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Below are additional derivations, evaluations and illustrations of our method.

A Ablation Study on Encoding Network

Below we perform ablations of the backbone (Encoding Network, termed as
EN in main paper). We use ConvNet (ResNet-50) and Transformer network [54]
(Swin-B7/ Swin-B12 pre-trained on ImageNet-22K [5] with window size of 7/12),
as shown in Table 5c. The comparisons are conducted by changing the backbone,
whereas other settings remain unchanged. When ResNet-50 is replaced by Swin-
B7, we gain an improvement of 0.3% and 0.5% in the 5/10-shot setting (novel
classes).

B Details of Transformer Relation Head (TRH) with
Z-shot and Spatial-HOP blocks.

As Z-shot T-RH is described in Eq. (15) of the main paper, below we focus on
describing Spatial-HOP T-RH.

This head first forms a so-called self-attention on a set Z of support regions
and B query RoIs, respectively. We formulate its operation for B query RoIs
(refer §4.2 of main paper for support regions). Spatial-HOP T-RH takes as input
RoI features {Φ∗

b ∈ R2d×N}b∈IB
(2d because layer 5 of ResNet-50 maps d-

dimensional features to 2d-dimensional features) and {ψ∗
b ∈ Rd}b∈IB

. We split
Φ∗

b along the channel mode of dimension 2d to create two new matrices Φ∗u
b ∈

Rd×N and Φ∗l
b ∈ Rd×N for b ∈ IB . We let Φ∗l

b = [ϕ∗l
b,1, ...,ϕ

∗l
b,N ] ∈ Rd×N . Self-

attention is then performed over T b containing vectors, in parallel across B RoIs,
ie., {T b}b∈IB

:

T b = [ϕ∗l
b,1, ...,ϕ

∗l
b,N , ϕ̄∗u

b ,Wgψ
∗
b ], (17)

where ϕ̄ denotes average-pooled features (FO) and Wg ∈ Rd×d denotes a linear
projection (shared between query and support representations).

Based on these representations passed through the transformer head (vari-
ables indicated by widehat ·̂ ) between support regions and query RoIs, we then
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Table 5: Experimental results of different variants of Transformer Relation Head
(TRH), by varying Z-shot and Spatial-HOP blocks, are in Tab. 5a. Digits 1, ..., 4
indicate different orders included or excluded from each experiment. “Spatial” is
the size of spatial map (downsampled by the bilinear interpolation). Next, Tab.
5c is an ablation of different variants of Encoding Network (5/10-shot setting on
VOC2007 testing set was used in Tab. 5a and 5c). Finally, Fig. 5b shows mAP
w.r.t. η′ in SigmE (10-shot protocol on VOC2007 and COCO testing dataset,
5-shot setting on FSOD testing dataset).
Z−shot
(1,2,3,4) Spatial 1 2,3,4 5-shot 10-shot

✓

7×7
✓ 57.9 64.2

✓ 61.3 65.8
✓ ✓ 62.3 66.9

5×5
✓ 58.7 63.7

✓ 60.3 64.3
✓ ✓ 61.1 65.2

3×3
✓ 54.8 57.9

✓ 56.0 59.2
✓ ✓ 56.6 60.1

1×1
✓ 45.1 49.3

✓ 46.8 51.9
✓ ✓ 47.4 52.4

7×7
✓ 55.2 60.7

✓ 59.4 64.6
✓ ✓ 61.0 65.8

5×5
✓ 57.6 61.5

✓ 58.6 63.0
✓ ✓ 60.3 63.4

3×3
✓ 52.4 54.8

✓ 54.1 57.8
✓ ✓ 54.5 58.3

1×1
✓ 44.0 47.1

✓ 45.2 48.4
✓ ✓ 46.3 50.1

(a)

(b)

EN 5-shot 10-shot

ResNet-50 62.3 66.9

Swin-B7 62.6 67.4

Swin-B12 62.0 66.7

(c)

compute relations as follows:

Rb
Spatial =

[
Φ̂†l − Φ̂∗l

b

]
∈ Rd×N , b ∈ IB , (18)

Rb
FO+HO =

[ ̂̄ϕ†u
· ̂̄ϕ∗u

b

ψ̂† · ψ̂∗
b

]
∈ R2d, (19)

Rb =

[
Repeat(Rb

Spatial;N)

W uRb
FO+HO

]
∈ R2d×B , (20)

where the learnable weight W (u) ∈ Rd×2d projects the channel-wise concate-
nated matrix to d dimensions, letters l and u indicate first and second half of
channel coefficients, respectively, operator · indicates element-wise multiplica-
tion, and Repeat(·;N) replicates spatial mode N times. The above process is
shown in Fig. 4.3.
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C Ablation Study on Transformer Relation Head (TRH)
with Z-shot and Spatial-HOP blocks.

As the supplementary setting for the top panel of Tab. 3b (in the main paper), we
utilize r=1 in RPN and r=2, 3, 4 in TRH, achieving 2.7%/2.4% improvement
on novel/base classes, 5-shot protocol, over the variant applied r = 1 in both
RPN and TRH.

We then conduct more ablation studies on Spatial-HOP transformer head
to analyze the impact brought by each component (5/10-shot setting on novel
classes, VOC 2007). The results are shown on Table 5a. Specifically, we mainly
ablate three variants: spatial maps of assorted size (as in the table) with either
orderless HOP representation of order r=1 or r=2, 3, 4, or both r=1, 2, 3, 4.

Furthermore, to investigate the impact of spatial attention, we use bilinearly
subsampled maps, ranging from 1 × 1 to 7 × 7 in spatial size. Not surprisingly,
the Spatial-HOP head performs best when utilizing larger spatial maps, together
with the orderless high-order and first-order tensor descriptors.

D Visualization of Attention Maps of the Spatial-HOP
block.

To explain why our model benefits from the combination of spatial attention,
and orderless first-order and high-order representations, we provide qualitative
results based on displaying attention maps.

Firstly, we performed training where Spatial-HOP T-RH used only spatial
and first-order information (FO) during training. To obtain the picture, we
picked ϕ̄†u from Eq. (16) and we looked how it correlates with the N spatial

representations ϕ†l
1 , ...,ϕ

†l
N . To that end, we passed these “spatial fibers” and FO

representation via the RBF kernel of Eq. (8), and we then reshaped N into the
spatial map (7×7 size).

Figure 3 (top left) shows how the first-order representation (FO) correlates
with each spatial fiber in the attention of transformer. As Spatial-HOP T-RH
block uses information averaged over K images of the same class in an episode
(K-way images), each column shows one of these support images. Each row
shows a different class image from Z-shot support images in the episode.

Subsequently, we performed training where Spatial-HOP T-RH used only
spatial and high-order information (HO) during training. Thus, we picked the
high-order representationW (g)ψ† from Eq. (16) and we looked how it correlates

with the N spatial representations ϕ†l
1 , ...,ϕ

†l
N . To that end, we passed these

“spatial fibers” and HO representation via the RBF kernel of Eq. (8), and we
then reshaped N into the spatial map (7×7 size).

Figure 3 (top right) shows how the high-order representation (HO) correlates
with each spatial fiber in the attention of transformer. As before, we visualise
K×Z images from an episode given the K-way Z-shot problem.

Comparing FO an HO representations, HO is by far more focused on the fore-
ground objects that correlate in the semantic sense with the object class. This
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First-order fiber (FO) is visualised
(Spatial-HOP T-RH used only spa-
tial and FO (r=1) information dur-
ing training)

High-order fiber (HO) is visualised
(Spatial-HOP T-RH used only spa-
tial and HOP (r = 2, 3, 4) informa-
tion during training)

Spatial fibers are max-pooled and
then visualised (Spatial-HOP T-RH
used spatial, FO and HOP informa-
tion (r=1, 2, 3, 4) during training)

First-order fiber (FO) and High-
order fiber (HO) are averaged and
then visualised (Spatial-HOP T-RH
used spatial, FO and HOP informa-
tion (r=1, 2, 3, 4) during training)

Fig. 3: Visualization of attention maps of self-attention w.r.t. support regions.
The results are produced on VOC2007 test set, novel classes (motorbike, bird,
bus and cow). See text for detailed descriptions.
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explains why HO representations help our model obtain better results compared
to traditional attention mechanisms that focus only on capturing spatial corre-
lations of a region.

Figure 3 (bottom left) shows how the spatial fibers from the attention ma-
trix that is max-pooled along columns (we of course removed FO and HO before
pooling along columns). We follow the same procedure as above, however, this
time the Spatial-HOP T-RH block was utilizing the spatial, FO and HO infor-
mation during training. Clearly, spatial attention can focus on complex spatial
patterns in contrast to the focus of FO and HO.

Figure 3 (bottom right) shows how the first-order representation (FO), aver-
aged with the high-order representation (HO), correlate with each spatial fiber
in the attention of transformer. We follow the same procedure as above, and still
use the spatial, FO and HO information in the Spatial-HOP T-RH block during
training. Clearly, utilizing r=1, 2, 3, 4 compares favourably with utilizing either
r=1 or r=2, 3, 4 during training.

E Impact of η′ of SigmE.

According to Section 4, TSO benefits from element-wise PN, realized by the
SigmE operator in Eq. (5), which depends on the parameter η′. Figure 5b shows
that η′ = 200 is a good choice on VOC dataset but η′ = 300/400 helps obtain
the best results on FSOD/COCO dataset. Overall, our approach is not overly
sensitive to this parameter, and setting η′=200 on all datasets if a good choice.

F Hyperparameters on the FSOD and COCO datasets.

Table 6: Ablation studies on the FSOD and COCO datasets (5/10-shot, novel
classes), w.r.t. the effect of varying (a) the number of heads used in T-Heads
Attention, as shown in Tab. 6a, and (b) the number of TENET blocks as shown
in Tab. 6b. mAP of variants of High-order Tensor Descriptors (HoTD) with TSO
(ηr>1) and without TSO (ηr=1) is in Tab. 6c.

TA
FSOD COCO

5-shot 10-shot

1 30.5 20.1

2 31.7 22.3

4 31.2 22.6

8 30.8 23.5

16 30.0 23.0

32 29.4 21.8

64 29.5 21.5

(a)

TB
FSOD COCO

5-shot 10-shot

1 31.7 23.5

2 33.5 24.2

3 32.6 25.1

4 31.0 24.8

5 31.2 23.1

(b)

r
dim.
split

ηr
(FSOD)

5-shot ηr
(COCO)

10-shot

2 3 4 AP50 AP75 AP50 AP75

✓ 7 33.1 29.6 10 25.7 17.5

✓ ✓ 3:1 7,7 33.7 30.4 10,10 26.0 18.2

✓ ✓ ✓ 5:2:1 7,7,7 35.4 31.6 10,10,10 27.4 19.6

✓ ✓ ✓ 5:2:1 1,1,1 30.8 28.4 1,1,1 22.1 14.3

(c)



24 Zhang et al .

Tables 6a and 6b present the impact of the number of head used in T-Heads
Attention (TA) and TENET block (TB) on results. We fix the σ = 0.5 (the
best value of standard deviation of the RBF kernel of transformers, selected by
cross-validation on FSOD and COCO dataset) and then we investigate TA and
TB (the number of attention units per block, and the number of blocks, respec-
tively). Two heads together with two blocks are the best on the FSOD dataset,
while eight heads aligned with three blocks yield the best results on the COCO
dataset. Table 6c shows results on FSOD and COCO w.r.t. the dimension split
along the feature channel (e.g ., if r = 2, 3, ratio 3:1 means that three parts of
channel dimension are taken to form the second-order representation, and one
part of channel dimension is taken to form the third-order representation). The
table also shows the impact of ηr of TSO on results, where ηr are individual pa-
rameters for each order r. Overall, using all three orders, as denoted by r=2, 3, 4,
outperforms a second-order representation, indicated by r=2. Importantly, TSO
is used when ηr>1. Without TSO (ηr=1), results drop by a large margin, which
highlights the practical importance of TSO on results.

G Comparison with QA-FewDet/DeFRCN
fine-tuning/meta-testing setting (Table 7).

Below we compare our method with with QA-FewDet [53]/DeFRCN [55].

Table 7: Comparison with QA-FewDet/DeFRCN (mAP%).

Method
Encoding Novel Set 1 Novel Set 2 Novel Set 3
Network 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

Meta-training the model on base classes, and meta-testing on novel classes

QA-FewDet ResNet-101 41.0 33.2 35.3 47.5 52.0 23.5 29.4 37.9 35.9 37.1 33.2 29.4 37.6 39.8 41.5
TENET (Ours) ResNet-50 43.7 42.1 43.9 48.2 54.5 32.5 35.2 39.5 37.8 38.7 34.1 37.0 38.9 42.0 45.1

Fine-tuning the model on novel classes, and testing on novel classes

QA-FewDet ResNet-101 42.4 51.9 55.7 62.6 63.4 25.9 37.8 46.6 48.9 51.1 35.2 42.9 47.8 54.8 53.5
DeFRCN ResNet-101 53.6 57.5 61.5 64.1 60.8 30.1 38.1 47.0 53.3 47.9 48.4 50.9 52.3 54.9 57.4
TENET (Ours) ResNet-50 46.7 52.3 55.4 62.3 66.9 40.3 41.2 44.7 49.3 52.1 35.5 41.5 46.0 54.4 54.6
TENET(Ours) ResNet-101 48.5 55.2 58.7 65.8 69.0 42.6 43.4 47.9 52.0 54.2 37.9 43.6 48.8 56.9 57.6
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H Comparison with SOTA on MS COCO minival set
(10/30 -shot) as shown in Table 8.

Table 8: Evaluations on the MS COCO minival set (10/30- shot). Methods that
do not disclose all shot results are ignored and are replaced with ‘–’.

Method Venue
AP AP50 AP75

10 30 10 30 10 30

FSCE+SVD NeurIPS 2021 12.0 16.0 – – 10.4 15.3
FADI NeurIPS 2021 12.2 16.1 – – 11.9 15.8

SRR-FSD CVPR 2021 11.3 14.7 23.0 29.2 9.8 13.5
Zhang et al. CVPR 2021 12.6 – 27.0 – 10.9 –

QA-FewDet ICCV 2021 11.6 16.5 23.9 31.9 9.8 15.5
DeFRCN ICCV 2021 18.5 22.6 – – – –

QSAM WACV 2022 13.0 15.3 24.7 29.3 12.1 14.5
FCT CVPR 2022 15.3 20.2 – – – –

TENET Ours 19.1 23.7 27.4 32.2 19.6 23.1

I Mean ± std of mAP on PASCAL VOC 2007 (Table 9).

Table 9: Evaluations on three test splits of VOC 2007 (mean mAP ± std).

Method/Shot
Mean±std

1 3 5 10

FRCN ICCV12 7.6±3.1 23.5±4.5 32.3±3.3 36.4±6.0
FR ICCV19 16.6±1.9 25.0±1.7 34.9±4.3 42.6±3.4
Meta ICCV19 14.9±3.9 30.7±3.2 40.6±4.5 48.3±2.5
FSOD CVPR20 25.4±3.2 32.0±4.8 42.2±4.2 47.9±3.9
NP-RepMet NeurIPS20 37.6±3.4 41.6±1.5 45.4±2.8 47.8±2.1
PNSD ACCV20 31.3±4.4 36.2±4.2 44.5±3.8 49.9±5.4
MPSR ECCV20 33.9±7.2 44.3±5.2 47.7±6.2 53.1±6.2
TFA ICML20 31.4±6.7 40.5±4.6 46.8±8.6 48.3±7.0
FSCE CVPR21 31.4±9.3 44.8±4.9 51.1±7.7 55.9±5.6
CGDP+FRCN CVPR21 33.1±5.6 43.7±2.3 50.0±6.0 54.8±6.6
TIP CVPR21 24.0±2.6 38.4±4.0 45.2±4.3 52.5±5.3
FSODup ICCV21 36.8±5.2 45.1±3.8 50.1±4.6 54.5±5.5
QSAM WACV22 26.1±3.5 35.4±2.9 45.4±3.6 51.9±3.8

TENET (Ours) 40.8±3.6 48.7±4.7 55.3±3.1 57.9±5.8
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