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Appendix

The content of Appendix is summarized as follows: 0) in Sec. A, we discuss
the justification of using ViT in few-shot learning scenarios; 1) in Sec. B, we
list the network architectures we used in the experiment; 2) in Sec. C, we state
implementation and training details to ensure that our SUN can be reproduced;
3) in Sec. D and Sec. E, we introduce the detail of SUN with FEAT (SUN-F)
and DeepEMD (SUN-D), then demonstrating its performance; 4) in Sec. F, we
conduct more ablation study to analyze other components of SUN; 5) and in
Sec. G, we conduct t-SNE visualization to qualitatively evaluate ViT with SUN,
thus demonstrating the effectiveness of SUN.

Table 1. Detailed layer specification of the ViTs we used [11,19,38,7] for few-shot clas-
sification. All ViTs are scaled to the size with ∼12.5M parameters such that they own
approximately same parameter number with the widely-used ResNet-12. Specifically,
k× k means convolution operation with kernel size of k, d means channel dimension, s
means stride, “res” means the residual connection from the input via a 3×3 convolution
with s=2, MaxPool means max pooling operation, MHSA means self-attention layer,
S-MHSA means shifted self-attention layer proposed by [19], FFN means feed-forward
layer and C-FFN means FFN with 3× 3 depthwise convolution. We strictly follow the
corresponding official implementation to build these ViTs. And to simplify the layer
description, we omit normalization layers in the table.

Stage Layers LV-ViT [11] Swin Transformer [19] NesT [38] Visformer [7]

1

Patch
Embedding

3 × 3, d=96, s=2

3 × 3, d=96

3 × 3, d=96 (+res)

MaxPool, 2x2

4 × 4, d=384, s=4

3 × 3, d=64, s=2

3 × 3, d=64

3 × 3, d=144 (+res)

MaxPool, 2x2

3 × 3, d=64, s=2

3 × 3, d=64

3 × 3, d=128 (+res)

MaxPool, 2x2

3 × 3, d=32, s=2

3 × 3, d=32

3 × 3, d=128 (+res)

MaxPool, 2x2

ViT
Blocks

MHSA, d=384

FFN, ratio=3

MHSA, d=144

S-MHSA, d=144

FFN, ratio=4

MHSA, d=384

FFN, ratio=4

MHSA, d=384

C-FFN, ratio=4

Blocks Num 8 2 2 4

2

Patch
Embedding

/ 2 × 2, d=288, s=2
3 × 3, d=384

MaxPool, 2 × 2
2 × 2, d=256, s=2

ViT
Blocks

/

MHSA, d=288

S-MHSA, d=288

FFN, ratio=4

MHSA, d=384

FFN, ratio=4

MHSA, d=256

C-FFN, ratio=4

Blocks Num / 3 2 2

3

Patch
Embedding

/ 2 × 2, d=576, s=2
3 × 3, d=512

MaxPool, 2 × 2
2 × 2, d=512, s=2

ViT
Blocks

/

MHSA, d=576

S-MHSA, d=576

FFN, ratio=4

MHSA, d=512

FFN, ratio=4

MHSA, d=512

C-FFN, ratio=4

Blocks Num / 2 2 3

Parameters (M) 12.6 12.6 12.8 12.5
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A Why Using ViT for Few-Shot Learning

The justification of using ViTs for few-shot learning are two-fold: a) though ViT
cannot well handle few-shot learning as CNN now, it has three adantages over
CNN. 1) ViTs often achieve better performance than CNNs of the same model
size when training data is at moderate-scale; 2) ViTs exhibit great potential
to unify vision and language models, while existing CNNs mainly work well on
vision tasks; 3) ViTs are highly parallelized, and can be more ficiently trained
and tested than CNNs. So we hope to build a few-shot ViT training framework to
release the above powers in few shot learning. Meanwhile, b) our SUN framework
uses few-shot learning as an example to prove that ViTs can indeed perform well
on such scenarios.

B Network Architecture

We evaluate our SUN on four different ViTs, i.e., LV-ViT [11] (standard ViT),
Swin Transformer [19] (shifting-window ViT), Visformer [7] (CNN-enhanced
ViT) and NesT [38] (locality-enhanced ViT), which cover most of existing ViT
types. For a fair comparison, we scale the depth and width of these ViTs such
that their model sizes are similar to ResNet-12 [9] (∼12.5M parameters) which
is the most commonly used architecture and achieves (nearly) state-of-the-art
performance on few-shot classification tasks.

To make our SUN easier to reproduce, we list the network architectures of
ViTs we used in this paper. The detailed layer specification of these ViTs is
shown as Table . Specifically, the single stage LV-ViT includes a three-layer
overlapped patch embedding with residual connection and eight stacking stan-
dard transformer encoder blocks. Given input image with 80 × 80 resolution,
it obtains a 384-dimension feature embedding. And for the multi-stage NesT,
which is used in the whole Sec. 5, consists of three stages and each stage con-
tains two transformer encoder layers. Given input image with 80×80 resolution,
it obtains a 512-dimensional feature embedding.

C More Training Implementation Details

C.1 Datasets Details

Following [5,6,39], we evaluate ViTs with SUN on three widely used few-shot
benchmarks, i.e., CIFAR-FS [3], miniImageNet [31] and tieredImageNet [26]
datasets.

miniImageNet [31] contains 100 different categories chosen from ImageNet-1k
dataset [8], and each category includes 600 samples. Here we follow [5,6,39] and
splitminiImageNet into 64/16/20 classes for train, val and test sets, respectively.
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tieredImageNet [26] is a larger subset of ImageNet-1k dataset, which totally
includes 779,165 images from 608 different categories. Specifically, this dataset
includes 351 classes for training set, 97 classes for validation set and 160 classes
for test set, respectively.

CIFAR-FS [3] is built upon CIFAR-100 dataset [13], which is divided into 64,
16 and 20 categories for training, validation and testing, respectively. Analogous
to miniImageNet, each category includes 600 different images.

C.2 Training Details

For meta-training phase, we use AdamW [21] with a learning rate of 5e-4 and
a cosine learning rate scheduler [20] to train our meta learner f for 800, 800,
300 epochs on miniImageNet, CIFAR-FS and tieredImageNet, respectively. For
augmentation, we use Spatial-Consistent Augmentation in Sec. 4. For location-
specific supervision on each patch, we only keep the top-k (e.g., k = 5) highest
confidence in ŝij to reduce the label noise. To train the teacher fg, we employ the
same augmentation strategy in [29], including random crop, random augmenta-
tion, mixup, etc. Meanwhile we adopt AdamW [21] with the same parameters
as above to train 300 epochs. For meta-tuning, we simply utilize the optimizer
and the hyper-parameters used in Meta Baseline, e.g., SGD with learning rate
of 1e-3 to finetune the meta-learner f for 40 epochs. Moreover, we use relatively
large drop path rate 0.5 to avoid overfitting for all training. This greatly differs
from conventional setting on drop path rate where it often uses 0.1. Following
conventional supervised setting [34,11,36] , we also use a three-layer convolution
block [9] with residual connection to compute patch embedding. This conven-
tional stem has only ∼0.2M parameters and is much smaller than ViT backbone.
All programs are implemented by PyTorch toolkit [25], and All experiments are
conducted on two NVIDIA A100 GPUs.

C.3 Implementation Details of our Analysis in Sec. 3

[6]+CNN [32]. Here we aim to introduce inductive bias via explicitly intro-
ducing CNN layers. Generally, adding CNN layers has two methods: 1) directly
inserting CNN layers after the transformer layers (like Visformer [7]); 2) adding
independent CNN modules, and fuse the features from both transforme layer and
CNN modules. Here we mainly discuss 2). Specifically, with given transformer
layer T and a CNN module C (the input and output dimensions of T and C
are same), given the input image feature z, the updated feature is obtained by
z′ = T (z) + C(z). We use this combination to replace each transformer layer in
the original ViT, and obtain [6]+CNN.

[6]+DrLoc [18]. Here we introduce the implementation detail of [6]+DrLoc [18]
mentioned in Sec. 5.3 of the main paper. With given meta-learner f , we addition-
ally introduced a three-layer MLP projection head h and the output dimension



4

Table 2. Details of the Spatial-Consistent Augmentation (SCA) proposed in Sec. 4,
where p means the random probability to perform the corresponding augmentation.

Spatial-Only Transformation Non-Spatial Transformation

Random Crop and Resize ColorJitter (brightness=0.4, contrast=0.4, saturation=0.4)

Random Horizontal Flip, p=0.5 Gaussian Blur, p=0.5

Random Rotation, p=0.2 Solarization, p=0.5

/ GrayScale, p=0.2

/ Random Erasing

of h is 2, which indicates the relative distance between two local tokens on x-axis
and y-axis. For given local patches [zcls, z1, z2, · · · , zK ], we first sample m (e.g.,
m = 64) different token pairs {(zi, zj)}. For each (zi, zj), we calculate the rela-
tive distance by (δx′, δy′) = h(concat(zi, zj)). Since the ground-truth of relative
distance (δx, δy) can be directly calculated, the overall training objective can be
written as:

Ldrloc = H(gglobal(zglobal),yi) + L1(δx
′, δx) + L1(δy

′, δy). (1)

[6]+CNN Distill. Here we aim to introduce CNN-alike inductive bias from a
pretrained CNN. Specifically, we first train a ResNet-12 feature extractor fCNN

0

with corresponding global classifier gCNN
0 on Dbase, and use them to teach ViT

feature extractor f and corresponding global classifier gglobal via knowledge dis-
tillation [10]. Following the description in Sec. 4.1, given fCNN

0 with gCNN
0 , as well

as the target meta-learner f with global classifier gglobal, we denote the the clas-
sification result from the global average pooling of all patch tokens calculated by
gCNN
0 is gCNN

0 (z0,global). Analogously, that calculated by target classifier gglobal
is denoted as gglobal(zglobal). Thus, the training objective is formed as:

Ldistill = H(gglobal(zglobal),yi) + JSD(gCNN
0 (z0,global), gglobal(zglobal)), (2)

where JSD(·, ·) indicates JS-Divergence between gCNN
0 (z0,global) and gglobal(zglobal).

C.4 More Training Details of SUN

For meta-training phase, we use AdamW [21] with a learning rate of 5e-4 and
a cosine learning rate scheduler [20] to train our meta learner f . Specifically,
we train our model for 800, 800, 300 epochs on miniImageNet, CIFAR-FS and
tieredImageNet, respectively. For data augmentation, we use Spatial-Consistent
Augmentation in Sec. 4. To completely describe the spatial-consistent augmen-
tation, Table 2 lists the detailed augmentation for both spatial-only part and
non-spatial part. For location-specific supervision on each patch, we only keep
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Table 3. Comparison with SoTA few-shot learning methods under 5-way few-shot
classification setting, where SUN-F is our proposed SUN with FEAT [35] as meta-
tuning phase. The results of the best 2 methods are in bold font.

Method
Classifier
Params

miniImageNet tieredImageNet CIFAR-FS
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ResNet-12/18 as feature extractor
MetaOptNet [14] 0 64.09±0.62 80.00±0.45 65.81±0.74 81.75±0.53 72.00±0.70 84.20±0.50
DeepEMD [37] 0 65.91±0.82 82.41±0.56 71.16±0.80 86.03±0.58 46.47±0.70 63.22±0.71
FEAT [35] 1.05M 66.78±0.20 82.05±0.14 70.80±0.23 84.79±0.16 - -
TADAM [24] 1.23M 58.50±0.30 76.70±0.30 - - - -
Rethink-Distill [28] 225K 64.82±0.60 82.14±0.43 71.52±0.69 86.03±0.49 73.90±0.80 86.90±0.50
DC [16] 224K 61.26±0.20 79.01±0.13 - - - -
MTL [27] 0 61.20±1.80 75.50±0.80 - - - -
CloserLook++ [5] 131K 51.87±0.77 75.68±0.63 - - - -
Meta-Baseline [6] 0 63.17±0.23 79.26±0.17 68.62±0.27 83.29±0.18 - -
Neg-Cosine [17] 131K 63.85±0.81 81.57±0.56 - - - -
AFHN [15] 359K 62.38±0.72 78.16±0.56 - - 68.32±0.93 81.45±0.87
Centroid [1] 10K 59.88±0.67 80.35±0.73 69.29±0.56 85.97±0.49 - -
RE-Net [12] 430K 67.60±0.44 82.58±0.30 71.61±0.51 85.28±0.35 74.51±0.46 86.60±0.32
TPMN [33] 16M 67.64±0.63 83.44±0.43 72.24±0.70 86.55±0.63 75.50±0.90 87.20±0.60

NesT ViT as feature extractor
CloserLook++ [5] 180K 49.23±0.43 66.57±0.39 59.13±0.46 77.88±0.39 63.89±0.49 80.43±0.37
Meta-Baseline [6] 0 54.57±0.46 69.85±0.38 63.73±0.47 79.33±0.38 68.05±0.48 81.53±0.36
BML [39] 180K 59.35±0.45 76.00±0.35 66.98±0.50 83.75±0.34 67.51±0.48 82.17±0.36
SUN-F (Ours) 1.05M 66.60±0.44 81.90±0.32 72.66±0.51 87.08±0.33 77.87±0.46 88.75±0.33

the top-k (e.g., k = 5) highest confidence in ŝij to reduce the label noise. To
train the teacher fg (the combination of feature extractor f0 with global clas-
sifier g0), we employ the same augmentation strategy in [29], including random
crop, random augmentation, mixup, etc. Meanwhile, we adopt AdamW [21] with
the same settings as above to train it for 300 epochs. For meta-tuning, we sim-
ply utilize the same optimizer and settings as Meta-Baseline, i.e., SGD with
learning rate of 1e-3 to finetune the meta-learner f for 40 epochs. Moreover,
we use relatively large drop path rate 0.5 to avoid overfitting for all training.
This greatly differs from conventional setting on drop path rate where it often
uses 0.1 [29,30]. Following conventional supervised setting [34,11,36], we also use
a three-layer convolution block [9] with residual connection to compute patch
embedding. This conventional stem has only ∼0.2M parameters and is much
smaller than ViT backbone.

D Using FEAT as Meta-Tuning of SUN

As mentioned in Sec. 4.2 of the main paper, we also investigate different meta-
tuning methods, such as introducing the task-specific few-shot learning stage of
FEAT [35] as our meta-tuning phase. With the same FEAT, our SUN framework
still shows superiority over other few-shot learning frameworks. Here we first
give a brief introduction of FEAT, and then compare the SUN with FEAT with
existing methods to demonstrate the superiority our method.

Generally, the goals of FEAT are two-fold: 1) all feature embeddings from
the support set S of each task τ should be aligned by a permutation invariant
function to obtain more discriminative prototypes, and 2) aligned feature em-
bedding of each query should be similar to embeddings with the same class and
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dissimilar to those of other classes. Thus, it first introduces a self-attention layer
A to obtain aligned classification prototypes w′

k = A({wk,∀1 ≤ k ≤ c}), and
then uses Eqn. (3) to calculate the confidence score p′

k for each query x,

p′
k =

exp(γ · cos(GAP (f(x)),w′
k))∑

k′ exp(γ · cos(GAP (f(x)),w′
k))

, (3)

and then obtains the classification prediction pF
x = [p′

1, · · · ,p′
c]. Meanwhile,

for each class k ∈ c, FEAT introduces contrastive learning loss among query
embeddings for each task τ . Specifically, FEAT calculates the class center qc as
qc =

∑
A({f(x′),x′ ∈ τk})/(Nq+Nk), where τc indicates all query and support

images of class c, and A is the same self-attention layer mentioned above. Thus
for each query x, FEAT also enforces f(x) aligned by A to be close to the
corresponding class center qc, then we obtain:

paux
x =

{
exp(γ · ⟨f(x) · qc)⟩∑
c′ exp(γ · ⟨f(x) · qc′⟩)

,∀c ∈ S

}
. (4)

Finally, it minimizes the classification loss Lfew-shot = H(pF
x , yx) +H(paux

x , yx),
where yx is the classification label of x w.r.t. S. By using this meta-tuning
method, we term our method “SUN-F”.

Analogous to “SUN-M” stated in Sec. 5.4, we evaluate SUN-F using NesT [38]
on three diferent datasets, i.e., miniImageNet [31], tieredImageNet [26] and
CIFAR-FS [3]. The detailed evaluation results are given in Table 3. With the

Table 4. Comparison results among DeepEMD [37], COSOC [22] and SUN under
5-way few-shot classification setting on miniImageNet.

Methods DeepEMD [37] COSOC [22] SUN-D (Ours)

5-way 1-shot 68.77±0.29 69.28±0.49 69.56±0.44
5-way 5-shot 84.13±0.53 85.16±0.42 85.38±0.49

same NesT as meta-learner f , our SUN-F achieves the best 5-way 1-shot an
5-way 5-shot accuracy on the three datasets. Specifically, SUN-F outperforms
BML by 7.6%, 5.7%, 10.3% in terms of 5-way 1-shot accuracy on miniImageNet,
tieredImageNet, CIFAR-FS test sets, respectively. Moreover, SUN-F also per-
forms very competitively in comparison with state-of-the-art CNN-based few-
shot learning methods. Specifically, on tieredImageNet under 5-way 1-shot and
5-shot settings, our SUN-F respectively obtains 72.66% and 87.08%, and respec-
tively improves ∼0.4% and ∼0.5% over the SoTA TPMN [33]. On CIFAR-FS
dataset, our SUN-F obtains 77.87% and 88.75% in terms of 1-shot accuracy and
5-shot accuracy, which significantly outperforms all the state-of-the-art methods
by at least 2.3% in terms of 1-shot accuracy. Meanwhile, our SUN-F also obtains
66.60% 1-shot accuracy on miniImageNet test set, which also surpasses most of
CNN-based few-shot learning methods.
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Table 5. Effect of drop path rate in teacher ViT model on miniImageNet.

drop path rate pdpr 0.1 0.2 0.3 0.5 0.8

5-way 1-shot 60.10±0.45 60.47±0.45 62.02±0.45 62.40±0.44 61.73±0.44
5-way 5-shot 77.44±0.33 77.97±0.34 79.29±0.31 79.45±0.32 78.12±0.32

E Using DeepEMD as Meta-Tuning of SUN

Besides, ViT with SUN inherently supports incorporating with dense predic-
tion methods to conduct meta-tuning phase. There are two ways to leverage
dense feature: a) selecting the foreground patch tokens with the local patch
scores glocal(z), then calculating the global token (via global average pooling)
for classification; and b) simply replacing the meta-tuning method with dense
prediction methods like DC [16] or DeepEMD [37]. Here we mainly discuss b)
and use DeepEMD [37] as an example. From Table 4, SUN-D outperfroms Deep-
EMD by ∼1% on both 5-way 1-shot and 5-shot accuracy. The results indicate
that ViTs with SUN can also leverage dense features to conduct few-shot classifi-
cation and perform better than CNN counterpart. Moreover, the derived SUN-D
achieves 69.56% 5-way 1-shot accuracy which is slightly higher than the state-
of-the-art COSOC [22]. Note that DeepEMD is not applicable to COSOC, since
DeepEMD uses dense feature while COSOC uses global tokens; while SUN can
incorporate with various methods. Thus we believe that SUN can be incorpo-
rated with COSOC and achieves better performance than SUN and COSOC.

F More Ablation Study

F.1 More Analysis of Meta-Training Phase

To further analyze our meta-training phase, we plot the accuracy curves of the
meta-training method in [5] and our meta-training phase in Fig. 1(a)∼1(d).
As shown in Fig. 1(c) and 1(d), ViT with SUN achieves higher classification
accuracy on novel classes. Besides, as shown in Fig. 1(b), SUN also obtains ∼11%
improvement on base classes than meta-training method [5]. This observation
inspires us to rethink the training paradigm of ViTs for few-shot classification,
such that ViTs can generalize well on both base and novel categories.

F.2 Drop Path Rate Analysis

As mentioned in Sec. C.2, we also show the effect of drop path rate pdpr. Here
we use the teacher ViT model f0 in meta-training phase to investigate. Table 5
shows that a relatively large drop path rate (e.g., pdpr = 0.5) gives highest accu-
racy, since it can well mitigate over-fitting and is suitable for few-shot learning
problems where training samples are limited. Based on Table 5 and the obser-
vation in Sec. 3, a possible explanation of choosing pdpr = 0.5 is that the ViTs
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Fig. 1. Accuracy of ViTs (w/ or w/o SUN meta-training phase) on miniImageNet.
ViTs with SUN meta-training generalize better on both base and novel categories.

Table 6. Ablation study of training epochs of meta-training phase on miniImageNet
and tieredImageNet, where “epochs” means training epochs in the meta-training phase.

Method epochs
miniImageNet tieredImageNet

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

SUN Meta-Training 300 63.66±0.45 80.14±0.32 72.26±0.49 86.47±0.34

SUN Meta-Training 800 64.84±0.45 80.96±0.32 72.34±0.49 86.57±0.34

with small pdpr may overfit to base classes during meta-training while ViTs with
too large pdpr may underfit to training samples.

F.3 Effect of Patch Embedding

Now we analyze the effect of overlapped patch embedding in Sec. C.2. For com-
parison, we replace the overlapped patch embedding in ViT by the vanilla non-
overlapped patch embedding, and use the same meta-training method. As shown
in Table 6 in the main paper, compared to type (a) using overlapped embed-
ding, ViT w/o overlapped embedding achieves 59.70% and 77.19% in terms of
1-shot and 5-shot accuracy respectively. This result shows that overlapped patch
embedding benefits the generalization ability on novel categories.

F.4 More Training Epochs in Meta-Training

Moreover, we also investigate the effect of training epochs during meta-training
phase. The motivation comes from two aspects: 1) during meta-training, vanilla
ViT faces severe generalization problems after 300 epochs training while ResNet-
12 is opposite (see Fig. 2 in the main paper for details), 2) after fixing the
generalization issue, ViTs with large-scale training tend to benefit from more
training epochs. Thus we aim to investigate whether ViT with SUN benefits
from more training epochs.

Following the widely used 300/800 training epochs in previous ViT works [4,2],
we evaluate our SUN meta-training with 300/800 epochs on miniImageNet
(small size) and tieredImageNet (large size). And during testing, we follow [6]
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Table 7. Comparison between SUN meta-training phase without global JS-Divergence
constraint and SUN meta-training phase with global JS-Divergence constraint on
miniImageNet, where “JSD” means further adding JS-Divergence between g0(z0,global)
and gglobal(zglobal) in the meta-training phase.

Method JSD
miniImageNet

5-way 1-shot 5-way 5-shot

SUN Meta-Training 64.84±0.45 80.96±0.32

SUN Meta-Training ✓ 64.56±0.44 (-0.28%) 80.76±0.31 (-0.20%)

to evaluate the 5-way 1-shot and 5-way 5-shot accuracy on corresponding meta-
learner f . Evaluation results are given in Table 6. For miniImageNet, after intro-
ducing more training epochs, ViT with SUN outperforms that with 300 epochs by
1.2% and 0.8% in terms of 5-way 1-shot and 5-way 5-shot accuracy. This obser-
vation indicates that more training epochs can improve the generalization ability
on novel categories of ViT with SUN. And for the relative larger tieredImageNet,
introducing more epochs only leads to 0.1% accuracy improvement. A possible
explanation is that larger dataset may inherently benefit to the generalization
ability, thus the contribution from more training epochs is limited. Therefore,
for miniImageNet and CIFAR-FS, we use 800 epochs for meta-training phase;
and for tieredImageNet, to trade off the training time as well as the classification
accuracy, we keep using 300 epoch during meta-training.

F.5 Is Adding JS-Divergence (JSD) Benefit to SUN?

Denote by fg the given teacher model consisting of a feature extractor f0 and a
classifier g0, and f the target meta-learner with global classifier gglobal. Follow-
ing the description in Sec. 4.1, we denote the the classification result from the
global average pooling of all patch tokens calculated by g0 is g0(z0,global). Anal-
ogously, that calculated by target classifier gglobal is denoted by gglobal(zglobal).
Previous knowledge distillation works [10,28] mainly focus on minimizing the
JS-Divergence between g0(z0,global) and gglobal(zglobal) and achieve better classi-
fication performance. Therefore, we focus on the meta-training phase of our SUN
and conduct the ablation study of JS-Divergence on miniImageNet to evaluate
whether it is essential for SUN or not. Specifically, during meta-training with-
out JSD, we keep using LSUN as training loss; while during meta-training with
JSD, we use LSUN+JSD = LSUN + JSD(g0(z0,global), gglobal(zglobal)) as training
loss. And during testing, we follow [6] to evaluate the 5-way 1-shot and 5-way
5-shot accuracy on corresponding meta-learner f . The evaluation results are
shown in Table 7. After introducing the global JS-Divergence constraint, meta-
training with JSD drops 0.3% and 0.2% in terms of 5-way 1-shot and 5-way
5-shot accuracy. A possible explanation is that adding JS-Divergence may en-
force the gglobal(zglobal) to be similar to g0(z0,global), thus somewhat ignores some
knowledge from the location-specific supervision, and then slightly impairs the



10

generalization ability on novel classes. Thus, in the final SUN framework, the
global JS-Divergence constraint is not included.

G t-SNE Visualization Results

Additionally, to qualitatively analyze the effects of our SUN, we also illustrate
the t-SNE [23] results of ViT with Meta-Baseline [6] (short for “Baseline” in
Fig. 2) and ViT with our SUN (short for “SUN” in Fig. 2). Following Sec. 5.2
and Sec. 5.5 in the main paper, we use NesT [38] as our ViT feature extractor.

Detailed visualization results are shown in Fig. 2. Specifically, for each com-
parison pair (e.g., Fig. 2(g) and Fig. 2(j)), we keep using the same 5 categories
for visualization. And for each category, we select the same 300 samples for vi-
sualization. According to these t-SNE visualization results, our ViT with SUN
achieves the similar embedding grouping ability on base classes from the train-
ing set, but obtains better grouping ability for novel classes on test set. Espe-
cially, as shown in Fig. 2(g) and Fig. 2(j), the embeddings from novel classes
extracted by “baseline” tend to be mixed together, but those from ViT with
“SUN” can be separated into approximately 5 different groups. These observa-
tions also demonstrate the generalization ability of ViT with SUN on both base
and novel categories, further verifying the effectiveness of SUN.
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(a) train, mini, Baseline (b) train, tiered, Baseline (c) train, CIFAR, Base-
line

(d) train, mini, SUN (e) train, tiered, SUN (f) train, CIFAR, SUN

(g) test, mini, Baseline (h) test, tiered, Baseline (i) test, CIFAR, Baseline

(j) test, mini, SUN (k) test, tiered, SUN (l) test, CIFAR, SUN

Fig. 2. t-SNE visualization results of ViT without SUN (i.e. Baseline) and ViT with
SUN (i.e. SUN) on three different datasets, where fig (a)∼(f) demonstrate the results
of base classes from train set and fig (g)∼(l) demonstrate those of novel classes from
test set. ViT with SUN performs better on all datasets.


