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Abstract. In this paper, we tackle the challenging problem of Few-shot
Object Detection. Existing FSOD pipelines (i) use average-pooled rep-
resentations that result in information loss; and/or (ii) discard position
information that can help detect object instances. Consequently, such
pipelines are sensitive to large intra-class appearance and geometric vari-
ations between support and query images. To address these drawbacks,
we propose a Time-rEversed diffusioN tEnsor Transformer (TENET),
which i) forms high-order tensor representations that capture multi-way
feature occurrences that are highly discriminative, and ii) uses a trans-
former that dynamically extracts correlations between the query image
and the entire support set, instead of a single average-pooled support em-
bedding. We also propose a Transformer Relation Head (TRH), equipped
with higher-order representations, which encodes correlations between
query regions and the entire support set, while being sensitive to the
positional variability of object instances. Our model achieves state-of-
the-art results on PASCAL VOC, FSOD, and COCO.

Keywords: few-shot object detection; transformer; multiple order pool-
ing; high order pooling; heat diffusion process;

1 Introduction

Object detectors based on deep learning, usually addressed by supervised mod-
els, achieve impressive performance [31,32,33,8,27,13] but they rely on a large
number of images with human-annotated class labels/object bounding boxes.
Moreover, object detectors cannot be easily extended to new class concepts not
seen during training. Such a restriction limits supervised object detectors to
predefined scenarios. In contrast, humans excel at rapidly adapting to new sce-
narios by “storing knowledge gained while solving one problem and applying it
to a different but related problem” [40], also called as “transfer of practice” [41].

Few-shot Object Detection (FSOD) [4,11,12,45,7,50,51] methods mimic this
ability, and enable detection of test classes that are disjoint from training classes.
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They perform this adaptation using a few “support” images from test classes.
Successful FSOD models must (i) find promising candidate regions-of-Interest
(RoIs) in query images; and (ii) accurately regress bounding box locations and
predict RoI classes, under large intra-class geometric and photometric variations.

To address the first requirement, approaches [45,7,50,51] use the region pro-
posal network [33]. For example, FSOD-ARPN [7], PNSD [50] and KFSOD [51]
cross-correlate query feature maps with a class prototype formed from average-
pooled (ie., first-order) features, second-order pooled representations and kernel-
pooled representations, respectively. These methods use a single class prototype
which limits their ability to leverage diverse information from different class
samples. Inspired by Transformers [38], approach [23] uses average pooling over
support feature maps to generate a vector descriptor per map. Attention mech-
anism is then used to modulate query image features using such descriptors.

The above methods rely on first- and second-order pooling, while so-called
higher-order pooling is more discriminative [17,18,15]. Thus, we propose a non-
trivial Time-rEversed diffusioN tEnsor Transformer (TENET). With TENET,
higher-order tensors undergo a time-reversed heat diffusion to condense signal on
super-diagonals of tensors, after which coefficients of these super-diagonals are
passed to a Multi-Head Attention transformer block. TENET performs second-
, third- and fourth-order pooling. However, higher-order pooling suffers from
several issues, ie., (i) high computational complexity of computing tensors with
three/more modes, (ii) non-robust tensor estimates due to the limited number
of vectors being aggregated, and (iii) tensor burstiness[17].

To this end, we propose a Tensor Shrinkage Operator (TSO) which general-
izes spectral power normalization (SPN) operators [18], such as the Fast Spectral
MaxExp operator (MaxExp(F)) [18], to higher-order tensors. As such, it can be
used to reduce tensor burstiness. Moreover, by building on the linear algebra of
the heat diffusion process (HDP) [34] and recent generalisation of HDP to SPN
operators [18], we also argue that such operators can reverse the diffusion of
signal in autocorrelation or covariance matrices, and high-order tensors, instead
of just reducing the burstiness. Using a parametrization which lets us control
the reversal of diffusion, TSO condenses signal captured by a tensor toward its
super-diagonal, preserving information along it. This super-diagonal serves as
our final representation, reducing the feature size from dr to d, making our rep-
resentation computationally tractable. Finally, shrinkage operators are known
for their ability to estimate covariances well when only a small number of sam-
ples are available [22]. To the best of our knowledge, we are the first to show
that MaxExp(F) is a shrinkage operator, and to propose TSO for orders r≥2.

To address the second requirement, FSOD-ARPN introduces a multi-relation
head that captures global, local and patch relations between support and query
objects, while PNSD passes second-order autocorrelation matrices to a similar-
ity network. However, FSOD-ARPN and PNSD do not model spatial relations
[9]. The QSAM [23] uses attention to highlight the query RoI vectors that are
similar to the set of support vectors (obtained using only first-order spatial
average pooling). Thus, we introduce a Transformer Relation Head (TRH) to
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improve modeling of spatial relations. TRH computes self-attention between
spatially-aware features and global spatially invariant first-, second- and higher-
order TENET representations of support and/or query RoI features. The second
attention mechanism of TRH performs cross-attention between Z support em-
beddings (for Z-shot if Z≥2), and a set of global representations of query RoIs.
This attention encodes similarities between query RoIs and support samples.

Our FSOD pipeline contains TENET Region Proposal Network (TENET
RPN) and the TRH, both equipped with discriminative TENET representations,
improving generation of RoI proposals and modeling of query-support relations.

Below are our contributions:

i. We propose a Time-rEversed diffusiON tEnsor Transformer, called TENET,
which captures high-order patterns (multi-way feature cooccurrences) and
decorrelates them/reduces tensor burstiness. To this end, we generalize the
MaxExp(F) operator [18] for autocorrelation/covariance matrices to higher-
order tensors by introducing the so-called Tensor Shrinkage Operator (TSO).

ii. We propose a Transformer Relation Head (TRH) that is sensitive both to
the variability between the Z support samples provided in a Z-shot scenario,
and to positional variability between support and query objects.

iii. In §4.1, we demonstrate that TSO emerges from the MLE-style minimization
over the Kullback-Leibler (KL) divergence between the input and output
spectrum, with the latter being regularized by the Tsallis entropy [2]. Thus,
we show that TSO meets the definition of shrinkage estimator whose target
is the identity matrix (tensor).

Our proposed method outperforms the state of the art on novel classes by 4.0%,
4.7% and 6.1% mAP on PASCAL VOC 2007, FSOD, and COCO respectively.

2 Related Works

Below, we review FSOD models and vision transformers, followed by a discussion
on feature grouping, tensor descriptors and spectral power normalization.

Few-shot Object Detection. A Low-Shot Transfer Detector (LSTD) [4] lever-
ages rich source domain to construct a target domain detector with few training
samples but needs to be fine-tuned to novel categories. Meta-learning-based ap-
proach [45] reweights RoI features in the detection head without fine-tuning.
Similarly, MPSR [43] deals with scale invariance by ensuring the detector is
trained over multiple scales of positive samples. NP-RepMet [46] introduces a
negative- and positive-representative learning framework via triplet losses that
bootstrap the classifier. FSOD-ARPN [7] is a general FSOD network equipped
with a channel-wise attention mechanism and multi-relation detector that scores
pair-wise object similarity in both the RPN and the detection head, inspired
by Faster R-CNN. PNSD [50], inspired by FSOD-ARPN [7], uses contraction
of second-order autocorrelation matrix against query feature maps to produce
attention maps. Single-prototype (per class) methods suffer information loss.
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Per-sample Prototype FSOD [23] uses the entire support set to form prototypes
of a class but it ignores spatial information within regions. Thus, we employ
TENET RPN and TRH to capture spatial and high-order patterns, and extract
correlations between the query image and the Z-shot support samples for a class.

Transformers in Vision. Transformers, popular in natural language process-
ing [38], have also become popular in computer vision. Pioneering works such as
ViT [9] show that transformers can achieve the state of the art in image recogni-
tion. DETR [3] is an end-to-end object detection framework with a transformer
encoder-decoder used on top of backbone. Its deformable variant [52] improves
the performance/training efficiency. SOFT [29], the SoftMax-free transformer ap-
proximates the self-attention kernel by replacing the SoftMax function with Ra-
dial Basis Function (RBF), achieving linear complexity. In contrast, our TENET
is concerned with reversing the diffusion of signal in high-order tensors via the
shrinkage operation, with the goal of modeling spatially invariant high-order
statistics of regions. Our attention unit, so-called Spatial-HOP in TRH, also
uses RBF to capture correlations of between spatial and high-order descriptors.

Multi-path and Groups of Feature Maps. GoogleNet [36] has shown that
multi-path representations (several network branches) lead to classification im-
provements. ResNeXt [44] adopts group convolution [20] in the ResNet bot-
tleneck block. SK-Net [25], based on SE-Net [10], uses feature map attention
across two network branches. However, these approaches do not model feature
statistics. ReDRO [30] samples groups of features to apply the matrix square
root over submatrices to improve the computational speed. In contrast, TENET
forms fixed groups of features to form second-, third- and fourth-order tensors
(simply using groups of features to form second-order matrices is not effective).

Second-order Pooling (SOP). Region Covariance Descriptors for texture [37]
and object recognition [17] use SOP. Approach [19] uses spectral pooling for fine-
grained image classification, whereas SoSN [48] and its variants [47,49] leverage
SOP and element-wise Power Normalization (PN) [17] for end-to-end few-shot
learning. In contrast, we develop a multi-object few-shot detector. Similarly to
SoSN, PNSD [50] uses SOP with PN as representations which are passed to the
detection head. So-HoT [14] that uses high-order tensors for domain adaptation
is also somewhat related to TENET but So-HoT uses multiple polynomial kernel
matrices, whereas we apply TSO to achieve decorrelation and shrinkage. TENET
without TSO reduces to polynomial feature maps and performs poorly.

Power Normalization (PN). Burstiness is “the property that a given visual
element appears more times in an image than a statistically independent model
would predict”. PN [16] limits the burstiness of first- and second-order statistics
due to the binomial PMF-based feature detection factoring out feature counts
[16,17,19]. Element-wise MaxExp pooling [16] gives likelihood of “at least one
particular visual word being present in an image”, whereas SigmE pooling [19] is
its practical approximation. Noteworthy are recent Fast Spectral MaxExp oper-
ator, MaxExp(F) [18], which reverses the heat diffusion on the underlying loopy
graph of second-order matrix to some desired past state [34], and Tensor Power-
Euclidean (TPE) metric [15]. TPE alas uses the Higher Order Singular Value
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Decomposition [21], which makes TPE intractable for millions of region propos-
als per dataset. Thus, we develop TENET and TSO, which reverses diffusion on
high-order tensors by shrinking them towards the super-diagonal of tensor.

3 Background

Below, we detail notations and show how to calculate multiple higher-order
statistics and Power Normalization, followed by revisiting the transformer block.

Notations. Let x ∈ Rd be a d-dimensional feature vector. IN stands for the
index set {1, 2, ..., N}. We define a vector of all-ones as 1=[1, ..., 1]

T
. Let X (r) =

↑⊗rx denote a tensor of order r generated by the r-th order outer-product of x,

and X (r) ∈ Rd×d...×d. Typically, capitalised boldface symbols such as Φ denote
matrices, lowercase boldface symbols such as ϕ denote vectors and regular case
such as Φi,j , ϕi, n or Z denote scalars, e.g ., Φi,j is the (i, j)-th coefficient of ϕ.

High-order Tensor Descriptors (HoTD). Below we formalize HoTD [14].

Proposition 1. Let Φ ≡ [ϕ1, ...,ϕN ] ∈ Rd×N and Φ′≡ [ϕ′
1, ...,ϕ

′
M ] ∈ Rd×M be

feature vectors extracted from some two image regions. Let w ∈ RN
+ , w′ ∈ RM

+

be some non-negative weights and µ,µ′ ∈Rd be the mean vectors of Φ and Φ′,
respectively. A linearization of the sum of polynomial kernels of degree r,

〈
M(r)(Φ;w,µ), M(r)(Φ′;w′,µ′)

〉
=

1

NM

N∑
n=1

M∑
m=1

wr
nw

′r
m ⟨ϕn−µ,ϕ′

m−µ′⟩r, (1)

yields the tensor feature map

M(r)(Φ;w,µ) =
1

N

N∑
n=1

wr
n ↑⊗r (ϕn−µ) ∈ Rd×d...×d. (2)

In our paper, we set w=w′=1 and µ=µ′=0, whereas orders r=2, 3, 4.

(Eigenvalue) Power Normalization ((E)PN). For second-order matrices,
MaxExp(F), a state-of-the-art EPN [18], is defined as

g(λ; η)=1− (1− λ)η (3)

on the ℓ1-norm normalized spectrum from SVD (λi :=λi/(ε+
∑

i′ λi′)), and on
symmetric positive semi-definite matrices as

ĜMaxExp(M ; η)=I−(I−M)
η
, (4)

whereM is a trace-normalized matrix, ie.,M :=M/(ε+Tr(M)) with ε≈1e−6,
and Tr(·) denotes the trace. The time-reversed heat diffusion process is adjusted
by integer η ≥ 1. The larger the value of η is, the more prominent the time
reversal is. ĜMaxExp is followed by the element-wise PN, called SigmE [18]:

GSigmE(p; η
′) =2/(1 + e−η′p)− 1, (5)

where p takes each output coefficient of Eq. (4), η′≥1 controls detecting feature
occurrence vs. feature counting trade-off.
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Transformers. An architecture based on blocks of attention and MLP layers
forms a transformer network [38]. Each attention layer takes as input a set of
query, key and value matrices, denoted Q, K and V , respectively. Let Q ≡
[q1, ...,qN ] ∈ Rd×N , K ≡ [k1, ...,kN ] ∈ Rd×N , and V ≡ [v1, ...,vN ] ∈ Rd×N ,
where N is the number of input feature vectors, also called tokens, and d is the
channel dimension. A generic attention layer can then be formulated as:

Attention(Q,K,V ) = α
(
γ(Q,K)

)
V T . (6)

Self-attention is composed of α(γ(·, ·)), α(·) is a non-linearity and γ(·, ·) computes
similarity. A popular choice is SoftMax with the scaled dot product [38]:

γ(·) = SoftMax(·) and γ(Q,K) =
QTK√

d
. (7)

Note the LayerNorm and residual connections are added at the end of each block.
To facilitate the design of linear self-attention, approach [29] introduces a

SoftMax-free transformer with the dot product replaced by the RBF kernel:

γ = Exp(·) and γ(Q,K) = − 1

2σ2

[
∥qi − kj∥22

]
i,j∈IN

, (8)

where [·] stacks distances into a matrix, σ2 is the kernel variance set by cross-
validation, and qi and kj are ℓ2-norm normalized.

The Multi-Head Attention (MHA) layer uses T attention units whose outputs
are concatenated. Such an attention splits input matrices Q, K, and V along
their channel dimension d into T groups and computes attention on each group:

MHA(Q,K,V ) = [A1, . . . ,AT ], (9)

where [·] performs concatenation along the channel mode, the mth head is Am=

Attention(Qm,Km,Vm), and Qm∈R d
T ×N , Km∈R d

T ×N , and Vm∈R d
T ×N .

4 Proposed Approach

Given a set of Z support crops {Xz}z∈IZ
and a query imageX∗ per episode, our

approach learns a matching function between representations of query RoIs and
and support crops. Fig. 1 shows our pipeline comprised of three main modules:

i. Encoding Network (EN) extracts feature map Φ ∈ Rd×N per image (of
N=W×H spatial size) from query and support images via ResNet-50.

ii. TENET RPN extracts RoIs from the query image and computes embed-
dings for the query RoIs and the support crops. Improved attention maps are
obtained by T-Heads Attention (THA) that operates on TENET descriptors.

iii. Transformer Relation Head captures relations between query and sup-
port features using self- and cross-attention mechanisms. This head produces
representations for the classifier and bounding-box refinement regression loss.

Next, we describe TENET RPN, followed by the Transformer Relation Head.
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Fig. 1: Our pipeline. (top) We pass ground truth support crops {X z}z∈IZ
for

Z-shot problem and a query image X ∗ to the Encoding Network (EN). The re-
sulting convolutional feature maps, {Φz}z∈IZ

for support and Φ∗ for query, are
passed to the TENET-RPN module to produce a set of B descriptors {Φ∗

b}b∈IB

for B Region Proposals (RP a.k.a. RoIs) of query image, and high-order pooled
(HOP) representations for both support crops {ψz}z∈IZ

and query image RoIs
{ψ∗

b}b∈IB
. TENET contains HOP units which compute high-order tensor de-

scriptors and then apply a novel tensor shrinkage operator to them, yielding
spatially orderless HOP representations. Sets of features {ψz}z∈IZ

and {ψ∗
b}b∈IB

are then passed to the Transformer Relation Head (TRH), along with the con-
volutional features {Φz}z∈IZ

and {Φ∗
b}b∈IB

. The TRH consists of Z-shot and
Spatial-HOP transformer heads for measuring similarities across support regions
and query proposals, and refining the localization of target objects, respectively.
(bottom) Details of HOP, “Orderless FO, Spatial, Orderless HO”, Z-shot T-RH
and Spatial-HOP T-RH blocks. See §4.3 for details.

4.1 Extracting representations for support and query RoIs

Fig. 1 (top) shows our TENET RPN that produces embeddings and query RoIs.
Central to this module is our HOP unit that produces Higher-order Tensor
Descriptors (HoTDs). HOP splits features along the channel mode into multiple
groups of feature maps, from which second-, third- and fourth- order tensors are
aggregated over desired regions. HoTDs use a generalization of the MaxExp(F)
to higher-order tensors, called the Tensor Shrinkage Operator (TSO).

Tensor Shrinkage Operator. Ledoit and Wolf [22] define autocorrelation/
covariance matrix estimation as a trade-off between the sample matrix M and
a highly structured operator F , using the linear combination (1−δ)M+δF . For
symmetric positive semi-definite matrices and tensors, one can devise a convex
shrinkage operator by minimizing some divergence d(λ,λ′) between the source
and target spectra, where λ′ is regularized by Ω(λ′) with weight δ≥0:

λ∗=argmin
λ′≥0

d(λ,λ′) + δΩ(λ′). (10)
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Below we derive the TSO as a generalization of MaxExp(F)1.

With ĜTSO(·) we extract representations ψ̂r from HoTDs M(r):

ĜTSO

(
M(r); η

)
=Ir−

(
Ir −M(r)

)η

, (11)

ψ̂r=Diag
(
ĜTSO

(
M(r); ηr

))
, (12)

ψr=GSigmE

(
ψ̂r; η

′
r

)
, (13)

where Diag(·) extracts the super-diagonal of tensor. The identity tensor
Ir of order r is defined such that I1,...,1 = I2,...,2...= Id,...,d = 1 and
Ii1,...,ir =0 if ij ̸= ik and j ̸=k, j, k∈Ir.

Theorem 1. Let λ be the ℓ1-norm normalized spectrum, as in Eq. (3).
Then g(λ; η)=1 − (1 − λ)η is a shrinkage operator as it is a solution

to Eq. (10) if δ = ηt1/η

s (1 − 1
η ), and the Kullback-Leibler divergence

and the Tsallis entropy are substituted for the divergence term d and
the regularization term Ω, respectively. In the above theorem, λ ∈ Rd

+,
s=d−1, t=d−t′ and t′>0 is the trace of g(λ; η).

Proof. Let d(λ,λ′) =DKL

(
λ◦∥λ◦′)=−

( ∑
i∈Id

λ◦
i log λ

◦
i
′)+( ∑

i∈Id

λ◦
i log λ

◦
i

)
, where

λ◦= 1−λ
s and λ◦′= 1−λ′

t are complements of λ and λ′ normalized by s=d−1 and
t=d−t′ to obtain normalized distributions to ensure valid use of the Kullback-
Leibler divergence and the Tsallis entropy. Let Ω(λ′;α) = 1

α−1 (1−
∑
i∈Id

λ◦
i
′α).

Define f(λ,λ′)=−
( ∑
i∈Id

λ◦
i log λ

◦
i
′)+( ∑

i∈Id

λ◦
i log λ

◦
i

)
+ 1

α−1 (1−
∑
i∈Id

λ◦
i
′α) (following

Eq. (10)) which we minimize w.r.t. λ′ by computing ∂f
∂λ′

i
=0, that is,

∂f

∂λ′
i

=0 ⇒ λ′
i=1−t

( η

δs

)η

(1−1/η)η(1−λi)
η, (14)

where 1
α =η. Solving t

(
η
δs

)η
(1− 1

η )
η=1 for δ completes the proof.

Theorem 2. The highly structured operator F (target of shrinkage) equals I.

Proof. Notice lim
η→∞

1−(1−λi)
η =1 if λ ̸=0 is the ℓ1-norm normalized spectrum

from SVD, ie., UλUT=M≽0 with λi :=λi/(
∑

i′ λi′+ε), ε>0. Thus, UUT=I.

Note Ir−(Ir −M)
η→Ir if η→∞. Thus, for sufficiently large 1≪η≪∞,

the diffused heat reverses towards the super-diagonal, where the majority of the
signal should concentrate. Thus, we limit the number of coefficients of feature
representations by extracting the super-diagonals from the TSO-processed M(r)

as in Eq. 12, where r is the order of HoTD M. In our experiments, r=2, 3, 4.

1 For r=2, Eq. (12) yields Diag(I−(I−M)η2). Diag(Sqrtm(M)) is its approximation.
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Algorithm 1 Tensor Shrinkage Operator with Exponentiation by Squaring, left
part for even orders and right part for odd orders r.
Input: M, η≥1, r=2, 4, ...

1: M∗
1=Ir−M, n=int(η), t=1, q=1

2: while n ̸=0:
3: if n&1:
4: if t>1: Gt+1=Gt×1,...,r/2M∗

q ,

5: else: Gt+1=M∗
q

6: n←n−1, t← t+1

7: n← int(n/2)

8: if n>0:
9: M∗

q+1= M∗
q ×1,...,r/2 M∗

q

10: q←q+1

Output: ĜTSO(M)=Ir−Gt

Input: M, η= 30, 31, 32, ..., r=3, 5, ...

1: M∗
1=Ir−M, n=int(η), q=1

2: while n ̸=0:
3: n← int(n/3)

4: if n>0:
5: M∗

q+1= M∗
q ×1,...,⌊r/2⌋ M∗

q

6: ×1,...,⌈r/2⌉M∗
q

7: q←q+1

Output: ĜTSO(M)=Ir−M∗
q

As super-diagonals contain information obtained by multiplying η times the
complement 1−λi (spectral domain), TSO can be seen as η−1 aggregation steps

along the tensor product mode(s). THus, we pass ψ̂r via the element-wise SigmE
from Eq. (5) (as in Eq. (13)) to detect the presence of at least one feature being

detected in ψ̂r after such an aggregation. For brevity, we drop subscript r of ψr.

Complexity. For integers η≥ 2 and even orders r≥ 2, computing η−1 tensor-
tensor multiplications

(
Ir−M(r)

)η
has the complexity O

(
d

3
2 rη

)
. For odd orders

r ≥ 3, due to alternations between multiplications in
⌊
r
2

⌋
and

⌈
r
2

⌉
modes, the

complexity is O
(
d⌊

r
2⌋d2⌈

r
2⌉η

)
≈O

(
d

3
2 rη

)
. Thus, the complexity of Eq. (11) w.r.t.

integer η≥2 scales linearly. However, for even orders r, one can readily replace(
Ir − M(r)

)η
with exponentiation by squaring [1], whose cost is log(η). This

readily yields the sublinear complexity O
(
d

3
2 r log(η)

)
w.r.t. η.

Implementation of TSO. Algorithm 1 shows fast TSO for even/odd orders r.
We restrict the odd variant to r=30, 31, 32, ... for brevity. Finally, we note that
matrix-matrix and tensor multiplications with cuBLAS are highly parallelizable
so the d

3
2 r part of complexity can be reduced in theory even to log(d).

TENET-RPN. To extract query RoIs, we firstly generate a set Z of TSO
representations Ψ ≡ {ψz}z∈IZ

from the support images, with Z = |Z|. We then
perform cross-attention between Ψ ∈ Rd×Z and theN feature vectorsΦ∗∈ Rd×N

extracted from the query image. The attention input Q is then generated from
Φ∗, while K and V are both generated from Ψ . The output of the transformer
block in Eq. 6 is fed into an RPN layer to output a set B of B = |B| query RoIs.

Query RoIs are represented by spatially ordered features {Φ∗
b}b∈IB

and TSO
orderless features {ψ∗

b}b∈IB
, passed to the Transformer Relation Head.

4.2 Transformer Relation Head

TRH, in Fig. 1, models relations between support crops and query RoIs. TSO
representations are derived from features of layer 4 of ResNet-50, leading to a
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channel dimension d = 1024. Spatially ordered representations of support fea-
tures {Φz ∈ R2d×N}z∈IZ

and query RoIs {Φ∗
b ∈ R2d×N}b∈IB

are both extracted
from layer 5 of ResNet-50, leading to a channel dimension 2d = 2048.

They are then fed into 2 different transformers: (i) a Z-shot transformer
head, which performs cross-attention between globally-pooled representations
of the query images and support images; and (ii) a Spatial-HOP transformer
head, which performs self-attention between spatially ordered representations
and spatially orderless high-order representations for a given image.

Z-shot transformer head consists of a cross-attention layer formed with:Q
K
V

=

 [q1, ...,qB ]
[k1, ...,kZ ]
[v1, ...,vZ ]

 where

qb

kz

vz

=

W (q)
(
ϕ̄∗

b +W
(p)ψ∗

b

)
W (k)

(
ϕ̄z +W

(p)ψz

)
W (v)

(
ϕ̄z +W

(p)ψz

)
 . (15)

Moreover, ϕ̄∗
b and ϕ̄z are average-pooled features 1

NΦ
∗
b1 and 1

NΦz1, respec-

tively. The matrices W (q) ∈ R2d×2d, W (k) ∈ R2d×2d, W (v) ∈ R2d×2d, and
W (p) ∈ R2d×d is a linear projection mixing spatially orderless TSO representa-
tions with spatially ordered representations. Thus, each attention query vector
qb combines the extracted spatially orderless TSO representations with spatially
ordered representations for a given query RoI. Similarly, each key vector kz and
value vector vz combine such two types of representations for a support crop.

Spatial-HOP transformer head consists of a layer that performs self-attention
on spatially orderless TSO representations and spatially ordered representations,
extracted either from Z support crops, or B query RoIs. Below we take one sup-
port crop as an example. For the setZ, we compute “Spatial”, a spatially ordered
Z-averaged representation Φ† = 1

Z

∑
z∈IZ

Φz ∈ R2d×N . We also compute HO, a

spatially orderless High-Order Z-pooled representation ψ† = 1
Z

∑
z∈Iz

ψz ∈ Rd.

We split Φ† along the channel mode of dimension 2d to create two new matri-
ces Φ†u ∈ Rd×N and Φ†l ∈ Rd×N . We set Φ†l = [ϕ†l

1 , ...,ϕ
†l
N ] ∈ Rd. Also, we

form FO (from Φ†u), a spatially orderless First-Order Z-pooled representation.
Self-attention is then performed over the matrix of token vectors:

T = [ϕ†l
1 , ...,ϕ

†l
N , ϕ̄†u,W (g)ψ†], (16)

whereW (g) ∈ Rd×d a linear projection for HO. T is projected onto the query, key
and value linear projections. Spatial-HOP attention captures relations among
spatially-aware first-order and spatially orderless high-order representations. The
outputs of Z-shot and Spatial-HOP transformer heads are combined and fed into
the classifier/bounding-box regressor. See §B of Suppl. Material for details.

4.3 Pipeline Details (Figure 1 (bottom))

HOP unit uses ⊚ to split the channel mode into groups (e.g ., 2:1:1 split means

two parts of the channel dimension are used to form M(2), one part to form
M(3), and one part to form M(4)). TSOs with parameters η2= ...= ηr = η are
applied for orders r=2, ..., r, and diagonal entries are extracted from each tensor
and concatenated by ⊙. Element-wise SigmE with η′2= ...=η′r=η′ is applied.
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“Orderless FO, Spatial, Orderless HO” block combines the First-Order
(FO), spatial and High-Order (HO) representations. Operator “Z-avg” performs
average pooling along Z-way mode, operator “Sp-avg” performs average pooling
along the spatial modes of feature maps, operator ⊚ simply splits the channel
mode into two equally sized groups (each is half of the channel dimension), and
operator ⊛ performs concatenation of FO, spatial and HO representations along
the spatial mode of feature maps, e.g ., we obtain N+2 fibers times 1024 channels.

Z-shot T-RH is a transformer which performs attention on individual Z-shots.
The spatial representation Φ is average pooled along spatial dimensions by “Sp-
avg” and combined with high-order Ψ (passed by a FC layer) via addition ⊕.
Another FC layer follows and subsequently the value, key and query matrices
are computed, an RBF attention formed. Operator • multiplies the value matrix
with the RBF matrix. Head is repeated T times, outputs concatenated by ⊙.

Spatial-HOP T-RH takes inputs from the “Orderless FO, Spatial, Orderless
HO” block, and computes the value, key and query matrices. The attention
matrix (RBF kernel) has (N+2)×(N+2) size, being composed of spatial, FO-
spatial and HO-spatial attention. After multiplying the attention matrix with the
value matrix, we extract the spatial, FO and HO representations. Support and
query first-order representations (FO) (and high-order representations (HO))
are element-wisely multiplied by • (multiplicative relationship). Finally, support
and query spatial representations use the subtraction operator ⊖. After the
concatenation of FO and HO relational representations by⊙, passing via an MLP
(FC+ReLU+ FC), and concatenation with the spatial relational representations,
we get one attention block, repeated T times.

5 Experiments

Datasets and Settings . For PASCAL VOC 2007/12 [6], we adopt the 15/5
base/novel category split setting and use training/validation sets from PASCAL
VOC 2007 and 2012 for training, and the testing set from PASCAL VOC 2007
for testing, following [11,7,50,23]. For MS COCO [28], we follow [45], and adopt
the 20 categories that overlap with PASCAL VOC as the novel categories for
testing, whereas the remaining 60 categories are used for training. For the FSOD
dataset [7], we split its 1000 categories into 800/200 for training/testing.

Implementation Details. TENET uses ResNet-50 pre-trained on ImageNet
[5] and MS COCO [28]. We fine-tune the network with a learning rate of 0.002
for the first 56000 iterations and 0.0002 for another 4000 iterations. Images
are resized to 600 pixels (shorter edge) and the longer edge is capped at 1000
pixels. Each support image is cropped based on ground-truth boxes, bilinearly
interpolated and padded to 320×320 pixels. We set, via cross-validation) SigmE
parameter η′=200 and TSO parameters η2 = η3 = η4 = 7. We report standard
metrics for FSOD, namely mAP , AP , AP50 and AP75.
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Table 1: Evaluations (mAP %) on three splits of the VOC 2007 testing set.

Method/Shot
Split 1 Split 2 Split 3 Mean

1 3 5 10 1 3 5 10 1 3 5 10 1 3 5 10

FRCN ICCV12 11.9 29.0 36.9 36.9 5.9 23.4 29.1 28.8 5.0 18.1 30.8 43.4 7.6 23.5 32.3 36.4
FR ICCV19 14.8 26.7 33.9 47.2 15.7 22.7 30.1 39.2 19.2 25.7 40.6 41.3 16.6 25.0 34.9 42.6
Meta ICCV19 19.9 35.0 45.7 51.5 10.4 29.6 34.8 45.4 14.3 27.5 41.2 48.1 14.9 30.7 40.6 48.3
FSOD CVPR20 29.8 36.3 48.4 53.6 22.2 25.2 31.2 39.7 24.3 34.4 47.1 50.4 25.4 32.0 42.2 47.9
NP-RepMet NeurIPS20 37.8 41.7 47.3 49.4 41.6 43.4 47.4 49.1 33.3 39.8 41.5 44.8 37.6 41.6 45.4 47.8
PNSD ACCV20 32.4 39.6 50.2 55.1 30.2 30.3 36.4 42.3 30.8 38.6 46.9 52.4 31.3 36.2 44.5 49.9
MPSR ECCV20 41.7 51.4 55.2 61.8 24.4 39.2 39.9 47.8 35.6 42.3 48.0 49.7 33.9 44.3 47.7 53.1
TFA ICML20 39.8 44.7 55.7 56.0 23.5 34.1 35.1 39.1 30.8 42.8 49.5 49.8 31.4 40.5 46.8 48.3
FSCE CVPR21 44.2 51.4 61.9 63.4 27.3 43.5 44.2 50.2 22.6 39.5 47.3 54.0 31.4 44.8 51.1 55.9
CGDP+FRCNCVPR21 40.7 46.5 57.4 62.4 27.3 40.8 42.7 46.3 31.2 43.7 50.1 55.6 33.1 43.7 50.0 54.8
TIP CVPR21 27.7 43.3 50.2 56.6 22.7 33.8 40.9 46.9 21.7 38.1 44.5 50.9 24.0 38.4 45.2 52.5
FSODup ICCV21 43.8 50.3 55.4 61.7 31.2 41.2 44.2 48.3 35.5 43.9 50.6 53.5 36.8 45.1 50.1 54.5
QSAM WACV22 31.1 39.2 50.7 59.4 22.9 32.1 35.4 42.7 24.3 35.0 50.0 53.6 26.1 35.4 45.4 51.9

TENET (Ours) 46.7 55.4 62.3 66.9 40.3 44.7 49.3 52.1 35.5 46.0 54.4 54.6 40.8 48.7 55.3 57.9

Table 2: Evaluations on the MS COCO minival set (2a) and FSOD testset (2b).
Shot Method AP AP50 AP75

10

LSTD AAAI18 3.2 8.1 2.1
FR ICCV12 5.6 12.3 4.6
Meta ICCV19 8.7 19.18 6.6
MPSR ECCV20 9.8 17.9 9.7
FSOD CVPR20 11.1 20.4 10.6
PNSD ACCV20 12.3 21.7 11.7
TFA ICML20 9.6 10.0 9.3
FSCE CVPR21 10.7 11.9 10.5

CGDP+FRCN CVPR21 11.3 20.3 11.5
FSODup ICCV21 11.6 23.9 9.8
QSAM WACV22 13.0 24.7 12.1

TENET (Ours) 19.1 27.4 19.6

(a)

Shot Method AP50 AP75

5

LSTD
(FRN) AAAI18 23.0 12.9

LSTD AAAI18 24.2 13.5

FSOD CVPR20 27.5 19.4

PNSD ACCV20 29.8 22.6

QSAM WACV22 30.7 25.9

TENET (Ours) 35.4 31.6

(b)

5.1 Comparisons with the State of the Art

PASCAL VOC 2007/12. We compare our method to QSAM[23], FSODup

[42], CGDP+FRCN [26], TIP [24], FSCE [35], TFA [39], Feature Reweighting
(FR) [11], LSTD [4], FRCN [33], NP-RepMet [46], MPSR[43], PSND [50] and
FSOD [7]. Table 1 shows that our TENET outperforms FSOD by a 7.1–15.4%
margin. For the 1- and 10-shot regime, we outperform QSAM [23] by ∼14.7%.

MS COCO. Table 2a compares TENET with QSAM[23], FSODup [42], CGDP+
FRCN [26], TIP [24], FSCE [35], TFA [39], FR [11], Meta R-CNN [45], FSOD
[7] and PNSD[50] on the MS COCO minival set (20 novel categories, 10-shot
protocol). Although MS COCO is more challenging in terms of complexity and
the dataset size, TENET boosts results to 19.1%, 27.4% and 19.6%, surpassing
the SOTA method QSAM by 6.1%, 2.7% and 7.5% on AP , AP50 and AP75.

FSOD. Table 2b compares TENET (5-shot) with PNSD [50], FSOD [7], LSTD
[4] and LSTD (FRN [33]). We re-implement BD&TK, modules of LSTD, based
on Faster-RCNN for fairness. TENET yields SOTA 35.4% AP50 and 31.6% AP75.
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Table 3: Results on VOC2007 testset for applying TENET in RPN or TRH (3a,
top panel of 3b). TRH ablation shown in bottom panel of 3b.

r dim.
split

Shot(Novel) Shot(Base) Speed

2 3 4 5 10 5 10 (img/ms)

✓ 56.5 64.2 71.7 75.5 32

✓ 55.7 63.2 67.0 72.1 69

✓ 51.4 58.9 68.7 74.8 78

✓ ✓ 3:1 58.3 63.2 69.3 75.1 42

✓ ✓ 3:1 56.1 62.4 70.8 75.4 68

✓ ✓ 2:2 51.8 61.7 68.1 73.6 71

✓ ✓ ✓

6:1:1 53.6 62.7 69.4 72.8

5:2:1 62.3 66.9 73.8 77.9 59

5:1:2 53.9 63.1 69.7 73.3

4:2:2 61.4 65.0 70.4 74.9

4:3:1 59.1 63.6 71.8 75.2

4:1:3 61.0 64.1 68.9 72.5

(a)

RPN TRH Shot(Novel) Shot(Base)

r 5 10 5 10

a 1 1 53.4 61.8 64.9 72.1

b 2,3,4 1 57.2 63.7 68.8 76.6

c 2,3,4 2,3,4 61.0 65.4 71.3 77.3

d 2,3,4 1,2,3,4 62.3 66.9 73.8 78.2

TRH Shot(Novel) Shot(Base)

Z-shot Spatial-HOP 5 10 5 10

✓ 58.5 63.2 69.3 75.1

✓ 61.0 65.8 71.7 76.5

✓ ✓ 62.3 66.9 73.8 78.2

(b)

5.2 Hyper-parameter and ablation analysis

TENET. Table 3a shows that among orders r=2, r=3 and r=4, variant r=2
is the best. We next consider pairs of orders, and the triplet r=2, 3, 4. As the
number of tensor coefficients grows quickly w.r.t. r, we split the 1024 channels
into groups, e.g ., r= 2, 3. A 3:1 split means that second- and third-order tensors
are built from 768 and 256 channels (768+256=1024). We report only the best
splits. For pairs of orders, variant r=2, 3 was the best. Triplet r=2, 3, 4, the best
performer, outperforms r=2 by 5.8% and 2.7% in novel classes (5- and 10-shot),
and 2.1% and 2.4% in base classes. As all representations are 1024-dimensional,
we conclude that multi-order variants are the most informative.

TSO. Based on the best channel-wise splits in Table 3a, we study the impact of
ηr (shrinkage/decorrelation) of TSO to verify its effectiveness. Figure 2a shows
mAP w.r.t. the individual η2, η3 and η4 for r = 2, r = 3 and r = 4. We then
investigate the impact of ηr on pairwise representations, where we set the same
ηr for pairwise variants, e.g ., η2 = η3. Again, the same value of ηr is used for
triplet r=2, 3, 4. Note that for ηr=1, TSO is switched off and all representations
reduce to the polynomial feature maps in So-HoT [14]. As shown in Figure 2a,
TSO is very beneficial (∼ 5% gain for triplet r= 2, 3, 4 over not using TSO).

TRH. Below we investigate the impact of Z-shot and Spatial-HOP T-RHs on
results. Table 3b (bottom) shows that both heads are highly complementary.

Other hyperparameters. We start by varying σ of the RBF kernel from 0.3 to
3. Fig 2b shows that σ=0.5 gives the best result. We now fix σ and investigate
the impact of varying the number of heads used in T-Heads Attention (TA).
Table 4a shows best performance with TA= 4. Lastly, we vary the number of
TENET blocks (TB). Table 4b shows that results are stable especially if TB ≥ 2.
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(a) (b)

Fig. 2: mAP (VOC2007 dataset, novel classes, 10-shot) w.r.t. varying ηr in TSO
(Fig. 2a) and the σ of RBF kernel in self-attention (Fig. 2b).

Table 4: Effect of varying (a) group within MHA in Tab. 4a and (b) TENET
block in Tab. 4b on PASCAL VOC 2007 (5/10-shot, novel classes). When varying
TENET block, group number is fixed to 4 (best value).

TA 1 2 4 8 16 32 64

Shot
(Novel)

5 58.3 59.1 61.8 60.5 58.4 58.5 56.0

10 61.2 62.8 65.8 64.2 61.2 61.7 60.4

(a)

TB 1 2 3 4 5

Shot
(Novel)

5 61.8 62.3 62.1 61.8 61.9

10 65.8 66.9 66.4 66.1 66.4

(b)

Unless otherwise noted, TA = 2 and TB = 4, respectively, on VOC dataset. See
§C of Suppl. Material for more results on FSOD and MS COCO.

Impact of TENET on RPN and TRH. Table 3b shows ablations w.r.t.
TENET variants in: 1) either RPN or TRH, or 2) both RPN and TRH. Com-
paring results for settings a,b, and c confirms that using second-, third- and
fourth-orders simultaneously benefits both RPN and TRH, achieving 3.8%/1.9%
as well as 3.8%/1.8% improvement on novel classes over the first-order-only vari-
ant. Results for settings c and d show that TRH encodes better the information
carried within regions if leveraging both first- and higher-order representations.

6 Conclusions

We have proposed TENET, which uses higher-order tensor descriptors, in combi-
nation with a novel Tensor Shrinkage Operator, to generate highly-discriminative
representations with tractable dimensionality. We use these representations in
our proposed Transformer Relation Head to dynamically extract correlations be-
tween query image regions and support crops. TENET has heightened robustness
to large intra-class variations, leading to SOTA performance on all benchmarks.
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