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1 Implementation Details

1.1 Datasets

mini-ImageNet. Themini -ImageNet is sampled from ImageNet [3]. This dataset
has 100 classes, with each having 600 samples. We follow the standard proto-
col [14] to split the dataset into 64 training, 16 validation, and 20 testing classes.
tiered-ImageNet. Similar to mini -ImageNet, tiered -ImageNet is also a subset
of the ImageNet. This dataset consists of 608 classes from 34 categories and is
split into 351 classes from 20 categories for training, 97 classes from 6 categories
for validation, and 160 classes from 8 categories for testing.
CUB. The CUB is a fine-grained dataset, which consists of 11,788 images from
200 different breeds of birds. We follow the standard settings [9], in which the
dataset is split into 100/50/50 breeds for training, validation, and testing, re-
spectively.
FC100. FC100 dataset is a variant of the standard CIFAR100 dataset [7], which
contains images from 100 classes, with each class containing 600 samples. We
follow the standard setting [12], where the dataset is split into 60/20/20 classes
for training, validation and testing, respectively.
MS COCO and PASCAL VOC Datasets. In the few-shot detection task,
we follow the protocol used in [4] to construct the dataset, where images from 60
categories of the MS COCO dataset are used for training and images from the
rest of 20 common categories between MS COCO and PASCAL VOC datasets
are used for testing.

1.2 Few-Shot Classification Hyperparameters

Network and Optimizer. We use the ResNet-10 backbone [2] for the MAML
and the ResNet-12 backbone [20, 21] for the other two baselines across all four
benchmarks. Noted additional ResNet-18 back1bone [23] is employed for the
ProtoNet experiments on CUB. We fix the size of input images to 84 × 84 for
ProtoNet and DeepEMD baselines and 224×224 for MAML baseline (We strictly
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follow the same pre-processing protocol1 in the original DeepEMD implemen-
tation to implement the metric-based baselines and our model, i.e., DeepEMD,
ProtoNet, INSTA-DeepEMD, and INSTA-ProtoNet. For MAML, we strictly fol-
low the pre-processing protocol implemented in [2]2). We use SGD optimizer for
ProtoNet and DeepEMD experiments [20,21] and AdamW optimizer for MAML
experiments [2] across all the datasets. For ProtoNet and DeepEMD baselines,
we use L2 regularizer with 0.0005 weight decay factor. In the MAML baseline,
the weight dacay factor is 0.01. For ResNet-18 and ResNet-10 backbones, we
disable the average pooling and remove the last fully connected (FC) layer to
produce the feature maps with size of 512×11×11 and 512×7×7, respectively.
In the ResNet-12 backbone, the network produces the feature map with a size
of 640× 5× 5.
Training. We follow the good practice in the state-of-the-art models [16,20,21],
where the network training is split into two stages, i.e. pre-training and meta-
training stages. During the pre-training stage, the backbone network with an
FC layer is trained on all the training classes of the dataset with the standard
classification task. We select the network with the highest validation accuracy as
the pre-trained backbone network for the meta-training stage. During the meta-
training stage, we follow the standard episodic training protocol [18] to train
the entire model. We set a small learning rate (0.0002) for the backbone and a
larger learning rate (0.0002×25) for the other modules during the meta-training
stage. Additionally, we use the cosine annealing learning rate scheduler over 200
epochs.
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Fig. 1: The conceptual diagram of the context learning module

1.3 Few-Shot Detection

For the few-shot detection task, we consider the method proposed by Fan et
al . [4] as our baseline model, which inherits from the faster-R-CNN [15] frame-
work. Similar to the few-shot classification task, we implement our method to
produce dynamic kernels and perform convolution on the feature maps extracted

1 https://github.com/icoz69/DeepEMD.
2 https://github.com/wyharveychen/CloserLookFewShot.
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by the backbone network (i.e. ResNet-50), which is followed by a region proposal
network (RPN), a region of interest pooling (ROI pooling) operation, and the
classification and bounding box regression heads, outputting the categories and
bounding boxes for the objects to the query image. Notably, For a fair compari-
son, we do not use any additional data augmentation. Please refer to [4] for more
details of the framework and training strategy.

2 Additional Experiment Results

2.1 mini-ImageNet, tiered-ImageNet, and CUB

In this part, we provide extra comparison between our model and other state-
of-the-art models on mini -ImageNet, tiered -ImageNet, and CUB. We follow the
same evaluation protocol in [21]3 to evaluate the metric-based baseline mod-
els and our models (i.e., DeepEMD, ProtoNet, INSTA-DeepEMD, and INSTA-
ProtoNet), where 5,000 and 600 episodes are randomly sampled for 1-shot and
5-shot settings. For MAML baseline and INSTA-MAML, we strictly follow the
same evaluation protocol in [2]4, where 600 episodes are randomly sampled for
both 1-shot and 5-shot settings.

Table 1: Few-shot classification accuracy and 95% confidence interval on mini -
ImageNet and tiered -ImageNet with ResNet backbones

Model Backbone
mini-ImageNet tiered-ImageNet

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

MetaOptNet-SVM [8] ResNet-12 64.09± 0.62 80.00± 0.45 - -
Neg-Margin [9] ResNet-12 63.85± 0.81 81.57± 0.56 - -

TPN [10] ResNet-12 59.46 75.65 - -
DSN-MR [16] ResNet-12 64.60± 0.72 79.51± 0.50 67.39± 0.82 82.82± 0.56
E3BM [11] ResNet-12 63.80± 0.40 80.10± 0.30 71.20± 0.40 85.30± 0.30
ConstellationNet [19] ResNet-12 64.89± 0.23 79.95± 0.37 - -
MELR [5] ResNet-12 67.40± 0.43 83.40± 0.28 72.14± 0.51 87.01± 0.35
CNL [22] ResNet-12 67.96± 0.98 83.36± 0.51 73.42± 0.95 87.72± 0.75

MAML* [6] ResNet-10 54.73± 0.87 66.72± 0.81 59.85± 0.97 73.20± 0.81
INSTA-MAML* ResNet-10 56.41± 0.87 71.56± 0.75 63.34± 0.92 78.01± 0.71

ProtoNet* [17] ResNet-12 62.29± 0.33 79.46± 0.48 68.25± 0.23 84.01± 0.56
INSTA-ProtoNet* ResNet-12 67.01± 0.30 83.13± 0.56 70.65± 0.33 85.76± 0.59

DeepEMD*♣ [21] ResNet-12 67.37± 0.45 83.17± 0.75 73.19± 0.32 86.79± 0.61

INSTA-DeepEMD*♣ ResNet-12 68.46± 0.48 84.21± 0.82 73.87± 0.31 88.02± 0.61
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Table 2: Few-shot classification accuracy and 95% confidence interval on CUB
with ResNet backbones

Model Backbone 5-way 1-shot 5-way 5-shot

MAML* [6] ResNet-10 70.46± 0.97 80.15± 0.73
INSTA-MAML* ResNet-10 73.08± 0.97 84.26± 0.66

DeepEMD*♣ [21] ResNet-12 74.55± 0.30 87.55± 0.54

INSTA-DeepEMD*♣ ResNet-12 75.26± 0.31 88.12± 0.54

ProtoNet* ResNet-18 75.06± 0.30 87.39± 0.48
INSTA-ProtoNet* ResNet-18 77.18± 0.29 89.54± 0.44

Table 3: Few-shot classification results on Meta-dataset with ResNet-18 back-
bone

Dataset Simple-CNAPS INSTA-Simple-CNAPS

ILSVRC 55.5± 1.1 58.5± 1.1
Omniglot 91.0± 0.6 91.9± 0.6
Aircraft 81.2± 0.7 82.4± 0.8
Birds 74.3± 0.9 75.7± 0.8
Textures 66.9± 0.8 67.8± 0.8
Quick Draw 76.7± 0.8 76.8± 0.8
Fungi 47.5± 1.0 49.2± 1.1
VGG Flowers 90.5± 0.6 90.4± 0.6
Traffic Signs 72.0± 0.7 74.1± 0.7
MSCOCO 47.3± 1.1 53.9± 1.1

2.2 Meta-Dataset

To verify the effectiveness of our method on the cross-domain few-shot classifica-
tion problem, we incorporate INSTA into the baseline model simple-CNAPS [1].
In this experiment, we fix the trained baseline model and only fine-tune the
modules to generate the INSTA dynamic kernels (i.e., dynamic kernel generator
and context learning module). We follow the same implementation of simple-
CNAPS5 to conduct this experiment (e.g ., 8 × 10−3 as learning rate, Adam as
the optimizer, etc.). As the results in Table 3 suggested, INSTA improves the
baseline over almost all the datasets, which again shows the effectiveness of our
proposed INSTA dynamic kernels.

3 https://github.com/icoz69/DeepEMD/blob/master/eval.py.
4 https://github.com/wyharveychen/CloserLookFewShot/blob/master/test.py.
5 https://github.com/peymanbateni/simple-cnaps/tree/master/

simple-cnaps-src.

https://github.com/icoz69/DeepEMD/blob/master/eval.py
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2.3 Ablation Study

In this part, we provide extra ablation studies on the effect of the residual con-
nection and the spatial size of our dynamic kernel.
Residual Connection. In this experiment, we study the effect of the residual
connection in our framework. In setting (i) of the Table 4, we disable the residual
connection between the adapted and original features. The result suggests that
the residual connection is an essential design choice for our framework.
Kernel Size. We provide an extra study on the effect of the spatial size of our
dynamic kernel. Given that the feature map extracted by ResNet-12 has spatial
size 5 × 5, the dynamic kernel size is constrained smaller or equal to 5 × 5.
Therefore, in this study, we compare the results when the dynamic kernel size
k = 5× 5 to our final design (k = 3× 3).

Table 4: The extra ablation study for the effect of the residual connection and
spatial size of our dynamic kernel

ID Model 5-way 5-shot

(i) INSTA-ProtoNet w/o residual 80.03

(ii) INSTA-ProtoNet w/ 5× 5 Gdy 82.43
(iii) INSTA-ProtoNet 83.13

3 Multi-Spectral Attention

In this section, we provide more details for using the 2D-DCT to obtain the
frequency-encoded vector. We first introduce the basis function of the 2D-DCT.
The basis Ba,b

u,v of the 2D-DCT is given by:

Ba,b
u,v = cos(

πu

h
(a+

1

2
))cos(

πv

w
(b+

1

2
)), (1)

where u, v are the frequency components of a basis. Then the frequency-encoded
vector of a 3D-tensor Si ∈ R c

n×h×w can be obtained by:

τ i =

h−1∑
a=0

w−1∑
b=0

S:,a,bB
a,b
ui,vi

s.t. i ∈ {0, 1, . . . , n− 1},

where τ i ∈ R c
n is the frequency-encoded vector, h and w are the height and width

of the input signal. We pick the lowest 16 frequency components for our basis
function according to [13]. Finally, we concatenate all the frequency-encoded
vectors as:

τ = concat(τ 0, τ 1, . . . , τn−1), (2)

where τ ∈ Rc.
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