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Abstract. Self-supervised (SS) learning has achieved remarkable suc-
cess in learning strong representation for in-domain few-shot and semi-
supervised tasks. However, when transferring such representations to
downstream tasks with domain shifts, the performance degrades com-
pared to its supervised counterpart, especially at the few-shot regime. In
this paper, we proposed to boost the transferability of the self-supervised
pre-trained models on cross-domain tasks via a novel self-supervised
alignment step on the target domain using only unlabeled data before
conducting the downstream supervised fine-tuning. A new reparame-
terization of the pre-trained weights is also presented to mitigate the
potential catastrophic forgetting during the alignment step. It involves
low-rank and sparse decomposition, that can elegantly balance between
preserving the source domain knowledge without forgetting (via fixing
the low-rank subspace), and the extra flexibility to absorb the new out-
of-the-domain knowledge (via freeing the sparse residual). Our resultant
framework, termed Decomposition-and-Alignment (DnA), significantly
improves the few-shot transfer performance of the SS pre-trained model
to downstream tasks with domain gaps. 4
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1 Introduction

Employing Self-Supervised (SS) models pre-trained on large datasets for boost-
ing downstream tasks performance has become de-facto for many applications [10],
given it could save the expensive annotation cost and yield strong performance
boosting for downstream tasks [6, 17, 8]. Recent advance in the SS pre-training
method points out its potential on surpassing its supervised counterpart for
few-shot and semi-supervised downstream tasks [39, 7].

For the transfer learning of SS models, most previous works followed the
many-shot setting [6, 17, 14]. However, recent discoveries state that when the tar-
get domain has a domain gap with the source data and it has only limited label
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samples, the transferability of SS models is still inferior to its supervised counter
part [28]. The authors argued that comparing to SS pre-training, supervised pre-
training encourages the learned representation to be more compactly distributed,
and the label supervision also enforces stronger alignment across different images.
As a result, the supervised representations display better clustering properties
on the target data, facilitating the few-shot learning of classifier boundaries. The
authors thus proposed to progressively sample and mix the unlabeled target data
into the unsupervised pretraining stage, for several rounds. Such “target-aware”
unsupervised pretraining (TUP) improves few-shot SS transfer performance. Yet
it would be too expensive if we re-conduct pre-training (even in part) for every
downstream purpose. Moreover, when pre-training is conducted on privileged
data that is inaccessible to downstream users, the above solution will also be-
come practically infeasible.

2 4 6 8 10
Sample Number per Class

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

1.4

BiT
TUP
SimCLR
DnA

DnA-MoCo
FixMatch
FixMatch-SimCLR

Fig. 1: Comparison with State-Of-The-Art (SOTA)
methods on few-shot transfer tasks (source:
ImageNet-1k; target: CIFAR100, with different la-
beled sample numbers per class). While the Sim-
CLR performance struggles when directly transfer-
ring to cross-domain down-stream tasks, the pro-
posed DnA method (implemented on top of Sim-
CLR backbone) can significantly improve it by a
large margin (>14%). DnA also remarkably sur-
passes the previous SOTAs (FixMatch [35], BiT [26]
and TUP [28]) when combining with MoCo (DnA-
MoCo) by at least 1.4%. FixMatch-SimCLR denotes
FixMatch initilized from SimCLR pre-training.

As previous findings re-
veal the few-shot transfer per-
formance degradation due to
the source-target domain dis-
crepancy, in this paper, we
are inspired to boost the
transferability through a self-
supervised domain adaptation
perspective. Following the as-
sumption of [28, 32] that a
small target dataset can be
available, instead of “mix-
ing” it with the pre-training
data, we “fine-tune” the gen-
eral pre-trained model with
the small target data, un-
der self-supervision. This ex-
tra step between pre-training
and downstream fine-tuning,
called Alignment, incurs a
much smaller overhead com-
pared to re-conducting pre-
training on the mixed data
[28], and avoids accessing the
pre-training data.

One specific challenge aris-
ing from the alignment step
is the potential catastrophic
forgetting of the pre-training
knowledge [25]. To mitigate
this risk, we introduce a Decomposition of the pre-trained weights before the
alignment step, which involves no re-training. Specifically, we re-parameterize



DnA: Improve Few-shot Transfer Learning 3

Unlabeled large scale
pre-training data

Unlabeled small scale
task-related data

Dense weight 

Self supervised loss

Low rank weights  Sparse weight 

Self supervised loss

Supervised loss

Low rank
decomposition

Large scale 

Self-Supervised Pre-train

Decomposition-and-Alignment (DnA)

Few-shot Fine-tune

Freeze weight

Freeze mask

Labeled small scale 

task-related data

Merge back

Fig. 2: The overview of the proposed DnA framework. It is applied on top of any
self-supervised pre-trained model, to boost its few-shot transfer performance for
the downstream tasks on the target data with a domain shift from the pre-
training source data.

the pre-trained weight into the sum of the low-rank term (involving the produce
of two matrix factors), and a sparse residual term. That is inspired by the find-
ings that big pre-trained models have a low “intrinsic dimension” [1, 20]. Then
during the alignment, we freeze the low-rank subspace (but different subspace
dimensions can be reweighted) in order to preserve the “in-domain” pre-training
knowledge, while allowing the sparse residual to freely change for encapsulating
the “out-of-domain” target knowledge. Although low-rank and sparse decompo-
sition is a canonical idea [55, 3, 47], this is its first time to be connected the large
model fine-tuning, to our best knowledge.

Our contributions can be summarized as following:

– We present a simple and effective self-supervised alignment method for mit-
igating the domain gaps between pre-training and downstream transfer, in
order to enhance the few-shot transferability of self-supervised pre-trained
models, without the (expensive and often infeasible) re-training with the
source domain data.

– We further present a novel decomposition of the pre-trained weights, to mit-
igate the potential catastrophic forgetting during the alignment. It draws
inspirations from the classical low rank and sparse decomposition algorithm,
and gracefully balances between preserving pre-training knowledge (through
low-rank) and absorbing new target knowledge (through sparse term).
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– The overall framework, namedDecomposition-and-Alignment (DnA), demon-
strates highly competitive performance over challenging few-shot transfer
benchmarks. It improves the pre-trained SimCLR model and outperforms
the latest state-of-the-arts (SOTA) [35, 26, 28]: see Figure 1 for an example.

2 Related works

Self-Supervised Learning: Given the expensive cost of label annotation, SS
learning from unlabeled data has received much attention. Earlier SS learning
methods employs proxy task like colorization [49], jigsaw [31], rotation [13],
selfie [40]. Recently, contrastive learning becomes the most popular SS regime
because of its strong performance [6, 17, 14]. SS pre-training can significantly
boost various downstream tasks [39, 42, 45, 5, 24]; for semi-supervised learning,
it often leads to SOTA performance [39, 7, 48, 36].

Transferability of Self-Supervised Models: For transferring SS models,
most previous works studied the many-shot benchmarks [6, 17, 14]. The more
practical yet challenging few-shot transferability of SS models is under-explored.
Pioneer works investigated the effect of downstream few-shot transfer learning for
different pre-training opinions [11, 22]. [22] reveals the improvement room of SS
transferability via combining supervised learning, but it can only work on labeled
data. TUP [28] explores to improve few-shot transferability via minimizing the
domain discrepancy between pre-training and downstream tasks. It significantly
boosts few-shot transferability by mixing the pre-training dataset with small-
scale unlabeled samples progressively acquired from the target domain.

Low Rank and Sparsity in Deep Networks: Low-rank has been studied
with a long history in deep networks [23, 33, 37, 34, 50, 53], for multiple contexts
including model compression, multi-task learning and efficient training. Recent
literature [1] reveals that the low-rank structure exists in the pre-trained model,
which motivates the parameter efficient tuning [20]. The same prolific research
can be found in the field of sparsity for deep networks, which is perhaps best
known as a model compression means [16, 12]. Sparsity also effectively regularizes
few-shot learning [56, 51, 4]; and naturally emerges during fine-tuning [15, 52]. We
note that the current fine-tuning works relying on either low rank or sparsity
[15, 52, 20] are all in the natural language processing (NLP) domain, and none
of them operates in the few-shot setting with domain shifts.

The marriage of low rank and sparsity is well known as the robust principal
component analysis (RPCA) algorithm [55, 3]. In deep networks, the most rele-
vant work to this idea is perhaps [47], which reconstructed the weight matrices
by using sparse plus low-rank approximation, for model compression - an orthog-
onal purpose to ours. Other applications include combining those two priors in
deep compressive sensing [21]. To the best of our knowledge, no previous work
has linked low rank and sparse decomposition to transfer learning.



DnA: Improve Few-shot Transfer Learning 5

3 Method

3.1 Overview

In this paper, we employ SimCLR [6] as a strong SS pre-training backbone.
SimCLR [6] learns visual representation via enforcing the consistency between
different augmented views while enlarging the difference from other samples.
Formally, the loss of SimCLR is

LCL,i = − log
sτ

(
v1i , v

2
i

)
sτ (v1i , v

2
i ) +

∑
v−∈V sτ (v1i , v

−)
(1)

where v1i and v2i are the normalized features of two augmented views for the same
image, while V is the set of negative samples for ith image, which is composed
by the features for other images in the same batch. All features are calculated
sequentially with the feature encoder and projection head. sτ is the feature
similarity function with temperature τ that can be formalized as

sτ
(
v1i , v

2
i

)
= exp(

v1i · v2i
τ

) (2)

As an overview, our holistic framework is demonstrated in Figure 2: DnA
first decomposes the SS pre-trained weight to the low-rank terms (U and V )
and sparse term S. Afterwards, the model is aligned by self-supervised tuning
over small target domain data, by fixing V while tuning U and S in this step.
The aligned model then goes through the typical supervised fine-tuning for the
downstream few-shot task. Below we present step-by-step method details.

3.2 Basic Alignment Step

In this work, we leverage unlabeled training data from the downstream dataset ,
yet avoiding the (expensive and often infeasible) re-pre-training for every down-
stream transfer, and assuming no access to the pre-training data. To reduce the
discrepancy between source and target domains, we design the extraAlignment
step between pre-training and fine-tuning: we continue to tune the pre-trained
model on a small-scale unlabeled dataset from the target domain, with self-
supervised loss (here we use the same loss of SimCLR). Note that we follow [28]
to assume that small-scale unlabeled data from the domain of the target few-shot
task is available. (e.g., the unlabeled training set of the downstream dataset.)

The proposed alignment step is rather simple and efficient. Notably, it only
requires the pre-trained model but not the pre-training dataset, which we believe
is a more practical setting. Perhaps surprisingly, we observe that this vanilla
alignment already suffices to outperform TUP [28] in some experiments.

Challenge: However, the alignment might run into the risk of catastrophic
forgetting of the pre-training knowledge, due to tuning with only the target do-
main data. That will also damage the transferred model’s generalization. We
started by trying off-the-shelf learning-without-forgetting strategies, such as en-
forcing the ℓ2 norm similarity between the pre-trained model with the aligned
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model weights [44]. That indeed yields empirical performance improvements,
but mostly only marginal. We are hence motivated to look into more effective
mitigation for the fine-tuning scenarios.

3.3 Decomposition before Alignment

Inspired by the findings that the weight of the pre-trained model resides with a
low “intrinsic dimension” [1, 20], we propose to leverage the low-rank subspace
assumption to effectively “lock in” the pre-training knowledge, with certain flex-
ibility to adjust the subspace coefficients. However, the low-rank structure alone
might be too restricted to learn the target domain knowledge that might lie out
of this low-rank subspace, and we extend another sparse residual term to absorb
such. Adopting the decomposed weight form for alignment is hence assumed
to well balance between memorizing the source-domain knowledge and flexibly
accommodating the new out-of-the-domain knowledge.

This idea of combining low rank and sparsity is a canonical one [3, 55], yet
has not been introduced to fine-tuning before. In the following sections, we first
introduce how to decompose the weight in Section 3.3. Then, we discuss the
details of applying in Section 3.3.

Low rank and Sparse Weight Decomposition For a convolutional or a
fully connected layer, the forward process can be formalized as

y = Wx (3)

where y ∈ Rm is the output, W ∈ Rm×k is the weight matrix, and x ∈ Rk

is the input. It is worth noting that, for the convolutional layer, we follow [38]
to reshape the 4D convolutional kernel W ∈ RCin×H×W×Cout to a 2D matrix
W ∈ R(CinH)×(WCout).

The resultant 2D weight W can be decomposed as

W = UV + S (4)

where U ∈ Rm×r and V ∈ Rr×k are two low rank matrix factors with r <
min(m, k), and together denotes the low-rank subspace component of the pre-
trained weight. Meanwhile S denotes the sparse residual.

The low rank and sparse decomposition were found to well capture the long-
tail structure of trained weights [47]. To solve this decomposition, we resort
to the fast and data-free matrix decomposition method called GreBsmo [54].
GreBsmo formalizes the low rank decomposition as:

minU,V,S ∥W − UV − S∥2F
s.t. rank(U) = rank(V ) ≤ r, PΩS = 0

(5)

where 1− PΩ is the sparse mask of S, defined as

PΩ =

{
1, (i, j) ∈ Ω
0, (i, j) ∈ ΩC (6)
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where Ω denotes the set of points that has value, (i, j) indicates the coordinate
of a point in 2d weight matrix. GreBsmo then solves this optimization with an
alternative updating algorithm (its derivation can be found at [54]) as:Uk = Q,DQR

(
(W − Sk−1)V

T
k−1

)
= QR

Vk = QT (W − Sk−1)
Sk = Sλ (W − UkVk)

(7)

where DQR is the fast QR decomposition algorithm to generate two inter-media
matrix Q and R. The subscription k of U , V , S indicates the U , V , S in the kth
iteration. Sλ is an element-wise soft threshold function formally as:

SλW = {sgn (Wij)max (|Wij | − λ, 0) : (i, j) ∈ [m]× [k]} (8)

where sgnx would output the sign for x.
Practically, the decomposed weight would inevitably have a slight loss E =

W − UV − S compared to the origin pre-trained weight, due to the limited
optimization precision. Such difference is usually very small at each layer, but
might be amplified during the forward pass. To mitigate that, we treat the E
term as a fixed bias for each layer, and never tune it during the alignment step.

How to Align over the Decomposed Weights After decomposition, we
freeze the low-rank subspace V as the “fixed support” from the pre-trained
weight. For flexibility, we consider U as representation coefficients over this sub-
space, and allow that to be “alignable” (i.e, we allow for “re-composing” the
existing knowledge). Meanwhile, S represents the out-of-the-subspace compo-
nent and is always set to be “alignable” for new target knowledge.

Hence, the alignment step over the decomposed weights could be represented
as:

W ′ =(U +∆U)V + S +∆S

s.t. rank(U) = rank(V ) ≤ r

PΩS = 0, PΩ∆S = 0

(9)

where ∆U and ∆S are the two variables that will be tuned in the alignment
step; the original U, V, S are all fixed for alignment meanwhile. Note that ∆U
has the same dimension as the low-rank factor U , and ∆S has the same sparse
support (i.e., locations of non-zero elements) as S.

After the alignment step, we re-combine the decomposed form into one weight
matrix W , and proceed to the fine-tuning step as normal.

4 Experiments

4.1 Settings

Datasets: To evaluate the proposed method, we exploit the following datasets:
iNaturalist [41], CIFAR100 [27], EuroSAT [19], Food101 [2]. Particularly, we
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adopt a random sampled 1000 classes subset of iNaturalist (Denoted as iNaturalist-
1k) to validate the proposed method’s performance on an imbalanced dataset.
As shown in Table 1, these datasets are different in terms of resolutions (ranging
from 32-224) and the number of classes (ranging from 10-1000). In addition, we
consider both general classification tasks (e.g., CIFAR100) and fine-grain clas-
sification tasks (e.g., iNaturalist-1k, Food101). The imbalanced dataset is also
included (e.g., iNaturalist-1k). The datasets also have different levels of similar-
ity to the ImageNet (ranging from natural images like iNaturalist to the satellite
images like EuroSAT) . These differences indicate the chosen datasets can rep-
resent practical cases. We report the Top1 accuracy for all datasets. For all
datasets, we upsample/downsample it to 224× 224 following the common prac-
tice of applying ImageNet pre-trained model [28, 6]. We follow [28] and assume
that the available unlabeled dataset is the full training set for each dataset.

Table 1: Summary of the datasets employed in
this work for resolution, number of train im-
ages (#train images), and number of categories
(#Categories).

Dataset Resolution #Train images #Categories

iNaturalist-1k >224×224 51984 1000
CIFAR100 32×32 50000 100
EuroSAT 64×64 19000 10
Food101 >224×224 75750 101

Training settings: For
all the experiments, we em-
ploy the network architecture
of Resnet-50 [18]. When con-
ducting SS, the fully con-
nected layer is replaced with
a two-layer projection head
as in SimCLR [6]. For SS
pre-trained model, we em-
ploy the official SimCLR and
Moco model pre-trained on
ImageNet-1k for 800 epochs.

For all DnA experiments,
we follow SimCLR to use
LARS optimizer [46], augmentation settings and cosine learning rate decay. We
employ a batch size of 256 instead of larger batch size for ensuring the proposed
method’s practicability. On iNaturalist-1K, we train 200 epochs for ablation
study. On other datasets, We train the model for 800 epochs following [28]. The
initial learning rate is set as 0.2. For few-shot fine-tuning, we follow the setting
of SimCLR-v2 [7] with LARS optimizer, cosine learning rate decay, and tune
from the first layer of the projection head for 200 epochs.

We also consider Linear Probing (LP) performance for SimCLR, where a
linear classifier is trained on the frozen features, following the setting of [39].

Configuration for the GreBsmo algorithm: To improve the practical
speed, GreBsmo invokes a greedy rank r for both U and V . It starts from a
very small rank of r0 for V , Then V ∈ Rr0×k iterates Equation 7 for M times.
Afterwards, the rank of V would increase to r1 = r0 +∆r by adding ∆r extra
rows to V , where ∆r is the rank step size. The added ∆r rows are selected
greedily as the top ∆r row basis that can minimize the objective in Equation 5,
which are obtained with a small SVD [54].

Benefiting from the aforementioned, the weight decomposition for the entire
ResNet50 can be done in less than one hour on a single 1080 Ti, which is a
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small time overhead compared to either pre-training or finetuning. Moreover,
the decomposition can be reused among different downstream datasets, further
amortizing the computation overhead.

Empirically, we initialize with U0 = 0, V0 ∼ N (0, 0.02) S0 = 0. r0, ∆r set as
1 and iterations M is set as 100. As Resnet-50 [18] has a large variety for the
weight dimension for different layers, we thus set the rank adaptively with the
size of weight matrix as r = min(⌈αr · m⌉, k), αr is the rank ratio by default
set as 0.25. The soft sparsity threshold λ is by default 0.2. For the stability of
training, we further fix sparsity to 99.7% after decomposing via assigning the
top 0.3% large magnitude parameters in W − UV as S.

4.2 DnA improves few-shot performance

DnA improves the transfer few-shot performance. To verify the effec-
tiveness of the proposed methods, we study each component at iNaturalist-1k
in terms of the 5-shot accuracy. As illustrated in Table 2a, the model with-
out any pre-training yields a performance of 12.7%. By leveraging the SimCLR
model pre-trained on ImageNet, the performance increases to 45.0%. Further,
the proposed Align can significantly improve the performance by 1.4%. Finally,
when combining the weight decomposition with the Align, the resultant DnA
can further improve the accuracy over Align by an obvious margin of 0.9%.

DnA surpasses the semi-supervised methods. For the proposed DnA
framework, we assume the existence of a small scale unlabeled dataset follow-
ing [28]. This setting is close to semi-supervised learning, which has been widely
studied in previous works [35, 43, 7]. Therefore, we further conduct experiments
to compare our methods against well-established semi-supervised methods. Here,
we exploit the SOTA semi-supervised strategy introduced in SimCLR-v2 [7] for

Table 2: (a) The few-shot and semi-supervised performance on iNaturalist-1k
under the 5-shot setting. We employ the distillation with unlabeled examples
method introduced in [7] as the semi-supervised method. (b) Comparing with
FixMatch [35] on CIFAR100 4-shot in terms of semi-supervised performance.

Pre-train Semi-supervised Accuracy

None
12.7

✓ 13.0

SimCLR
45.0

✓ 46.3

Aligned (Ours)
47.4

✓ 48.5

DnA (Ours)
48.3

✓ 49.6

(a)

Pre-train Method Accuracy

None FixMatch 48.9
SimCLR FixMatch 49.4
SimCLR DnA (ours) 53.4
SimCLR DnA+Semi (ours) 56.4

(b)
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comparison. As illustrated in Table 2a, when employing the semi-supervised
method, the performance consistently improves compared to the corresponding
few-shot performance. However, the improvement is marginal when the few-shot
performance is not optimized (e.g. when the pre-training is not applied). While
semi-supervised learning can improve the SimCLR model by 1.3%, it is still in-
ferior by 1.1% compared to the Aligned model, indicating that the proposed
Align method can yield better performance than semi-supervised method when
using the same amount of unlabeled and labeled data. Besides, when combined
with semi-supervised learning, the performance of both Aligned and DnA could
further improve by 1.1% and 1.3%, respectively. Further, we compare with the
state-of-the-art semi-supervised method FixMatch [35] on the official CIFAR100
4-shot benchmark (corresponding to 400 labels setting in the original paper).
As shown in Table 2b, while FixMatch achieves a promising performance of
48.9% when training from scratch, initializing FixMatch with self-supervised pre-
training can hardly improve its performance even though we have tried smaller
learning rate and warm-up. This may be because the forgetting problem is seri-
ous given it requires a long training schedule. In contrast, the proposed method
can yield a significantly higher performance of 52.6 and 56.4 for w/o and w/
semi-supervised methods, respectively.

Table 3: Compare with learn-
ing without forgetting methods in
terms of the 5-shot performance on
iNaturalist-1k.

Method Accuracy

Align+L2-SP 47.7
Align+Delta 48.1
Align+Delta+BSS 48.3

DnA (Ours) 48.3
DnA+Delta+BSS(Ours) 48.5

Weight decomposition better pre-
vents forgetting. As the effectiveness
of the proposed weight decomposition
method works by preventing forgetting
source information, we also include a
baseline for comparing with the previ-
ous learning without forgetting methods.
We choose L2-SP [44], Delta [29] and
BSS [9] as our baselines. The results
are shown in Table 3: for 5-shot accu-
racy in iNaturalist-1k, while applying [L2-
SP, Delta, Delta+BSS] for Align yield an
improvement over the naive Aligned by
[0.3%, 0.7%, 1.0%], respectively. While
the performance Align+Delta+BSS is on
par with DnA, the proposed DnA can also
be combined with Delta+BSS and further
yield accuracy of 48.5%.

DnA surpass the State-Of-The-Art (SOTA). To further study the ef-
fectiveness of the proposed method, we compare it with the SOTA supervised
method BiT and SOTA self-supervised method TUP [28] on three different
datasets. As illustrated in the Table 4, while TUP [28] can surpass the state-of-
the-art supervised method BiT in terms of the Mean accuracy by [1.0%, 1.9%,
3.5%, 4.2%] for [2-shot, 4-shot, 6-shot, 10-shot] performance, respectively. The
proposed DnA can further yield an improvement with a significant margin of
[8.3%, 8.7%, 5.0%, 3.5%] compared to TUP. For a fair comparison with TUP,
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Table 4: The few-shot fine-tuning performance comparison on different datasets
for different pre-trained models. SimCLR here represents the SimCLR pre-
trained on ImageNet-1k. The average accuracy and standard deviation (%) on
five different labeled subsets are reported. #Few-shot means the number of few-
shot samples for each class. The performance of BiT [26] and TUP [28] are
from [28]. We consider few-shot performance on the random sampled few-shot
subsets, which corresponds to the oracle few-label transfer setting of [28]. LP
denotes linear probing. DnA-MoCo is the combination of ours and MoCo v2.

#Few-shot Method CIFAR100 EuroSAT Food101 Mean

2

BiT [26] 37.4 68.3 24.5 43.4
TUP [28] 30.2 68.8 34.3 44.4
SimCLR 15.2±1.4 57.9±1.3 13.6±0.4 28.9

SimCLR - LP 25.0±0.9 69.5±3.1 20.0±0.8 38.2
DnA (Ours) 40.4±1.6 77.5±1.6 40.2±1.4 52.7

DnA-MoCo (Ours) 42.4±1.3 80.7±2.2 42.7±1.5 55.3

4

BiT [26] 47.8 79.1 35.3 54.1
TUP [28] 43.9 76.2 48.0 56.0
SimCLR 26.6±1.5 65.7±2.8 22.7±0.2 38.3

SimCLR - LP 34.1±0.4 77.7±2.4 27.7±0.6 46.5
DnA (Ours) 53.4±0.8 86.5±0.7 54.2±0.4 64.7

DnA-MoCo (Ours) 53.7±0.6 85.1±2.1 53.9±0.9 64.2

6

BiT [26] 54.2 82.6 41.3 59.4
TUP [28] 52.7 80.6 55.4 62.9
SimCLR 34.7±0.9 72.0±1.7 28.3±0.7 45.0

SimCLR - LP 38.2±0.8 81.2±1.2 32.6±0.3 50.7
DnA (Ours) 57.0±0.3 87.8±1.0 59.0±0.7 67.9

DnA-MoCo (Ours) 57.5±0.4 87.2±0.9 58.9±0.6 67.9

10

BiT [26] 59.9 86.3 48.8 65.0
TUP [28] 60.9 84.1 62.6 69.2
SimCLR 45.5±1.1 76.6±1.7 37.3±0.6 53.1

SimCLR - LP 43.2±0.5 83.4±1.3 38.9±0.5 55.2
DnA (Ours) 61.6±0.4 89.4±1.2 63.3±0.5 71.4

DnA-MoCo (Ours) 62.3±0.3 89.3±0.3 65.0±0.4 72.2

we also employ DnA with pre-training of MoCo v2, termed as DnA-Moco. DnA-
Moco also yields consistent improvement. It’s worth noting that the proposed
method is also more efficient than TUP as DnA i) has no sampling step ii) con-
ducts the training only on the target dataset, which is 5 times smaller than the
dataset employed in TUP.

Besides, applying DnA for the SS pre-trained model can make a large differ-
ence in these datasets as DnA can surpass its start point, the SimCLR model,
by a large margin of [23.8%, 26.4%, 22.9%, 18.3%] and [14.5%, 18.2%, 17.2%,
16.2%] for fine-tuning and linear probing setting, respectively. In comparison,
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the improvement on iNaturalist-1k is milder, the intuition behind this is that
the domain difference between these datasets and ImageNet is much larger.

4.3 Ablation study

Table 5: Comparing the few-shot
performance on CIFAR100 and
Food101 between DnA (with SS Im-
ageNet pre-trained model) and in-
domain SS pre-training (without SS
ImageNet pre-trained model).

Dataset Pretrain 4-shot 10-shot

CIFAR100
32.8 49.2

✓ 53.4 61.6

Food101
29.7 44.9

✓ 54.2 63.3

Does SS ImageNet pre-training
help? As the proposed DnA improves a
lot based on the pre-trained model, a nat-
ural question arises: would the in-domain
data be enough for few-shot learning?
How many benefits can ImageNet pre-
training bring? This motivates us to com-
pare the proposed DnA method with SS
pre-training on the target dataset. As il-
lustrated in Table 5, when training with-
out ImageNet pre-trained model, in CI-
FAR100, the performance would degrade
from [53.4%, 61.6%] to [32.8%, 49.2%]
for [4-shot, 10-shot] performance, respec-
tively. The observation on Food-101 is also
consistent, demonstrating the importance
of the SS ImageNet pre-trained model. Also, this observation further motivates
us to employ the learning with forgetting method.

The fix components choosing for DnA. In this part, we ablation study
the effect of fixing different components of the weight decomposition. As illus-
trated in Table 6a, when we free the fixing weight and mask for every component
of the three terms, the performance would degrade to 47.4%, which is equal to
the performance of Align. This is because the tunable parameters are even more
than the original pre-trained model, which means this architecture can not pre-
vent forgetting. By adding the fixing mask on S, the performance could improve
to 47.9%, showing that only applying the mask can prevent forgetting. By fixing
both sparse mask and low-rank sub-spaces via freezing V, the performance could
further improve to 48.3% with a small variance of 0.1%, showing that fixing low-
rank subspace could further prevent information loss. However, when switching
the fixing low-rank component from U to V , the performance could decrease by
0.5%. The intuition behind this is that, for resnet-50, the size of U ∈ RCinH×r is
usually smaller or equal to V ∈ Rr×WCout , indicating choosing V as fixed bases
could preserve more information. When fixing S and tuning U , the performance
would decrease by 0.3% compared to tuning U and S, showing the S can capture
the “out-of-the-domain” knowledge when subspace is fixed. When fixing every
term, it would fail back to the origin SimCLR model. Last but not least, as
shown in Table 6b, when employing the decomposition strategy with only the
low-rank component as W = UV , the performance would be weaker to ‘tuning
U ,S’ of W = UV + S for both ‘tuning U , V ’ and ‘tuning U ’. Because W = UV
needs a higher rank to minimize the decomposition loss and thus fail to prevent
forgetting.
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Table 6: Ablation study for different decomposition and fixing strategies of
weight on iNaturalist-1k in terms of 5-shot performance. The ✓ under U , V
denotes the corresponding terms is adjustable. The ✓ under S denotes the value
of S is adjustable while sparse mask is fixed. In contrast, ✓✓ for S means S is
adjustable for both value and mask. (a) and (b) employ different decomposition
strategies. (a) The employed W = UV + S decomposition, (b) W = UV , the
decomposition strategy without low rank term.

U V S 5-shot

✓ ✓ ✓✓ 47.4
✓ ✓ ✓ 47.9±0.2
✓ ✓ 48.3±0.1

✓ ✓ 47.7
✓ ✓ 47.8±0.3
✓ 48.0±0.3

45.0

(a)

U V 5-shot

✓ ✓ 47.6
✓ 47.9

(b)

Hyper-parameters for weight decomposition. We further report the
ablation study on the selection of the sparsity threshold s and the value r (We
remove the sparsity fixing step here). The performance with different sparsity
levels is shown in Figure 3a. We can see that either a too large sparsity or a too
small sparsity would lead to inferior performance. Especially, when the sparsity
decrease from 99.7% to 70%, the performance could decrease very fast from
48.3% to 47.5%, which is very close to the Align performance of 47.4%. This
is because too large flexibility of the S would override the low-rank component
and make DnA degrade to Align method. The sweet point is sparsity of 99.7%,
showing the “out-of-domain” knowledge can be efficiently encapsulated with only
0.3% free parameters.

The study of the different number of ranks is shown in Figure 3b. When
choosing rank ratio αr ranging from 0.05 to 0.35, the DnA could yield an im-
provement of at least 0.5%, demonstrating the choice of rank is not sensitive.
For a too large rank of 0.45, the performance would decrease to the level of Align
because of too much flexibility. It is also worth noting the proposed DnA can
even achieve a performance of 48.1% with a very small αr of 0.05. Combining
a very sparse mask of 99.7%, the proposed DnA can adapt the SS pre-trained
model with very less parameters compared to the original network, showing its
parameter efficiency.

Representation visualization In this section, we utilize t-SNE [30] to
analyze the feature distribution before and after applying the proposed DnA. As
illustrated in Figure 4, for SimCLR pre-trained on the ImageNet, the features
of samples from different classes would overlap with each other. Only a small
portion of samples from the same class form a cluster. In contrast, after applying
DnA, the overlap can be significantly alleviated. Many samples in the same class
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Fig. 3: Ablation study for hyper-parameter selection on iNaturalist-1k in terms of
the 5-shot accuracy. (a) studies the influence different pruning rates, the sparsity
of [68.10%, 88.83%, 97.39%, 99.74%, 99.99%] shown in the figure correspond to
s of [0.02, 0.05, 0.1, 0.2, 0.5], respectively. (b) studies the different selection for
rank ratio αr.

(a) (b)

Fig. 4: t-SNE visualization for SimCLR representations before and after applying
DnA on the test dataset of CIFAR100 (We random sample 20 classes for visu-
alization). (a) t-SNE before applying DnA (SimCLR) (b) t-SNE after applying
DnA. Different color stands for different classes.

are clustered together. Some clusters even have a gap with a large margin to other
clusters. We believe the strong few-shot performance of DnA is closely related
to the good learned representations.

5 Conclusion

When transferring SS pre-trained model to the downstream task with a domain
discrepancy, the few-shot performance of the SS model could degraded more
compared to its supervised counterpart. In this paper, we tackle this problem
with DnA framework, which is designed from a domain adaptation perspective.
The proposed DnA achieved new SOTA performance on three different datasets
(CIFAR100, NeurSAT and Food101), demonstrating its effectiveness. We believe
our technique is beneficial for realistic few-shot classification.
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