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1 Details of our approach

Hyper-parameters. In our implementation, ResNet-18 [2] is adopted as the back-
bone, which outputs a 512-d feature vector. Before feeding the vector for proto-
typical alignment, we apply ℓ2 normalization for the feature vector and proto-
types. The temperature τ for ℓs−t and ℓt−s is 0.25 and 0.1, respectively. The max
training steps Tmax is set as 50,000 for the DomainNet and 1,000 for the Office-
Home, which are roughly equal to training epochs × dataset size/batch size.
The confidence threshold β for ℓt−s is set as 0.5. λ is equal to 0.2 to balance the
pseudo labels generated by the initial classifier and the online updated classifier.
The momentum term m is set as 0.1. These hyper-parameters are tuned based
on performance on the validation set.

Training. We train our approach for 50 epochs on the DomainNet dataset. On
the smaller Office-Home dataset, we train the model for 100 epochs. Adam [4] is
adopted as the default optimizer with the learning rate as 1e-3. The batch size is
set as 256, where source data and target data have the same number in a batch
(128).

Evaluation. During evaluation, we fix the feature extractor and apply ℓ2 nor-
malization to the output feature vector. The linear classification head for each
few-shot task (episode) is randomly initialized, and trained on the support fea-
tures for 1000 steps with logistic regression. 15 query samples per class are used
to evaluate the performance of the learned classifier. We finally report the av-
erage 5-way 1-shot and 5-way 5-shot accuracies over 600 episodes with 95%
confidence intervals.
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Table 1. The impact of interpolation coefficient λ.

painting-real real-painting

λ 1-shot 5-shot 1-shot 5-shot

0.0 53.91±1.03 72.64±0.85 53.73±0.90 64.95±0.79

0.2 54.44±1.00 73.63±0.82 53.86±0.89 65.65±0.74

0.4 54.55±1.03 73.50±0.83 53.99±0.90 64.87±0.78

0.6 50.50±1.03 69.11±0.89 50.47±0.87 61.26±0.81

0.8 50.07±1.00 68.50±0.90 50.40±0.87 60.52±0.80

1.0 49.79±1.03 68.42±0.90 50.28±0.89 60.60±0.79

2 Updating pseudo label

Since we resort to pseudo labels for prototype estimation and feature alignment,
ensuring the pseudo label accuracy is very important to the effectiveness of our
bi-directional prototypical alignment strategy. Pseudo labels can be predicted
with a fixed classifier pre-trained on the source base dataset, as in [8], or a
classifier that is online updated along the representation learning. In our im-
plementation, we combine them together by linearly interpolating their pseudo
labels. We assess the effectiveness of this combination strategy by changing the
interpolation coefficient λ from zero to one. When the interpolation coefficient
λ = 0 (or1), our approach degenerates to only using the fixed (or online updated)
classifier. The results on the DomainNet are shown in Table 1.

It can be noticed that the performance grows as we increase λ from zero
and the best performance can be achieved when λ ∈ [0.2, 0.4]. The improvement
demonstrates that updating the fixed pseudo labels with an online classifier is
useful to get better pseudo labels. However, when λ gets too large, the perfor-
mance drops very quickly, which means we can not only depend on the online
classifier. The possible reason is that the pseudo labels predicted by the on-
line classifier change rapidly, and thus impose adverse impacts on the training
stability.

3 Hyper-parameter sensitivity

To analyse the sensitivity of a hyper-parameter, we change its value from the
minimum to the maximum and keep other hyper-parameters unchanged. We test
the performance of each value on the DomainNet real-painting and painting-
real. The experimental results are shown in Figures 1 and 2. For the momentum
coefficient m, a small m is usually better than a large one. The gap between
the best performance (m = 0.1) and the worst performance (m = 0.99) is 2.2
points in 1-shot and 1.6 points in 5-shot. For the confidence threshold β, the
performance grows in the range of [0, 0.3] and decreases rapidly in the rage of
[0.5, 0.99]. The difference between the best and the worst results are 2.4 points in
1-shot and 2.3 points in 5-shot, which are a little bit larger than the differences
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Fig. 1. The sensitivity of momentum coefficient m.
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Fig. 2. The sensitivity of confidence threshold β.

of m. However, the performance of the proposed approach is still competitive
even with the worst hyper-parameters, indicating that our approach is not very
sensitive to hyper-parameters.

4 Prototype Distance (PD) and Average Distance Ratio
(ADR)

To measure domain distance, we first calculate prototypes psk and ptk for each
novel class in the source and target domains. Then we obtain the Euclidean
distance between the two prototypes per class and compute the average distance
over all novel classes. We refer to this metric as Prototype Distance (PD), which
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can be formulated as:

PD =
1

|YN |
∑

k∈YN

||psk − ptk||, (1)

where YN is the set of novel classes. A small PD value means the two domains
are well aligned to each other.

To represent class separability, for each sample (xi, yi), we calculate the ra-
tio between its distance to the prototype pyi

, and the distance to the closest
neighbouring prototype. Then an average is computed over all samples in novel
classes, which is termed Average Distance Ratio (ADR). Formally,

ADR =
1

|XN |
∑

xi∈XN

||f(xi)− pyi
||

mink ̸=yi
||f(xi)− pk||

, (2)

where XN is the set of samples of novel classes. When ADR is less than 1, most
samples are classified into their ground-truth classes. We calculate ADR for two
domains separately to validate whether the learned features can generalize in
each domain.

5 Baselines

For a fair comparison, we implement all the baseline methods with the same
ResNet-18 backbone adopted in our approach. But the augmentation strategies
may be different for different methods, as some methods [18, 7, 10, 8, 3] have
specified particular augmentation in their papers, where FixMatch[10] adopt
the same augmentation techniques as ours. When no augmentation is specified,
we simply apply CenterCrop and Normalization to the input images.

ProtoNet and RelationNet. ProtoNet[9] and RelationNet[11] are two represen-
tative meta-learning methods, which are trained on a series of few-shot tasks
(episodes). We implement these two methods based on publicly-available codes
4. During training, we randomly sample episodes from the base set, each of which
contains N = 5 classes and K = 5 samples per class serving as the support set,
and another 15 samples per class as the query set. We also train ProtoNet and
RelationNet for 50 epochs on the DomainNet dataset and 100 epochs on the
Office-Home dataset. The number of training episodes of each epoch is partic-
ularly defined to make sure the number of seen samples (both the support and
query samples) in an epoch is roughly equal to the size of the dataset.

MetaOptNet. MetaOptNet[5] aims to learn an embedding function that general-
izes well to novel categories with closed-form linear classifiers (e.g., SVMs). We
implement this method based on the official code 5 but replace the backbone
network and optimizer to be the same as our approach. Similar to ProtoNet and
RelationNet, the training process of MetaOptNet is also episodic.

4 https://github.com/wyharveychen/CloserLookFewShot
5 https://github.com/kjunelee/MetaOptNet
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Tian et al. Tian et al.[14] follows the transfer learning paradigm, which trains a
base model by classifying base classes, and then leverages the learned represen-
tations to classify novel classes by learning a new classification head. We train
this baseline with the same optimization method as our approach except that
the batch size is set as 128 as only source data are used for training.

DeepEMD. DeepEMD[18] is also a meta-learning method, which aims to com-
pute the query-support similarity based on Earth Mover’s Distance (EMD). It
contains two training phases: (i) pre-training the feature extractor by classifying
base classes (similar to Tian et al.) and (ii) meta-training the whole model on
training episodes. We use the output model of Tian et al. as the pre-trained
model and then follow the official implementation 6 to finetune the model via
meta-training.

FWT and ATA. FWT[15] and ATA[17] are two CD-FSL methods, which aims
to learn generalized representations during meta-training so that the model can
generalize to a new domain. To this end, FWT proposes a feature-wise trans-
formation layer, of which the parameters can be manually set, or learned from
multiple data sources. In our experiments, we choose to manually set the pa-
rameters as only data from one domain (the source domain) are labeled. ATA
proposes to augment the task distributions by maximizing the training loss and
meanwhile learn robust inductive bias from augmented task distributions. It
does not need to access extra data sources, and thus can be trained on the base
set. We implement these two methods based on their official codes7, except that
we train them from scratch as we find that additional pre-training will reduce
performance.

S2M2. S2M2[7] follows the transfer learning paradigm, which leverages the data
augmentation technique, MixUp[16], and self-supervised learning tasks (e.g., ro-
tation) to learn generalized representation for few-shot learning. We follow the
same augmentation and implementation as the official codes8.

DANN. We use a three-layer fully connected network as the domain discrimina-
tor to implement DANN, following the Pytorch implementation 9 released by [6].
The gradient reverse layer [1] is adopted to train the feature vector and domain
discriminator in an adversarial manner. To stabilize training, the weight of the
adversarial loss starts from zero, and gradually grows to one.

PCT. PCT[12] is a generic domain adaptation method that can deal with
single-source, multi-source, class-imbalance and source-private domain adapta-
tion problems. Similar to our approach, PCT also aligns features via prototypes.

6 https://github.com/icoz69/DeepEMD
7 https://github.com/hytseng0509/CrossDomainFewShot,
https://github.com/Haoqing-Wang/ CDFSL-ATA

8 https://github.com/nupurkmr9/S2M2 fewshot
9 https://github.com/thuml/CDAN
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However, it only aligns features from the target domain to the prototypes trained
with labeled source domain data. We implement this baseline according to the
official codes10.

Mean Teacher, Fixmatch and STARTUP. All of these approaches use pseudo-
labeled samples to train the model. Differently, Mean Teacher[13] predicts pseudo
labels with a teacher network that is the ensemble of historical models by ag-
gregating their model weights with exponential moving average (EMA). In our
implementation, the smoothing coefficient for EMA is set as 0.99. Fixmatch[10]
trains the model with a consistency loss, i.e., enforcing the network prediction for
a strongly augmented sample to be consistent with the prediction of its weakly
augmented counterpart. We implement Fixmatch based on a publicly available
implementation11. STARTUP[8] adopts fixed pseudo labels that are predicted
by a classifier pre-trained on the base set, and imposes a self-supervised loss on
the target data. In our re-implementation, we do not utilize the self-supervised
loss item since we find that it does not improve performance.

6 Dataset partition details

DomainNet. DomainNet contains 345 classes in total. We discard 19 classes with
too few images and randomly split the rest 326 classes into three sets: 228 classes
for the base set, 33 classes for the validation set, and 65 classes for the novel set.
The detailed classes of each set are listed below:

Ybase =

{aircraft carrier, airplane, alarm clock, ambulance, animal migration, ant, asparagus, axe,

backpack, bat, bathtub, beach, bear, beard, bee, belt, bench, bicycle, binoculars, bird, book,

boomerang, bottlecap, bowtie, bracelet, brain, bread, bridge, broccoli, broom, bus, butterfly,

cactus, cake, calculator, camera, candle, cannon, canoe, car, cat, ceiling fan, cell phone, cello,

chair, church, circle, clock, cloud, coffee cup, computer, couch, cow, crab, crayon, crocodile,

cruise ship, diamond, dishwasher, diving board, donut, dragon, dresser, drill, drums, duck,

ear, elbow, elephant, envelope, eraser, eye, fan, feather, fence, finger, fire hydrant, fireplace,

firetruck, flamingo, flashlight, flip flops, flower, flying saucer, foot, fork, frog, frying pan, giraffe,

goatee, grapes, grass, guitar, hamburger, hammer, hand, harp, headphones, hedgehog, heli-

copter, helmet, hockey puck, hockey stick, horse, hot air balloon, hot tub, hourglass, hurricane,

jacket, key, keyboard, knee, ladder, lantern, laptop, leaf, leg, light bulb, lighter, lightning, lion,

lobster, lollipop, mailbox, marker, matches, megaphone, mermaid, microphone, microwave,

moon, motorbike, moustache, nail, necklace, nose, octagon, oven, paint can, paintbrush, palm

tree, panda, pants, paper clip, parachute, parrot, passport, peanut, pear, peas, pencil, pen-

guin, pickup truck, picture frame, pizza, pliers, police car, pond, popsicle, postcard, potato,

power outlet, purse, rabbit, radio, rain, rainbow, rake, remote control, rhinoceros, rifle, sail-

boat, school bus, scorpion, screwdriver, see saw, shoe, shorts, skateboard, skyscraper, smiley

10 https://github.com/korawat-tanwisuth/Proto DA
11 https://github.com/kekmodel/FixMatch-pytorch
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face, snail, snake, snorkel, soccer ball, sock, stairs, stereo, stethoscope, stitches, stove, straw-

berry, submarine, sweater, swing set, sword, t-shirt, table, teapot, teddy-bear, television, tent,

the Eiffel Tower, the Mona Lisa, toaster, toe, toilet, tooth, toothbrush, tornado, tractor, train,

tree, triangle, trombone, truck, underwear, van, vase, violin, washing machine, watermelon,

waterslide, whale, wheel, windmill, wine bottle, zigzag}

Yvalidation =

{arm, birthday cake, blackberry, bulldozer, campfire, chandelier, cooler, cup, dumbbell, hexagon,

hospital, house plant, ice cream, jail, lighthouse, lipstick, mushroom, octopus, raccoon, roller

coaster, sandwich, saxophone, scissors, skull, speedboat, spreadsheet, suitcase, swan, telephone,

traffic light, trumpet, wine glass, wristwatch}

Ynovel =

{anvil, banana, bandage, barn, basket, basketball, bed, blueberry, bucket, camel, carrot, castle,

clarinet, compass, cookie, dog, dolphin, door, eyeglasses, face, fish, floor lamp, garden, garden

hose, golf club, hat, hot dog, house, kangaroo, knife, map, monkey, mosquito, mountain, mouth,

mug, ocean, onion, owl, piano, pig, pillow, pineapple, pool, river, rollerskates, sea turtle, sheep,

shovel, sink, sleeping bag, spider, spoon, squirrel, steak, streetlight, string bean, syringe, tennis

racquet, the Great Wall of China, tiger, toothpaste, umbrella, yoga, zebra}

Office-Home. There are 65 classes in the Office-Home dataset. We select 40
classes as the base set, 10 classes as the validation set, and 15 classes as the
novel set, which are listed below:

Ybase =

{alarm clock, bike, bottle, bucket, calculator, calendar, chair, clipboards, curtains, desk lamp,

eraser, exit sign, fan, file cabinet, folder, glasses, hammer, kettle, keyboard, lamp shade, laptop,

monitor, mouse, mug, paper clip, pen, pencil, postit notes, printer, radio, refrigerator, scissors,

sneakers, speaker, spoon, table, telephone, toothbrush, toys, tv}

Yvalidation =

{bed, computer, couch, flowers, marker, mop, notebook, pan, shelf, soda}

Ynovel =

{backpack, batteries, candles, drill, flipflops, fork, helmet, knives, oven, push pin, ruler, screw-

driver, sink, trash can, webcam}
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