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Abstract. A two-stage training paradigm consisting of sequential pre-
training and meta-training stages has been widely used in current few-
shot learning (FSL) research. Many of these methods use self-supervised
learning and contrastive learning to achieve new state-of-the-art results.
However, the potential of contrastive learning in both stages of FSL
training paradigm is still not fully exploited. In this paper, we propose
a novel contrastive learning-based framework that seamlessly integrates
contrastive learning into both stages to improve the performance of few-
shot classification. In the pre-training stage, we propose a self-supervised
contrastive loss in the forms of feature vector vs. feature map and feature
map vs. feature map, which uses global and local information to learn
good initial representations. In the meta-training stage, we propose a
cross-view episodic training mechanism to perform the nearest centroid
classification on two different views of the same episode and adopt a
distance-scaled contrastive loss based on them. These two strategies force
the model to overcome the bias between views and promote the trans-
ferability of representations. Extensive experiments on three benchmark
datasets demonstrate that our method achieves competitive results.

Keywords: Few-shot learning · Meta learning · Contrastive learning ·
Cross-view episodic training

1 Introduction

Thanks to the availability of a large amount of annotated data, deep convo-
lutional neural networks (CNN) [15,21,39] yield impressive results on various
visual recognition tasks. However, the time-consuming and costly collection pro-
cess makes it a challenge for these deep learning-based methods to generalize
in real-life scenarios with scarce annotated data. Inspired by the capability of
human to learn new concepts from a few examples, few-shot learning (FSL) is
considered as a promising alternative to meet the challenge, as it can adapt
knowledge learned from a few samples of base classes to novel tasks.
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Fig. 1: Distribution of feature embeddings of 64 base (left) and 20 novel (right)
classes from miniImagenet in pre-train space by t-SNE [27].

Recently, popular FSL methods [10,28,31,36,40,42,47] mainly adopt the meta-
learning strategy. These meta-learning based methods typically take episodic
training mechanism to perform meta-training on base classes with abundant
data. During meta-training, the episodes consist of a support set and a query
set, which are used in few-shot classification to mimic the evaluation setting.
The learned model is expected to be capable of generalizing across novel tasks of
FSL. Besides, many other methods [5,25,45,48,49,54] achieve good classification
accuracy by pre-training the feature extractor on base classes. These methods
suggest that the transferable and discriminative representations learned through
pre-training or meta-training is crucial for few-shot classification.

However, both the pre-training and meta-training procedures only minimize
the standard cross-entropy (CE) loss with labels from base classes. The resulting
models are optimized to solve the classification tasks of base classes. Due to this,
these methods may discard the information that might benefit the classification
tasks on the unseen classes. Fig. 1 shows that the pre-trained model is able to
identify samples from the base classes (left) well but performs poorly on samples
from the novel classes (right). That is, the learned representations are somewhat
overfitted on the base classes and not generalizable on the novel classes. Owing
to the label-free nature of self-supervised learning methods, some recent works
[7,11,41] have tried self-supervised pretext tasks to solve the FSL problem, while
other works [9,25,26,32] focus on contrastive learning methods. Though promis-
ing, these approaches ignore the additional information from the self-supervised
pretext tasks in meta-training or treat them as auxiliary losses simply in the
FSL training paradigm.

In this work, we propose a contrastive learning-based framework that seam-
lessly integrates contrastive learning into the pre-training and meta-training
stages to tackle the FSL problem. First, in the pre-training stage, we propose
two types of contrastive losses based on self-supervised and supervised signals,
respectively, to train the model. These losses consider the global and local in-
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formation simultaneously. Our proposed self-supervised contrastive loss exploits
local information in the forms of both feature vector vs. feature map (vector-
map) and feature map vs. feature map (map-map), which differs from previous
methods. Our supervised contrastive loss makes good use of the correlations
among individual instances and the correlations among different instances of
the same category. Second, in the meta-training stage, motivated by the idea of
maximizing mutual information between features extracted from multiple views
(e.g., by applying different data augmentations on images) of the shared context
(e.g., original images) [1,16,30,50], we introduce a cross-view episodic training
(CVET) mechanism to extract generalizable representations. Concretely, we ran-
domly employ two different data augmentation strategies [3,14,54] to obtain the
augmented episodes and treat them as different views of the original one. Note,
the augmentation does not change the label of the data. We then conduct the
nearest centroid classification between the augmented episodes to force the model
to overcome the bias between views and generalize well to novel classes. As a
complement to CVET, we take inter-instance distance scaling into considera-
tion and perform query instance discrimination within the augmented episodes.
These two methods effectively apply contrastive learning to the meta-training
stage of FSL. Our proposed method learns meta-knowledge that can play a cru-
cial role in recognizing novel classes. The key contributions of this work are as
follows:

– We propose a contrastive learning-based FSL framework consisting of the
pre-training and meta-training stages to improve the few-shot image classifi-
cation. Our framework is easy to combine with other two-stage FSL methods.

– We adopt the self-supervised contrastive loss based on global and local in-
formation in the pre-training stage to enhance the generalizability of the
resulting representations.

– We propose a CVET mechanism to force the model to find more transfer-
able representations by executing classification between augmented episodes.
Meanwhile, we introduce a distance-scaled contrastive loss based on the aug-
mented episodes to ensure that the classification procedure is not affected
by extreme bias between different views.

– Extensive experiments of few-shot classification on three benchmarks show
that our proposed method achieves competitive results.

2 Related Work

2.1 Few-Shot Learning

FSL aims to learn patterns on a large number of labeled examples called base
classes and adapt to novel classes with limited examples per class. Few-shot
image classification has received great attention and many methods have been
proposed. The existing methods can be broadly divided into two categories:
optimization-based and metric-based. The optimization-based methods initialize
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the model on base classes and adapt to novel tasks efficiently within a few gra-
dient update steps on a few labeled samples [10,24,28,33,36]. The metric-based
methods aim to learn a generalizable representation space and use a well-defined
metric to classify them [23,31,40,42,47,51,55]. The existing works have consid-
ered different metrics such as cosine similarity [47], Euclidean distance [40], a
CNN-based relation module [42], a task-adaptive metric [31], a local descriptor
based metric [23] and graph neural networks [37]. The Earth Mover’s Distance
[55] is employed as a metric to learn more discriminative structured represen-
tations. Many recent studies [5,38,45,48] have proposed a standard end-to-end
pre-training framework to obtain feature extractors or classifiers on base classes.
These pre-training based methods achieve competitive performance compared
to episodic meta-training methods. Moreover, many papers [6,25,54,55] take ad-
vantage of a sequential combination of pre-training and meta-training stages
to further enhance the performance. The methods [17,42,49,52,54] pay more
attention to the transferability of representations through delicately designing
task-specific modules in meta-training. Given the simplicity and effectiveness of
these methods, we take FEAT [54] as our baseline, but drop its auxiliary loss.

2.2 Contrastive Learning

Recently, contrastive learning with the instance discrimination as a pretext
task has become a dominant approach in self-supervised representation learn-
ing [1,3,14,16,30,43,50]. These methods typically construct contrast pairs of in-
stances with a variety of data augmentations and optimize a contrastive loss with
the aim of keeping instances close to their augmented counterparts while stay-
ing away from other instances in the embedding space. The goal of contrastive
learning using self-supervision from instances is to improve the generalizability
of the representations and benefit various downstream tasks. Contrastive learn-
ing is also extended to group instances in a supervised manner [19] and achieves
better performance than CE loss on standard classification tasks.

2.3 Few-Shot Learning with Contrastive Learning

In contrast to the works [7,11,41] that introduce self-supervised pretext tasks
such as rotation [13] and jigsaw [29] into FSL as auxiliary losses, recent ap-
proaches [9,25,26,32] have explored contrastive learning of instance discrimi-
nation in different parts of the two-stage training pipeline of FSL. Methods
[25,26,32] combine supervised contrastive loss [19] to the pre-training stage
[26,32] and the meta-training stage [9,25], respectively. Unlike prior works, our
proposed method boosts few-shot classification performance by seamlessly inte-
grating instance-discriminative contrastive learning in both the pre-training and
meta-training stages. In the pre-training stage, we conduct self-supervised con-
trastive loss in the forms of vector-map and map-map. In the meta-training stage,
we combine contrastive learning with episodic training and define a distance-
scaled contrastive loss to improve the transferability of the representations.
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Fig. 2: Overview of our framework. Based on multiple views of an input through
two random data augmentations DA1 and DA2, we compute contrastive losses
at both global and local levels in the pre-training stage. In the meta-training
stage, we enforce cross-view episodic training and compute a distance-scaled
contrastive loss episodically. Here, GAP dentoes a global average pooling layer,
Proj is a projection head, FC means a fully contected layer, Attn is the task-
specific module from [54], Sr,Qr mean support and query set from different views
of the episode E = {S,Q} respectively, and (ckr )

′ dentoes the aligned prototype
in Sr.

3 Method

3.1 Preliminary

The few-shot classification task is slightly different from the standard super-
vised classification task. The meta-training set Dtrain = {(xi, yi) | yi ∈ Cbase}
consists of the samples from the base classes Cbase, and the meta-test set Dtest =
{(xi, yi) | yi ∈ Cnovel} consists of the samples from the novel classes Cnovel. Here,
yi is the class label of sample xi. In FSL, we aim to learn a model based on
Dtrain and generalize it over Dtest, where Cbase ∩ Cnovel = ∅. Following the prior
meta-learning based methods [10,40,47], we adopt episodic mechanism to simu-
late the evaluation setting. Concretely, each M−way K−shot episode E consists
of a support set and a query set. We first randomly sample M classes from Cbase
for meta-training (or from Cnovel for meta-testing) and K instances per class

to obtain the support set S = {xi, yi}M∗K
i=1 . Then, we sample Q instances in

each of the selected classes to obtain the query set Q = {xi, yi}M∗Q
i=1 . Note that

yi ∈ {1, 2, . . . ,M} and S ∩Q = ∅. The episodic training procedure classifies the
samples in Q into the categories corresponding to the samples in S.

3.2 Overview

In this work, we follow the two-stage training strategy and incorporate con-
trastive learning in both stages to learn more generalizable representations. Our
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proposed framework is illustrated in Fig. 2. In the pre-training stage, we adopt
self-supervised and supervised contrastive losses to obtain a good initial rep-
resentation. In the meta-training stage, we propose a novel cross-view episodic
training (CVET) mechanism and a distance-scaled contrastive loss, which allows
the model to overcome the bias between views of each episode and generalize
well across novel tasks. Note that we take FEAT [54] without its auxiliary loss
as the baseline due to its simple and effective task-specific module (a multi-head
attention module [46]). We will detail our framework in the following subsections.

3.3 Pre-training

In this section, we introduce instance-discriminative contrastive learning [3,19]
in the pre-training stage to alleviate the overfitting problem caused by training
with CE loss only. As shown in Fig. 2, we propose self-supervised contrastive
losses at the global and local levels, respectively. Using self-supervision in these
losses helps produce more generalizable representations. Meanwhile, we also em-
ploy a global supervised contrastive loss [19] to capture the correlations among
instances from the same category.
Global self-supervised contrastive loss. This loss (a.k.a InfoNCE loss [3,30])
aims to enhance the similarity between the views of the same image, while reduc-
ing the similarity between the views of different images. Formally, we randomly
apply two data augmentation methods to a batch of samples {xi, yi}Ni=1 from the

meta-training set Dtrain and generate the augmented batch {x̃i, ỹi}2Ni=1. Here, x̃i

and x̃′
i denote two different views of xi, which are considered as a positive pair.

We define fϕ as the feature extractor with learnable parameters ϕ to transform
the sample x̃i into a feature map x̂i = fϕ(x̃i) ∈ RC×H×W and further obtain
the global feature hi ∈ RC after a global average pooling (GAP) layer. We use
a MLP with one hidden layer to instantiate a projection head proj(·) [3] to gen-
erate the projected vector zi = proj(hi) ∈ RD. Then the global self-supervised
contrastive loss can be computed as:

Lss
global = −

2N∑
i=1

log
exp (zi · z′i/τ1)∑2N

j=1 1j ̸=i exp (zi · zj/τ1)
, (1)

where the · operation denotes inner product after l2 normalization, τ1 is a scalar
temperature parameter, and 1 ∈ {0, 1} is an indicator function. Here, the pos-
itive pair, z′i and zi, are extracted from the augmented versions of the same
sample xi.
Local self-supervised contrastive loss. Though Lss

global (Eq. (1)) favors trans-
ferable representations based on global feature vector hi, it might ignore some
local discriminative information in feature map x̂i which could be beneficial
in meta-testing. Inspired by [1,3,16,32], we compute self-supervised contrastive
loss at the local level. Unlike previous approaches, we leverage map-map and
vector-map modules to boost the robustness and generalizability of the repre-
sentations. The map-map module is illustrated in Fig. 3a. Specifically, we use
three fq, fk, fv spatial projection heads to project local feature map x̂i into the
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Fig. 3: Map-map and vector-map modules. (a) Operation ⊗ denotes dot product.
Local feature maps x̂a and x̂b share three spatial projection heads fq(·), fk(·)
and fv(·). We first align x̂a with qb and then align x̂b with qa. (b) We obtain ub

by adding a FC layer after x̂b and za denotes the projected vector from proj(x̂a).

query qi = fq(x̂i), key ki = fk(x̂i) and value vi = fv(x̂i), respectively, where
qi,ki,vi ∈ RHW×D. For a pair of local feature map x̂a and x̂b, we align the x̂a

with x̂b to obtain v′
a|b = softmax

(
qbk

⊤
a√
d

)
va, and align x̂b with x̂a to obtain

v′
b|a = softmax

(
qak

⊤
b√
d

)
vb. After l2 normalization on each position (i, j) of the

aligned results, we can compute the similarity between the two local feature
maps x̂a and x̂b as follows:

sim1 (x̂a, x̂b) =
1

HW

∑
1≤i≤H,1≤j≤W

(
v′
a|b

)⊤
ij

(
v′
b|a

)
ij
. (2)

Basically, Eq. (2) calculates the summation of the element-wise product of two
feature maps v′

a|b and v′
b|a ∈ RHW×D. The self-supervised contrastive loss based

on pairwise feature maps can be computed as follows:

Lss
map−map = −

2N∑
i=1

log
exp (sim1 (x̂i, x̂

′
i) /τ2)∑2N

j=1 1j ̸=i exp (sim1 (x̂i, x̂j) /τ2)
, (3)

where (x̂i, x̂
′
i) is a positive pair and τ2 denotes a temperature parameter, and 1

is an indicator function. Meanwhile, we adopt vector-map module to further
exploit the local contrastive information between instances, which is shown in
Fig. 3b. In specific, we use a fully connected (FC) layer to obtain ui = g(x̂i) =
σ(Wx̂i) ∈ RD×HW , where σ is a ReLU nonlinearity. We can compute the sim-
ilarity between a contrast pair as sim2 (x̂a, x̂b) =

1
HW

∑
1≤i≤H,1≤j≤W (ub)

⊤
ijza,

where za is the projected vector of x̂a. The self-supervised contrastive loss based
on pairs of feature vectors and feature maps can be computed as follows:

Lss
vec−map = −

2N∑
i=1

log
exp (sim2 (x̂i, x̂

′
i) /τ3)∑2N

j=1 1j ̸=i exp (sim2 (x̂i, x̂j) /τ3)
, (4)
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where τ3 and 1 act the same as in Eq. (3). Therefore, the local self-supervised
contrastive loss can be defined as:

Lss
local = Lss

vec−map + Lss
map−map. (5)

Global supervised contrastive loss. To exploit the correlations among indi-
vidual instances and the correlations among different instances from the same
category, we also adopt supervised contrastive loss [19] as follows:

Ls
global =

2N∑
i=1

1

|P (i)|
∑

p∈P (i)

Lip, (6)

where Lip = − log
exp(zi·zp/τ4)∑2N

j=1 1j ̸=i exp(zi·zj/τ4)
, and τ4 is a temperature parameter.

The set P (i) contains the indexes of samples with the same label as xi in the
augmented batch except for index i.

To summarize, we minimize the following loss during pre-training:

Lpre = LCE + α1L
ss
global + α2L

ss
local + α3L

s
global, (7)

where LCE is the CE loss, and α1, α2 and α3 are balance scalars. By optimizing
Lpre, we promote the discriminability and generalizability of the representations,
which is crucial for the following stage.

3.4 Meta-training

Cross-view Episodic Training. In order to capture information about the
high-level concept of a shared context, a common practice in contrastive learn-
ing [3,14,30,50] is to maximize the mutual information between features ex-
tracted from multiple views of the shared context. Intuitively, given an episode
E = {S,Q} in episodic meta-learning, we can obtain two episodes E1 = {S1,Q1}
and E2 = {S2,Q2} by applying two different data augmentation strategies on E
respectively. Here, we consider E a shared context and treat the two augmented
episodes as its two views. Inspired by the above idea, we propose a cross-view
episodic training mechanism with the aim of forcing representations to learn
meta-knowledge that can play a key role across various few-shot classification
tasks. Specifically, we use the pre-trained feature extractor fϕ in Sect. 3.3 fol-
lowed by a GAP to each data point xi in both the episode E1 and E2, and
derive the corresponding global vector hi ∈ RC . We then separately compute a
prototype ckr for category k in support sets S1 and S2 as follows:

ckr =
1

|Sk
r |

∑
(hi,yi)∈Sk

r

hi, (8)

where r ∈ {1, 2} and Sk
r denotes the set of data points belonging to class k ∈

{1, 2, . . . ,M} from r−th support set. We denote the task-specific module (multi-
head attention [46]) proposed in baseline [54] as Attn (·) and fix the number of
heads to 1. With the task-specific module, we obtain an aligned prototype set
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T (r) = {(ckr )′}Mk=1 = Attn
(
c1r, c

2
r, . . . , c

M
r

)
for each support set. Then, based on

the aligned prototypes, a probability distribution of a data point xi in the query
set Qr over M classes is defined as:

P (y = k | hi, T (r)) =
exp

(
−d

(
hi, (c

k
r )

′))∑M
j=1 exp

(
−d

(
hi, (c

j
r)′

)) , (9)

where d (·, ·) denotes Euclidean distance. Therefore the loss of the nearest cen-
troid classifier on an episode can be computed as:

Lmn =
1

|Qm|
∑

(hi,yi)∈Qm

− logP (y = k | hi, T (n)), (10)

where m,n ∈ {1, 2}. Obviously different from the original episodic training,
we classify Q1 on S1 and S2 respectively, and do the same for Q2. Eq.(10)
minimizes the differences between two views of instances of the same category.
The whole process is illustrated in Fig. 2. Therefore, we computed the cross-view
classification loss as follows:

Lmeta =
1

4

∑
m,n

Lmn. (11)

Distance-scaled Contrastive Loss. Since contrastive learning approaches
work solely at the instance level, it is superficial to simply add contrastive
loss into meta-training without taking full advantage of the episodic training
mechanism catered for FSL. To better apply contrastive learning to the meta-
training, we perform query instance discrimination between two views of the
shared episodes. Specifically, inspired by [4], we further inherit the pre-trained
projection head proj(·) in Sect. 3.3 to map each sample xi in the two episodes E1

and E2 into a projected vector zi ∈ RD. We similarly obtain the prototype ok
r by

averaging the projected vector of the same classes, that is ok
r = 1

|Sk
r |

∑
(zi,yi)∈Sk

r
zi

where r is the same as in Eq. (8). For each query vector zi in Q1 and Q2, we
reconstruct its positive sample set by using corresponding augmented version z′i
and the samples of class yi in both support sets. Therefore, we reformulate the
supervised contrastive loss [19] in the form of episodic training as follows:

L(zi) = −
∑

zH∈H(zi)

log
λzizH exp (zi · zH/τ5)∑

zA∈A(zi)
λzizA exp (zi · zA/τ5)

. (12)

Here, operation · means the inner product between features after l2 normaliza-
tion. τ5 is a temperature parameter. The λzizj

= 2−dist(zi, zj) is the coefficient
that reflects the distance relationship between zi and zj , where dist(·, ·) refers
to cosine similarity. H(zi) = {z′i} ∪ Syi

1 ∪ Syi

2 is the positive set of zi, and

A(zi) = {z′i} ∪ S1 ∪ S2 ∪
{
ok
1

}M

k=1
∪
{
ok
2

}M

k=1
. The distance coefficient λzizj

and

additional prototypes ok
r on both views of the original episode are introduced

to reduce the similarities of queries to their positives. Thus the model can learn
more discriminative representations adapted to different tasks. Then we compute
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the distance-scaled contrastive loss as:

Linfo =
∑

zi∈Q1∪Q2

1

|H(zi)|
L(zi). (13)

By optimizing Linfo, we force the representations to capture information about
instance discrimination episodically and learn the interrelationships among sam-
ples of the same category in cross-view episodes.
Objective in Meta-training. In meta-training, we mainly build two losses as
in Eq. (11) and Eq. (13) in order to enhance the transferability and discriminative
ability of representations. Then the total objective function in meta-training is
defined as:

Ltotal = Lmeta + βLinfo, (14)

where β is a balance scalar and will be detailed in the following section.

4 Experiments

4.1 Datasets and Setup

Datasets. We evaluate our method on three popular benchmark datasets. The
miniImageNet dataset [47] contains 100 classes with 600 images per class, and
these classes are divided into 64, 16 and 20 for the training, validation and test
sets, respectively. The tieredImageNet dataset [35] contains 608 classes grouped
in 34 high-level categories with 779,165 images, where 351 classes are used for
training, 97 for validation and 160 for testing. The CIFAR-FS dataset [2] con-
tains 100 classes with 600 images per class. These classes are split into the
training, validation and test sets in proportions of 64, 16 and 20.
Implementation Details. Following the baseline [54], we use ResNet-12 as
backbone and a multihead attention as the task-specific module (number of
heads is 1). All projection heads in our method has the same structure as in
[3]. We adopt SGD optimizer with a weight decay of 5e-4 and a momentum
of 0.9 for both the pre-training and meta-training stages. During pre-training,
the learning rate is initialized to be 0.1 and adapted via cosine learning rate
scheduler after warming up. Temperature parameters τ1,2,3,4 are set to 0.1 and
the balance scalars α1,2,3 are set to 1.0. During meta-training, temperature τ5
are set to 0.1. We use StepLR with a step size of 40 and gamma of 0.5 and set
β = 0.01 for 1-shot. For 5-shot, StepLR is used with a step size of 50 and gamma
of 0.5, and the β is set to 0.1.
Evaluation. We follow the 5-way 1-shot and 5-way 5-shot few-shot classification
tasks. In meta-testing, our method (inductive) simply classify the query samples
by computing the euclidean distance between the prototypes and query samples.
We randomly sample 2000 episodes from test set in meta-testing with 15 query
images per class and report the mean accuracy together with corresponding 95%
confidence interval.
Data Augmentation. For all datasets, we empirically find that standard [54,55]
and SimCLR-style [3,14] data augmentation strategies work best in pre-training
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Table 1: The average 5-way few-shot classification accuracies(%) with 95% con-
fidence interval on miniImageNet and tieredImageNet.

miniImageNet tieredImageNet
Method Backbone

1-shot 5-shot 1-shot 5-shot

MAML [10] 48.70 ± 1.75 63.11 ± 0.92 — —

RelationNets [42] 50.44 ± 0.82 65.32 ± 0.70 54.48 ± 0.93 71.32 ± 0.78

MatchingNets [47] 48.14 ± 0.78 63.48 ± 0.66 — —

ProtoNets [40]

CONV-4

44.42 ± 0.84 64.24 ± 0.72 53.31 ± 0.89 72.69 ± 0.74

LEO [36] 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 82.06 ± 0.08

CC+rot [11] 62.93 ± 0.45 79.87 ± 0.33 62.93 ± 0.45 79.87 ± 0.33

wDAE [12] 61.07 ± 0.15 76.75 ± 0.11 68.18 ± 0.16 83.09 ± 0.12

PSST [7]

WRN-28-10

64.16 ± 0.44 80.64 ± 0.32 — —

TADAM [31] 58.5 ± 0.3 76.7 ± 0.3 — —

MetaOptNet [22] 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53

DeepEMD [55] 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.58

CAN [17] 63.85 ± 0.48 79.44 ± 0.34 69.89 ± 0.51 84.23 ± 0.37

FEAT [54] 66.78 ± 0.20 82.05 ± 0.14 70.80 ± 0.23 84.79 ± 0.16

RFS [45] 62.02 ± 0.63 79.64 ± 0.44 69.74 ± 0.72 84.41 ± 0.55

InfoPatch [25] 67.67 ± 0.45 82.44 ± 0.31 71.51 ± 0.52 85.44 ± 0.35

DMF [52] 67.76 ± 0.46 82.71 ± 0.31 71.89 ± 0.52 85.96 ± 0.35

RENet [18] 67.60 ± 0.44 82.58 ± 0.30 71.61 ± 0.51 85.28 ± 0.35

BML [56] 67.04 ± 0.63 83.63 ± 0.29 68.99 ± 0.50 85.49 ± 0.34

PAL [26] 69.37 ± 0.64 84.40 ± 0.44 72.25 ± 0.72 86.95 ± 0.47

TPMN [49]

ResNet-12

67.64 ± 0.63 83.44 ± 0.43 72.24 ± 0.70 86.55 ± 0.63

Ours ResNet-12 70.19 ± 0.46 84.66 ± 0.29 72.62 ± 0.51 86.62 ± 0.33

and meta-training. During meta-testing, no data augmentation strategy is used.
The image transformations used in standard strategy include randomresizedcrop,
colorJitter and randomhorizontalflip, while SimCLR-style strategy contains ran-
domresizedcrop, randomhorizontalflip, randomcolorjitter and randomgrayscale.

4.2 Main Results

In this subsection, we compare our method with competitors on three main-
stream FSL datasets and the results are reported in Table 1 and Table 2. We
can observe that our proposed method consistently achieves competitive results
compared to the current state-of-the-art (SOTA) FSL methods on both the 5-
way 1-shot and 5-way 5-shot tasks. For the miniImageNet dataset (Table 1),
our proposed method outperforms the current best results by 0.82% in the 1-
shot task and 0.26% in 5-shot task. For the tieredImageNet dataset (Table 1),
our method improves over the current SOTA method by 0.37% for 1-shot and
achieves the second best 5-shot result. Note that our method outperforms the
original FEAT by 1.82% for 1-shot and 1.83% for 5-shot on tieredImageNet.
For the CIFAR-FS dataset (Table 2), our method surpasses the current SOTA
by 0.46% and 0.19% in the 1-shot and 5-shot tasks, respectively. Compared to
those methods [7,11,25,26], our proposed method works better on most datasets.
The consistent and competitive results on the three datasets indicate that our
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Table 2: The average 5-way few-shot classification accuracies(%) with 95% con-
fidence interval on CIFAR-FS. ⋆ results used our implementation.

Method Backbone 1-shot 5-shot

Ravichandran et al. [34]
CONV-4

55.14 ± 0.48 71.66 ± 0.39

ConstellationNet [53] 69.3 ± 0.3 82.7 ± 0.2

CC+rot [11]
WRN-28-10

75.38 ± 0.31 87.25 ± 0.21

PSST [7] 77.02 ± 0.38 88.45 ± 0.35

Ravichandran et al. [34]

ResNet-12

69.15 ± - 84.7 ± -

MetaOptNet [22] 72.0 ± 0.7 84.2 ± 0.5

Kim et al. [20] 73.51 ± 0.92 85.65 ± 0.65

FEAT⋆ [54] 75.41 ± 0.21 87.32 ± 0.15

RFS [45] 73.9 ± 0.8 86.9 ± 0.5

ConstellationNet [53] 75.4 ± 0.2 86.8 ± 0.2

RENet [18] 74.51 ± 0.46 86.60 ± 0.32

BML [56] 73.45 ± 0.47 88.04 ± 0.33

PAL [26] 77.1 ± 0.7 88.0 ± 0.5

TPMN [49] 75.5 ± 0.9 87.2 ± 0.6

Ours ResNet-12 77.56 ± 0.47 88.64 ± 0.31

method can learn more transferable representations by incorporating contrastive
learning in both the pre-training and meta-training stages.

4.3 Ablation Study

In this subsection, we study the effectiveness of different components in our
method on three datasets. The results in Table 3 show a significant improvement
in the performance of our proposed method compared to the baseline pre-trained
by CE loss (LCE) only. Specifically, using LCE and all contrastive losses LCL in
pre-training improves the accuracy by an average of 1.66% (1-shot) and 1.29% (5-
shot) on the three datasets. This allows the representations to generalize better,
rather than just focusing on the information only needed for the classification on
base classes. We then apply the CVET and Linfo respectively, and the consistent
improvements suggest that CVET and Linfo are effective. The results jointly
based on CVET and Linfo are further enhanced by 0.95% (1-shot) and 0.72%
(5-shot) in average, indicating that our full method increases the transferability
of representations on novel classes. Note that the gains obtained by CVET and
Linfo are relatively low on miniImageNet, as the number of training steps on
this dataset is very small, leading to a sufficiently narrow gap between two
different views of the same image at the end of pre-training. Additionally, more
ablation experiments on the effectiveness of all parts in LCL are included in the
supplementary material.

4.4 Further Analysis

Data augmentation. We investigate the impact of employing a different data
augmentation strategy while maintaining the use of the standard one. Table 4
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Table 3: Ablation experiments on miniImageNet. LCE means the baseline model
is pre-trained with CE loss. LCL denotes all contrastive losses used in pre-
training. CVET and Linfo are only available in meta-training.

LCE LCL CVET Linfo
miniImageNet tieredImageNet CIFAR-FS

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot√
66.58 ± 0.46 81.92 ± 0.31 70.41 ± 0.51 84.69 ± 0.36 75.54 ± 0.48 87.28 ± 0.32√ √
69.53 ± 0.47 84.33 ± 0.29 71.83 ± 0.51 85.64 ± 0.35 76.15 ± 0.47 87.79 ± 0.33√ √ √
69.89 ± 0.46 84.43 ± 0.29 72.39 ± 0.52 86.07 ± 0.35 77.02 ± 0.48 88.28 ± 0.32√ √ √
69.78 ± 0.46 84.46 ± 0.29 72.51 ± 0.52 86.23 ± 0.34 77.37 ± 0.49 88.48 ± 0.32√ √ √ √
70.19 ± 0.46 84.66 ± 0.29 72.62 ± 0.51 86.62 ± 0.33 77.56 ± 0.47 88.64 ± 0.31

Table 4: Comparison experiments of different data augmentation strategies on
miniImageNet.

Augmentation 1-shot 5-shot

Standard [54,55] 67.84 ± 0.47 82.82 ± 0.31

SimCLR-style [3,14] 70.19 ± 0.46 84.66 ± 0.29

AutoAugment [8] 68.45 ± 0.46 83.94 ± 0.30

StackedRandAug [44] 68.31 ± 0.46 83.13 ± 0.31

shows that the SimCLR-style [3,14] strategy works best while the AutoAugment
[8] and StackedRandAug[44] perform slightly worse. However, all three strategies
are better than the standard one. We believe that the standard strategy lacks
effective random image transformations and thus always produces two similar
views of the same image during the training process. Conversely, the AutoAug-
ment and StackedRandAug strategies that intensely change the original image
may lead to excessive bias between two views of the same image, thereby in-
creasing the difficulty of performing contrastive learning.

Visualization. We give visualization to validate the transferability of represen-
tations produced by our framework on novel classes. Specifically, we randomly
sample 5 classes from the meta-test set of miniImageNet with 100 images per
class and obtain embeddings of all images using ProtoNet [40], ProtoNet+Ours,
baseline and Ours (baseline + our framework), respectively. Then we use t-SNE
[27] to project these embeddings into 2-dimensional space as shown in Fig. 4.
The distributions of the embeddings obtained by ProtoNet + Ours and baseline
+ our framework are more separable and the class boundaries more precise and
compact (see Fig. 4b, Fig. 4d vs. Fig. 4a, Fig. 4c). The visualization results
indicate that our proposed framework generates more transferable and discrim-
inative representations on novel classes. The complete visualization results are
available in the supplementary material.

Method Combination. We combine our proposed framework with the two-
stage FSL methods ProtoNet [40] and baseline (FEAT [54]), respectively. The
results are shown in Table 5. Integration with our framework improves the accu-
racy of ProtoNet by 2.74% (1-shot) and 1.39% (5-shot). Similarly, our framework
improves the 1-shot accuracy of baseline by 3.96% and its 5-shot accuracy by
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Fig. 4: Visualization of 100 randomly sampled images for each of the 5 meta-test
classes from miniImageNet by t-SNE [27].

Table 5: Method combinations on miniImageNet.
Model 1-shot 5-shot

ProtoNet 63.77 ± 0.47 80.58 ± 0.32

ProtoNet+CL 66.17 ± 0.46 81.73 ± 0.30

ProtoNet+Ours 66.51 ± 0.47 81.97 ± 0.30

baseline 66.23 ± 0.47 80.81 ± 0.33

baseline+CL 69.53 ± 0.47 84.33 ± 0.29

Ours 70.19 ± 0.46 84.66 ± 0.29

3.85%. The results in Fig. 4 and Table 5 show that our framework can be applied
to other two-stage FSL methods and effectively enhance the performance.

5 Conclusions

In this paper, we apply contrastive learning to the two-stage training paradigm
of FSL to alleviate the limitation on generalizability of representations. Con-
cretely, we use vector-map and map-map modules to incorporate self-supervised
contrastive losses in the pre-training stage. We further propose a CVET strategy
and a distance-scaled contrastive loss to extend contrastive learning to the meta-
training stage effectively. The comprehensive experimental results show that our
proposed method achieves competitive performance on three well-known FSL
datasets miniImageNet, tieredImageNet and CIFAR-FS.
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