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Abstract. Few-shot object detection is based on the base set with abun-
dant labeled samples to detect novel categories with scarce samples.
The majority of former solutions are mainly based on meta-learning
or transfer-learning, neglecting the fact that images from the base set
might contain unlabeled novel-class objects, which easily leads to per-
formance degradation and poor plasticity since those novel objects are
served as the background. Based on the above phenomena, we pro-
pose a Mutually Reinforcing Structure Network (MRSN) to make ra-
tional use of unlabeled novel class instances in the base set. In par-
ticular, MRSN consists of a mining model which unearths unlabeled
novel-class instances and an absorbed model which learns variable knowl-
edge. Then, we design a Proposal Contrastive Consistency (PCC) mod-
ule in the absorbed model to fully exploit class characteristics and avoid
bias from unearthed labels. Furthermore,we propose a simple and effec-
tive data synthesis method undirectional-CutMix (UD-CutMix) to im-
prove the robustness of model mining novel class instances, urge the
model to pay attention to discriminative parts of objects and eliminate
the interference of background information. Extensive experiments il-
lustrate that our proposed approach achieves state-of-the-art results on
PASCAL VOC and MS-COCO datasets. Our code will be released at
https://github.com/MMatx/MRSN.

Keywords: Few-shot object detection, contrastive learning, data aug-
mentation

1 Introduction

Object detection[48, 9, 12, 51], is a classical task in computer vision, which aims
to identify and localize objects in an image. In recent years, the application of
deep convolutional neural network [1] has accelerated the development of object
detection[26, 18, 16, 17, 19, 35, 34, 50, 49]. However, the remarkable performance
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of object detection depends on abundant annotated data. Collecting annotated
data is time-consuming and labor-intensive. As opposed to that, a few examples
are sufficient for humans to learn a new concept. To bridge this gap, we focus
on few-shot object detection (FSOD), which aims to adapt the model from the
base class to the novel class based on a few labeled novel classes examples.

Based upon the base set, almost all methods for solving FSOD simply utilize
the labeled base class objects in the base set as supervision information to train
a detector. In the process of using base set, past methods overlook an impor-
tant phenomenon: material neglect, in which unlabeled novel-class instances are
explicitly learned as background. Material neglect has the following drawbacks.
1) An incorrect priori is introduced into the model, which limits the plasticity
of the model on novel classes. The model explicitly takes all instances of novel-
class that are unlabeled as the background when using the base set to train the
detector. Due to incorrect supervision, subsequently, the detector is provided
with labeled novel samples for adaptation, it is difficult for a small number of
labeled novel class samples to correct the error knowledge. 2) Data augmen-
tation has become a factor in training high-performance few-shot resolver. By
providing a variety of samples for the model, the model can obtain a more robust
representation space. But the current FSOD solution abandons the solution of
data augmentation and even turns a blind eye to the existing unlabeled samples,
which is undoubtedly a suboptimal solution to FSOD.

Thus, we advocate a new solution that uses data augmentation for resolving
FSOD. Specifically, instead of using meta-learning or transfer-learning to obtain
an adaptable model in the base set, we make rational use of unlabeled novel
class instances and eliminate the negative effects. Inspired by [28], we use a semi-
supervised framework to unearth unlabeled novel class instances and introduce
a Mutually Reinforcing Structure Network (MRSN), which contains a mining
model and an absorbed model.

To fully exploit class characteristics and avoid bias from noise labels, we de-
sign the Proposal Contrastive Consistency (PCC) module in the absorbed model.
We use the mining model to unearth the unlabeled novel-class instances and use
the absorbed model to learn the mined novel-class instances. The excavated novel
instances may have noise. To prevent the consecutively detrimental effect of noisy
pseudo-labels, we utilize PCC to keep the consistency of the mining model and
the absorbed model by constructing positive and negative sample pairs between
the two models. Meanwhile, we utilize PCC at the proposal level to compare the
global and local information of the instance simultaneously, which compensates
for the scarcity of training data. Intuitively, for classification head in Faster R-
CNN, it ensures that the samples of the same category in the feature space are
close to each other, and the regions related to different categories are separable.
This coarse goal leads to the loss of detailed features that are important for sep-
arating similar samples in the learning process. The PCC method we proposed
optimizes the features of “instance recognition”, retains the information used to
identify the subtle details between the classes and the instances.
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Moreover, we propose an effective data synthesis method undirectional-CutMix
(UD-CutMix) to improve the robustness of model mining novel class instances,
urge the model to pay attention to class discrimination features and eliminate
the interference of background. Extensive experiments show that the proposed
framework achieves significant improvements over state-of-the-art methods on
PASCAL VOC and MS-COCO.

2 Related Works

2.1 General Object Detection

At present, object detection methods based on deep learning can be divided into
two kinds according to different detection processes. One is two-stage approach
[2, 32, 22, 8]. The detector first filters out proposals and then carries out regres-
sion and classification on them through the network. [32] uses RPN to generate
proposals and ROI head to detection. The other is the one-stage object detec-
tion method. The core of the one-stage object detection algorithm is regression,
which directly divides categories and regresses the border. [30, 31] are based on
a single end-to-end network, which completes the input from the original image
to the output of object position and category. [27] combines the regression idea
and anchor mechanism, extracts the feature map of different scales, and then
regresses the multi-scale regional features of each position in the whole map.

Although the one-stage object detection algorithm has faster detection speed,
the two-stage algorithm are more reliable in terms of detection accuracy. In the
trade-off between accuracy and speed, we pick the Faster R-CNN with higher
accuracy as our benchmark framework.

2.2 Few-Shot Object Detection

Compared with general object detection, the scarcity of labeled novel-class data
brings huge difficulty to FSOD. The previous FSOD solving methods can be
divided into meta-learning [37, 7] based methods and transfer-learning [40, 36,
29] based methods. The idea of the former is that using the samples of support
set to learn the class representation, and then use the learned representation
to enhance the response of class related areas in the query sample features.
[44] aggregates features by reweighting the query features according to the class
encoder. [43] performs channel-wise multiplication of the extracted vector of
query features and extracted vector of class features. In the method based on
transfer-learning,[45] proposes a context transformer, which learns the ability to
integrate context knowledge in the source domain and migrates this ability to the
target domain to enhance the recognition ability of the detector, to reduce the
object confusion in the few-shot scene. [47] migrates shared changes in the base
class to generate more diverse novel-class training examples. With the in-depth
investigation of FSOD by researchers, some new methods have emerged. [20]
proposes a class margin equilibrium approach to optimize the division of feature
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space. [33] puts forward a contrastive loss to alleviate the problem of classification
error. [21] solves the task of FSOD from the perspective of classification structure
enhancement and sample mining.

However, these methods almost ignore the ”material neglect”, where the
image in the base set contains unlabeled novel-class instances.

2.3 Contrastive Learning

Recently, the success of the self-supervised model in various tasks mainly stems
from the use of contrastive learning [10, 3–5]. The goal of contrastive represen-
tation learning is to construct an embedding space in which similar pairs of
samples remain close to each other while dissimilar ones remain far apart. Con-
trastive can be achieved by learning the similarity and differences of samples.
[4] proposes a simclr framework to maximize the consistency between different
views of the same image. [5] uses two neural networks to encode the data to
construct positive and negative sample pairs, and encodes the image into query
vectors and key vectors respectively. In the training process, try to improve the
similarity between each query vector and its corresponding key vector, and re-
duce the similarity with the key vector of other images. The above methods are
mainly used in classification tasks.

As far as we know, there is rare contrastive learning method specially de-
signed for FSOD. Under the proposed MRSN, we propose a contrastive-consistency
learning method PCC for FSOD.

3 Method

3.1 Problem Definition

Followed by the widely adopted FSOD setting in [39, 44, 38], our framework aims
to perform adaptation on novel categories with the aid of a large and labeled
base set Dbase and a small-scale novel support set Dnovel. Here, the base set
Dbase = {(Ibasei , Cbase

i , Bbase
i )} contains abundant annotated instances, where

Ibasei denotes the i-th image, Cbase
i = {(cbasei )j} is the entire class set in this

image, and Bbase
i = {(xi, yi, wi, hi)j} indicates the position of each instance j

in this image. While the novel set Dnovel = {(Inoveli , Cnovel
i , Bnovel

i )} shares the
same structure with the base set, the class set Cbase and Cnovel of those two
collections are non-overlapping. More specifically, the ultimate goal of FSOD task
is to classify and locate all instances belonging to the novel-class and maintain
the performance on base classes.

3.2 Training Phase

The initialization of our MRSN is very important since the MRSN is an iterative
process to unearth unlabeled novel-class instances. Therefore, we first introduce
the acquisition of the initialization model of the MRSN, and then introduce the
learning process of MRSN in detail.
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Fig. 1. Framework of our method. First, cropped novel class instances and base set
construct a synthetic set through UD-CutMix. Then the images are processed by two
different data augmentations (where Tw and Ts denotes different data augmentations)
and sent to two models. In MRSN, the outputs generated by the mining model are pro-
vided to the absorbed model and the absorbed model transfers the learned knowledge
to the mining model through EMA. Meanwhile, to fully exploit class characteristics
and avoid bias from noise labels, the PCC module is designed in the absorbed model

Training plain detector. We call the model used to initialize the MRSN
as Mplain. First, we use Dbase to train the whole detector. The whole detector
F (θemb, θrpn, θroi) include the network parameters of feature extraction, RPN
module and ROI module, which are expressed as θemb,θrpnand θroi, respectively.
During the experiment, we found that due to the scarcity of data in novel set,
the overfitting problem is easily incurred if we only use the limited data of novel
classes to fine-tune the whole detector. To tackle with this problem, we sample a
balanced training dataset Dbalance from Dbase and Dnovel as [38]. Specifically for
each category in Cbase, we only take k samples to form Dbalance together with
the whole Dnovel. The combined training dataset Dbalance is eventually utilized
to fine-tune the classifier and regressor of the detector. In this way, we get a new
detector Mplain = F (θemb, θrpn, θ

∗
roi), which can detect Cnovel and Cbase at the

same time.

Training mutually reinforcing structure network. To solve material
neglect, we propose a method to excavate unlabeled instances of novel classes
Cnovel in base set Dbase. The specific method is shown in Fig. 1.

Our MRSN is a dual model construction, includingMmine andMabsorb, where
Mmine is used to mine unlabeled novel-class instances in Dbase and give them
pseudo labels including corresponding categories and locations, and Mabsorb is
used to learn the mined instances. We utilize the mined instances as explicit
supervision for both backbone, RPN and ROIhead. The initialization values
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of network parameters of Mmine and Mabsorb are both inherited from Mplain =
F (θemb, θrpn, θ

∗
roi). Based on the above definition, the evolutionary mechanism of

MRSN will be introduced in section 3.3. To further impose model discrimination
between different categories and avoid the negative impact of noise labels, we
design PCC module for Mabsorb as shown in section 3.4.

3.3 Mutually Reinforcing Structure Network

As illustrated in Fig.1, our MRSN consists of a two-stream detection architec-
ture. We first execute UD-CutMix by recombining labeled novel instances with
base images to construct a new synthetic set Dsyn. Taking images in the Dsyn

and Dbase with weak data transformation as input, the upper mining stream
explores the augmented novel information and further reserves the most credi-
ble prediction. The lower absorbed stream gradually adopts the novel knowledge
delivered from the upper stream, without forgetting the base knowledge by uti-
lizing base supervision at the same time. Our two-stream framework thus evolves
continuously in the process of mutually reinforcing learning.

UD-CutMix. A huge challenge of FSOD is the limited annotations and di-
versity scarce in the novel set. To address this issue, we propose UD-CutMix
combine the cropped novel classes instances and the selected images in Dbase.
UD-CutMix adopts the detector Mplain to select the base image, which predic-
tion doesn’t contain any novel objects, to be mixed. Specifically, we first crop a
novel-class instance from a novel set image, then scale and paste it to a selected
base image. By repeating this operation, we can construct a new synthetic set
Dsyn = {(Isyni , Csyn

i , Bsyn
i )} as an enlarged and labeled set. The visual compar-

isons of the original and synthetic images are illustrated in Fig. 2.
The proposed UD-CutMix is distinct from the CutMix [46] in the following

two aspects. First, CutMix is agnostic to the category, as it randomly samples
data among all categories. UD-CutMix is category-specific, whice samples images
in the base dataset and only pastes the novel class instances. We find this strategy
can well cope with the lack of novel class data and the imbalance between the
base class and novel class labelled data. Second, UD-CutMix crops the complete
bounding box of the novel class instance, while CutMix randomly selects a patch
to crop, which destroys the instance’s global information.

It is notable that some base images involve novel instances. However, those
unlabeled novel objects serve as background or even distractors during the base
classes training process, hindering the transfer capability to novel classes. We
can make full use of these base images by generating pseudo labels. Thus in our
framework, the above synthetic set Dsyn and the original base set Dbase are both
included as supervision in subsequent novel-classes adaptation pipeline.

Novel knowledge mining and absorbing. The novel knowledge mining
stream excavates the possible novel instances and assigns them pseudo labels for
further supervision.

Given an image Ii ∈ Dbase∪Dsyn with true label GTi = (Ci, Bi). We use two
different data enhancements for Ii, one is denoted as strong data enhancement
Ts, and the other is weak data enhancement Tw. The images applied with Ts are
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sent to the absorb stream Mabsorb, and the images applied with Tw are sent to
the mining stream Mmine. The corresponding predicted value Pabsorb and Pmine

are formulated as the following Equ. 1.

Pabsorb =Mabsorb(Ts(Ii))

={(c, s, box)j}, box = (x, y, w, h),

Pmine =Mmine(Tw(Ii))

={(c, s, box)j}, box = (x, y, w, h),

(1)

where c, s and box in (c, s, box)j respectively represent the category correspond-
ing to the maximum classification probability in the j-th prediction result of
image Ii, the corresponding score and the position of the bounding box.

To boost the credibility of pseudo labels and reduce the negative impact
caused by noise prediction, we propose a supervision generator to exclude those
distractors. We first refer to a confidence score threshold ϕ to get a trusted
prediction subset Ptr, as expressed in Equ. 2.

Ptr = {I(s ≥ ϕ)(c, s, box)j |(c, s, box)j ∈ Pmine}, (2)

where the filtered prediction Ptr is the high-confidence predicted bounding box.
To provide deterministic novel supervision and reduce the learning bias of

the base classes, we then set an overlap threshold δ to discard those predictions
whose location is at the neighborhood of ground truth, as expressed in Equ. 3.

Sj = MAX(IOU(boxj , boxk)), j ∈ Ptr, k ∈ GTi,

Pfinal = {I(Sj ≤ δ)(c, s, box)j |(c, s, box)j ∈ Ptr},
(3)

where the final prediction Pfinal is the subset of those proposals whose overlap-
ping with the GT bounding boxes of base classes is below a certain threshold.

Finally, we choose the images that novel class instances in the final prediction
Pfinal as the supervision images. To stabilize the training process and accelerate
the convergence speed, we combine the ground truth labels of selected images
with Pfinal. In general, our supervision generator contains bounding box-level
confidence filtering as well as overlap filtering, image-level instance filtering, label
combining.

Interaction between two stream. By applying supervision generator, the
most convincing images subset is obtained for subsequent novel knowledge learn-
ing. ForMabsorb, we use those most convincing images as supervisory information
to update the whole model by back-propagation. As expressed in Equ. 4, instead
of using gradient back propagation to update Mmine, we transfer the parameters
of Mabsorb to iterate Mmine. In this way, we can alleviate the accumulation effect
on the unreliability of pseudo labels.

θtmine = αθt−1
mine + (1− α)θtabsorb, (4)

where α is the hyperparameter to balance the update ratio of Mmine. Both θmine

and θabsorb include the network parameters of backbone, RPN module, and ROI
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module. WhenMabsorb is updated after a certain number of iterations, we use the
absorb model parameters θabsorb to update the freeze mining model parameters
θmine. Here, t and (t− 1) represent the network parameters at the current time
and before updating, respectively.

3.4 Proposal Contrastive Consistency

The self-supervised method [4, 3, 5, 10] performs well in classification, but not
in intensive prediction tasks, such as object detection. The main reason is that
the current self-supervised method is global-level feature extraction, and the
prediction ability of local is not considered. After in-depth research, we pro-
pose a contrastive learning method Proposal Contrastive Consistency (PCC)
suitable for our MRSN in FSOD. We introduce a PCC branch to the pri-
mary RoI head, parallel to the classification and regression branches. In Mabsorb,
RPN takes feature maps as inputs and generates region proposals, then a mini-
batch RoIs [32] is sampled for training. We express RoIs sampled by Mabsorb as
Roiabsorb = {(x, y, w, h)j}. fmine and fabsorb are the feature maps obtained by
the feature extractors ofMmine andMabsorb respectively. According to Roiabsorb,
RoIPooling is performed on fmine and fabsorb to obtain the features of the pro-
posals, and then through the identical encoder E, features in the two feature
spaces are mapped to the same area.

zmine
j = E(RoIPooling(fmine, Roiabsorbj )),

zabsorbj = E(RoIPooling(fabsorb, Roiabsorbj )).
(5)

We take the contrastive learning features from the same proposal and different
models as positive sample pairs and others as negative sample pairs. And we
measure the cosine similarity between two proposal features in the projected
hypersphere.

Our Proposal Contrastive Consistency loss LPCC is formulated as Equ. 6:

LPCC =
∑
j

−log
Posj/τ

Neg1j /τ +Neg2j /τ + Posj/τ
,

Neg1j =

N∑
k=1

I(k ̸= j)exp(sim(zabsorbj , zabsorbk )/τ ,

Neg2j =

N∑
k=1

I(k ̸= j)exp(sim(zmine
j , zabsorbk )/τ ,

Posj =exp(sim(zmine
j , zabsorbj )).

(6)

Finally, for our absorb stream Mabsorb, the total loss is as follows:

L = Lrpn + λ1(Lcl. + Lreg.) + λ2LPCC , (7)

where the Lrpn contains the cross entropy and regression loss of RPN, the middle
two terms Lcl., Lreg. are the focal loss [24] of classification, smoothed-L1 loss of
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Table 1. Performance on the PASCAL VOC dataset. We evaluate the performance on
three different sets of novel classes

Method / Shot
Novel Set 1 Novel Set 2 Novel Set 3

1-shot 2-shot 3-shot 5-shot 10-shot 1-shot 2-shot 3-shot 5-shot 10-shot 1-shot 2-shot 3-shot 5-shot 10-shot

MetaDet [39] 17.1 19.1 28.9 35.0 48.8 18.2 20.6 25.9 30.6 41.5 20.1 22.3 27.9 41.9 42.9

RepMet [15] 26.1 32.9 34.4 38.6 41.3 17.2 22.1 23.4 28.3 35.8 27.5 31.1 31.5 34.4 37.2

CRDR [21] 40.7 45.1 46.5 57.4 62.4 27.3 31.4 40.8 42.7 46.3 31.2 36.4 43.7 50.1 55.6

FRCN-ft [39] 13.8 19.6 32.8 41.5 45.6 7.9 15.3 26.2 31.6 39.1 9.8 11.3 19.1 35.0 45.1

Meta R-CNN [44] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1

TFA w/ fc [38] 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2

MPSR [42] 41.7 - 51.4 55.2 61.8 24.4 - 39.2 39.9 47.8 35.6 - 42.3 48.0 49.7

FSCE [33] 32.9 44.0 46.8 52.9 59.7 23.7 30.6 38.4 43.0 48.5 22.6 33.4 39.5 47.3 54.0

CME [20] 41.5 47.5 50.4 58.2 60.9 27.2 30.2 41.4 42.5 46.8 34.3 39.6 45.1 48.3 51.5

DCNet [13] 33.9 37.4 43.7 51.1 59.6 23.2 24.8 30.6 36.7 46.6 32.3 34.9 39.7 42.6 50.7

UP [41] 43.8 47.8 50.3 55.4 61.7 31.2 30.5 41.2 42.2 48.3 35.5 39.7 43.9 50.6 53.5

Ours 47.6 48.6 57.8 61.9 62.6 31.2 38.3 46.7 47.1 50.6 35.5 30.9 45.6 54.4 57.4

regression in roi head respectively, LPCC is the proposal contrastive consistency
loss. λ1 and λ2 are used to balance the loss functions.

4 Experiments

4.1 Datasets

For a fair comparison with previous work, we use MS-COCO [25] and PASCAL
VOC [6] benchmarks to verify the effectiveness of our method.

PASCAL VOC. PASCAL VOC contains 20 categories. According to the
previous FSOD experimental settings [14], we divide the 20 categories into 15
base classes and 5 novel classes under three different divisions. We take the
trainval sets of the 2007 and 2012 as the training set and PASCAL VOC 2007
test set as the evaluation set. For each category in the novel set, k-shot novel
instances are sampled. In FSOD scenarios, we set k = (1, 2, 3, 5, 10).

MS-COCO. MS-COCO contains 80 categories, of which 20 categories are
identical to PASCAL VOC. We choose 20 categories in the PASCAL VOC
dataset as the novel set, and the rest 60 classes as the base set. For FSOD
scenarios in MS-COCO, we set k = (10, 30).

4.2 Implementation Details

We use Faster R-CNN [32] as the basic detector, in which ResNet-101 [11] is
served as the backbone and a 4-layer Feature Pyramid Network [23] is utilized
for boosting the multi-scale learning process. Models are trained with standard
SGD optimizer and batch size of 2 in 1 GPU. We set the learning rate, the
momentum, and the weight decay to 0.001, 0.9, and 0.0001, respectively.
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Table 2. Few-shot object detection performance on MS-COCO. We report the AP
and AP75 on the 20 novel categories

Method / Shot
10-shot 30-shot

AP AP75 AP AP75

MetaDet 2019 [39] 7.1 6.1 11.3 8.1

Meta R-CNN 2019 [44] 8.7 6.6 12.4 10.8

TFA w/fc 2020 [38] 9.1 8.8 12.1 12.0

MPSR 2020 [42] 9.8 9.7 14.1 14.2

Viewpoint [43] 12.5 9.8 14.7 12.2

FSCE 2021 [33] 11.1 9.8 15.3 14.2

CRDR 2021 [21] 11.3 - 15.1 -

UP 2021 [41] 11.0 10.7 15.6 15.7

Ours 15.7 14.8 17.5 17.9

4.3 Comparison Experiments

Results on PASCAL VOC. For all three random novel splits from PASCAL
VOC, the evaluation results AP50 are presented in Table 1. The experimental
results include k = (1, 2, 3, 5, 10) shot under three different base/novel divisions.
Our method is greatly improved over the previous method, which shows the
effectiveness of our method. Meanwhile, this indicates that focusing on material
neglect plays a key role in solving FSOD. Basically, the best results have been
achieved in any shots and any splits. Our method makes the performance of split
2 reach a new level.

Results on MS-COCO. Compared with PASCAL VOC, the MS-COCO
contains more categories and more instances in each image, which indicates that
there is more serious material neglects in the MS-COCO. Therefore, the improve-
ment of our method on MS-COCO is significant. FSOD results of MS-COCO
are shown in Table 2. Compared with baseline methods, TFA [38], our method
consistently outperforms its performance. In particular, under the settings of
10 shot and 30 shot, our method is 6.6% and 5.4% higher than TFA on AP,
respectively. Meanwhile, in 10-shot setting, our proposed methods gain +3.2%
AP and +4.1% AP75 above the current SOTA on the 20 novel classes.

4.4 Ablation

We analyze the effectiveness of proposed modules in our method. Unless other-
wise specified, the experiments are carried out on the split1 of PASCAL VOC.

Module effectiveness.We analyze the effects of different modules and show
the results in Table 3. From Table 3, we can see that the different designed mod-
ules are important to improve the effect. MRSN improves the effect by 3% - 7%
under different shot. This shows that MRSN can effectively unearth unlabeled
novel-class instances in the base set and generate trusted pseudo labels, to pro-
vide richer knowledge for the network to learn. We show unlabeled novel-class
instances discovered by MRSN in Fig. 5. With the help of PCC, novel class AP50
can be improved by up to 3.2%. The improvement of effect strongly illustrates
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Table 3. Ablation study of different modules for FSOD on PASCAL VOC novel classes
(split-1). “MRSN” denotes Mutually Reinforcing Structure Network, “PCC” Proposal
Contrastive Consistency, and ”avg.△” average performance improvements

MRSN PCC UD-CutMix 1-shot 2-shot 3-shot 5-shot 10-shot avg.△
39.4 41.5 48.4 52.9 53.7

✓ 43.6 44.5 54.3 59.9 59.7 +5.2
✓ ✓ 44.9 47.7 57.2 61.1 62.1 +7.4
✓ ✓ ✓ 47.6 48.6 57.8 61.9 62.6 +8.5

the importance of imposing model discrimination between different categories
and avoiding the negative impact of noise labels. Although UD-CutMix only
improves the effectiveness of the model by 0.5% in 10-shot scenario, it can im-
prove the effect by 2.7% in 1-shot scenario, indicating that in the scenario with
extremely scarce data, the MRSN has a weak ability to discover novel instance,
and UD-CutMix can provide a supplement to the MRSN, allowing the model to
locate and identify novel classes of different scales in different backgrounds. We
show images obtained by UD-CutMix in Fig. 2.

Fig. 2. Data obtained by UD-CutMix. The first line is labeled novel instance. The
second line is the selected base image. And the third line is synthetic data

Proposal contrastive consistency. The Table 4 shows that the PCC has
brought a huge performance improvement. We have tried another form of con-
trastive learning, which we call Same Class Contrastive Consistency (SCCC).
SCCC takes the proposals of the same prediction category as positive samples
and the proposals of different categories as negative samples. From the result in
Table 4, we can see that the combination of SCCC and our MRSN framework
is suboptimal. The reason we analyze is that under the MRSN framework, the
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  （a） MRSN                                                （b） MRSN+PCC
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Fig. 3. t-SNE visualization of (a) Object proposal features learned without PCC and
(b) Object proposal features learned with PCC

generated pseudo labels have noise. When the category prediction of the pro-
posal deviates, the effect of SCCC is to forcibly close the samples of different
categories in the feature space, which will conflict with the optimization goal
of the classifier. The PCC regards proposals at the same location as a positive
sample pair, and proposals at different locations as a negative sample pair. The
learning process is independent of the specific prediction category, which can
effectively resist the negative impact caused by noise pseudo labels.

Table 4. Ablation for contrastive learning method, results of novel class AP50

MRSN UD-CutMix SCCC PCC 3-shot 5-shot 10-shot

✓ ✓ 55.0 60.0 60.2

✓ ✓ ✓ 57.0 60.7 60.9

✓ ✓ ✓ 57.8 61.9 62.6

Fig. 3 shows the object proposal features learned with and without PCC.
From t-SNE visualization, we can see that with the help of PCC, the features
of different classes are pulled away in the embedded space, while the features of
the same class are closer in the embedded space.

Mutually reinforcing structure network.We useMmine in the MRSN to
mine unlabeled novel-class instances and generate pseudo label. Mabsorb learns
new knowledge according to the pseudo label provided by Mmine, and then
Mmine accepts the new knowledge learned by Mabsorb in a certain ratio.

We analyze the influence of the update interval and ratio of Mmine on the
results. We carry out the experiment under the 3-shot setting of split 1. From
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Table 5. Few-shot object detection results on PASCAL VOC base classes (bAP50)
under 1,2,3,5,10-shot settings

Method\shot 1-shot 2-shot 3-shot 5-shot 10-shot

MPSR [42] 59.4 67.8 68.4 41.7 51.4

TFA [38] 78.9 78.6 77.3 77.6 75.2

FSCE [33] 72.2 71.8 70.1 74.3 73.6

Ours 80.2 79.7 79.3 79.5 79.2

the Fig. 4, we can see that the impact of too small update interval and too high
update ratio on the Mmine is similar, which will reduce the performance. When
the interval is too small or the ratio is too high, Mmine will shift rapidly to
Mabsorb, which will lead to the drift of the pseudo labels generated by Mmine,
and reduce the ability of the mutually reinforcing structure to resist noise labels.
From the Fig. 4, we can see that when the update interval of Mmine is too large,
Mmine does not receive new knowledge for a long time, which will degrade the
performance. In our experiment, we set the update ratio to 0.001 and the update
interval to 1000 iterations.
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Fig. 4. Ablation study on the mining model update ratio (1−α) and update iterations
in the novel classes of the first split of PASCAL VOC

To more intuitively see the role of MRSN, we show the pseudo labels gen-
erated by Mmine in Fig. 5. From columns (a) and (b), we can see that even
in complex scenarios, Mmine can mine unlabeled novel-class instances. Columns
(c) and (d) show that Mmine can give full play to its mining ability in difficult-
to-detect scenes (dark) and multi-object scenes. In column (e), the unlabeled
novel-class instance is a cow, but Mmine is not confused by a similar object
horse, and it accurately classifies and locates the cow.
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Not forgetting. The previous works almost focus on the performance of
the novel classes, while ignoring the non-forgetting effect on the base class. In
the real scene, we prefer the model to adapt to the novel classes on the premise
that the detection ability of the base class is basically unchanged. The method
in this paper achieves the above ideal goal. We show the bAP50 of the model on
the base class in Table 5.

Fig. 5. Visualization of unearthed novel-class instances. The first line is the images
from the base set where the novel instances are treated as background, such as ”sofa”
in columns (a) and (c), ”bus” in column (b), ”cow” in columns (d) and (e). The second
line is the images processed by our mining model

5 Conclusions

In this paper, we discover that previous FSOD solving methods overlook ma-
terial neglect . Towards solving this problem, a Mutually Reinforcing Structure
Network (MRSN) is introduced to mine and absorb unlabeled novel instances.
We design a Proposal Contrastive Consistency (PCC) module in MRSN to help
learn more detailed features and resist the influence of noise labels. Meanwhile,
we design a data synthesis method undirectional-CutMix (UD-CutMix) that
combines the novel class instances and the images in the base set. Our method
can effectively solve the problem of material neglect in FSOD. Experiments show
that our method outperforms the previous methods by a large margin.
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