP (pc′ | eood)]

− EP (pc′)P (eood)[logP (pc′ | eood)]
− EP (eood,pc′)

[logP (pc′ | eood)− logP (pc′)]

= EP (eood,pc′)
[logP (pc′)]− EP (pc′)P (eood)[logP (pc′ | eood)]

= EP (pc′)
[logP (pc′)− EP (eood)[logP (pc′ | eood)]]

Following [18],

P (pc′) = EP (eood)[P (pc′ | eood)] (11)

By Jensen’s inequality,

logEP (eood)[P (pc′ | eood)] ≥ EP (eood)[logP (pc′ | eood)]

We then get the following bounds:

I(eood,pc′) ≤ EP (eood,pc′)
[logP (pc′ | eood)] (12)

− EP (pc′)P (eood)[logP (pc′ | eood)]

Given a collection of samples {(eiood,pi
c′)}i=L

i=1 ∼ P (eood,pc′), the upper bound
becomes:

I(eood,pc′) ≤
∑

pc′ ,eood

logP (pc′ | eood) (13)

−
c=N∑
c=1

j=M∑
j=1

logP (pc′ | e
j
ood) = Iood.

Lemma 2 For a task T = {S,U ,Q}, suppose the unlabeled ID data em-
bedding eid = hθ(x),x ∈ Uid. The nearest prototype corresponds to eid is pc′ ,
where c′ = argminc || eid −pc ||. Given a collection of samples {(eiid,pi

c′)}i=L
i=1 ∼

P (eid,pc′), the variational lower bound of I(eid,pc′) is :

I(eid,pc′) ⩾
i=L∑
i=1

f(ei
id,p

i
c′)−

j=L∑
j=1

log

i=L∑
i=1

ef(e
i
id,p

j

c′). (14)

This bound is tight if f(eid,pc′) = logP (pc′ | eid) + c(pc′).
Proof
With q(eid |pc′) to approximate P (eid |pc′), we can get the following inequal-

ity (following the argument in Barber-Agakov lower bound [9]):

26 Z. Wang et al.

I(eid,pc′) = EP (eid,pc′)
[
q(eid |pc′)

P (eid)
]

+ EP (eid)[KL(P (eid |pc′)|q(eid |pc′))]

≥ EP (eid,pc′)
[q(eid |pc′))] +H(eid)

H(eid) is the entropy of the variable eid. If q(eid |pc′)) is specified as:

q(eid |pc′) =
P (eid)

Z(pc′)
ef(eid,pc′) (15)

where f(eid,pc′) is a value function parametrized by a neural network. Z(pc′)
is a partition function and is specified as following:

Z(pc′) = EP (eid)[e
f(eid,pc′)] (16)

Then, the above lower bound becomes

EP (eid,pc′)
[f(eid,pc′))]− EP (pc′)

[logZ(pc′))] (17)

Given a collection of samples {(eiid,pi
c′)}i=L

i=1 ∼ P (eid,pc′), the bounds become

I(eid,pc′) ⩾
i=L∑
i=1

f(ei
id,p

i
c′)−

j=L∑
j=1

log

i=L∑
i=1

ef(e
i
id,p

j

c′). (18)

Based on Lemma 1, we derive a tractable lower bound as Theorem 2.
Theorem 3 For a task T = {S,U ,Q}, suppose the unlabeled ID data

embedding eid = hθ(x),x ∈ Uid. The nearest prototype corresponds to eid is pc′ ,
where c′ = argminc || eid −pc ||. Given a collection of samples {(eiid,pi

c′)}i=L
i=1 ∼

P (eid,pc′), the variational lower bound of I(eid,pc′) is:

I(eid,pc′) ⩾−
j=L∑
j=1

[∑i=L
i=1 ef(e

i
id,p

j

c′)

a(pj
c′)

+ log(a(pj
c′))− 1

]

+

i=L∑
i=1

f(eiid,p
i
c′) = Iid.

The bound is tight (equality holds) when f(eid,pc′) = logP (pc′ | eid) + c(pc′)
and a(pc′) = Ep(eid)e

f(eid,pc′). a(pc′) is any function that a(pc′) > 0.
Proof
Define the function δ(x, y) = log(x)− x

y − log(y) + 1, where x > 0, y > 0

Take the derivative ∂δ(x,y)
∂x = y−x

xy , when x < y, ∂δ(x,y)
∂x > 0; when x > y,

∂δ(x,y)
∂x < 0. This implies that when x = y, δ(x, y) achieves maximum. Thus,

δ(x, y) ≤ δ(y, y) = 0. We can obtain the following inequality [44]

log(x) ≤ x

y
+ log(y)− 1 (19)

Meta Learning Less Forgetting 27

By the inequality of 19, we can get the following inequality:

logZ(pc′) ≤
Z(pc′)

a(pc′)
+ log(a(pc′))− 1 (20)

Follows from the above lemma, and plug the Equation 20 into Equation 17,
this theorem follows

I(eid,pc′) ⩾ Ep(eid,pc′)
[f(eid,pc′)] (21)

− Ep(pc′)
[
Ep(eid)e

f(eid,pc′)

a(pc′)
+log(a(pc′))−1]

= Iid.

Given a collection of samples {(eiid,pi
c′)}i=L

i=1 ∼ P (eid,pc′), the bounds can
be obtained in the following:

I(eid,pc′) ⩾ −
j=L∑
j=1

[∑i=L
i=1 ef(e

i
id,p

j

c′)

a(pj
c′)

+ log(a(pj
c′))− 1

]

+

i=L∑
i=1

f(eiid,p
i
c′) = Iid.

Then, we obtain the desired bound.

