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Abstract. Few-shot semantic segmentation is a promising solution for
scarce data scenarios, especially for medical imaging challenges with lim-
ited training data. However, most of the existing few-shot segmenta-
tion methods tend to over rely on the images containing target classes,
which may hinder its utilization of medical imaging data. In this pa-
per, we present a few-shot segmentation model that employs anatomi-
cal auxiliary information from medical images without target classes for
dual contrastive learning. The dual contrastive learning module performs
comparison among vectors from the perspectives of prototypes and con-
texts, to enhance the discriminability of learned features and the data
utilization. Besides, to distinguish foreground features from background
features more friendly, a constrained iterative prediction module is de-
signed to optimize the segmentation of the query image. Experiments
on two medical image datasets show that the proposed method achieves
performance comparable to state-of-the-art methods.1

Keywords: Few-shot Segmentation, Medical Image Segmentation, Con-
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1 Introduction

Automatic segmentation of medical images is widely used in clinical applications
such as lesion localization, disease diagnosis, and prognosis. Recently, although
segmentation networks based on fully supervised deep learning have achieved
excellent performance [7, 34, 49, 48], they rely on large amounts of pixel-level
annotations and are difficult to directly be applied to segment unseen classes.
For medical images, especially CT and MRI, labeling images is often expensive
and even requires years of clinical experience by experts. And it is generally
impractical to retrain a model for each tissue or organ class. These problems lead
to the challenges of medical image segmentation with few manual annotations
and poor model generalization ability.

Few-shot learning is proposed as a potential developable scheme to alleviate
those challenges, and the segmentation method based on few-shot learning is

1 Code is available at: https://github.com/cvszusparkle/AAS-DCL_FSS
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called few-shot semantic segmentation (FSS) [32]. The idea is to adopt the prior
knowledge distilled on labeled samples (denoted as support) to segment unla-
beled samples (denoted as query). Therefore, FSS often learns few-shot tasks
composed of base classes in an episodic training manner, and segments unseen
classes in the form of tasks in the inference stage.

Few-shot segmentation methods have made considerable progress in recent
years, but most of them are applied to natural images [29, 40, 39, 44, 50, 21, 17,
46], while FSS approaches for medical imaging are still developing [24, 51, 31, 28,
9, 35, 36]. There are the following possible factors: due to the low contrast, the
fundamental difference in modalities and the less amount of data of medical im-
ages (such as CT or MRI), methods based on natural images cannot be directly
applied to medical images; due to most of the current FSS methods for med-
ical imaging rely on images with target classes, while medical image datasets
contain limited target classes images, and some images without target classes
are discarded, resulting in low data availability. However, those images without
target classes (denoted as non-target images in this paper) may be rich in some
anatomical knowledge. Therefore, how to efficiently employ the existing medical
image data (i.e. try not to discard any data) and design a segmentation network
suitable for the characteristics of medical images are quite significant. Never-
theless, so far, it seems that only SSL-ALPNet [28] considered applying those
medical images without target classes to FSS, other methods still only depend
on images containing target classes [9, 31, 35, 36].

In order to enhance data availability and improve segmentation performance
under the bottleneck of scarce training data, we consider the acquisition of mean-
ingful knowledge from non-target images for contrastive learning. Intuitively, the
information of irrelevant tissues contained in non-target slices are the anatom-
ical background cues of the target classes. Taking those non-target slices into
consideration to construct contrastive learning can greatly increase the capabil-
ity of the network for learning discriminative features. At present, contrastive
learning has been widely used in visual tasks recently, such as [4, 5, 12, 11]; it has
also been gradually introduced into few-shot classification, such as [19, 27]; but
it is developing slowly in few-shot segmentation, especially for medical imaging.
The possible reason is that it is not as simple to construct positive and nega-
tive samples for medical images as compared to natural images, and there are
challenges in both the number of data samples and the characteristics of the im-
age modalities. How to construct effective contrastive learning to help few-shot
medical image segmentation may be a developable thought.

In this paper, we propose a scheme for designing dual contrastive learning
with anatomical auxiliary supervision, called AAS-DCL. The purpose is to adopt
the tissue knowledge in the images without target classes as negative samples,
and the support guidance information as positive samples, to construct proto-
typical contrastive learning and contextual contrastive learning, to strengthen
the discriminability of the features learned by the network and the data uti-
lization. Furthermore, in order to more effectively discriminate foreground and
background features, we also build a constrained iterative prediction (CIP) mod-
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ule to optimize the query segmentation. That is, by exploring the distribution
consistency between the feature similarity map and mask similarity map to con-
strain the update of the prediction results of the classifier.

Our contributions are summarized as follows:

– We propose to make full use of the anatomical information in the medical
images without target classes to construct dual contrastive learning (DCL),
from both prototypical and contextual perspectives, to encourage the net-
work to learn more discriminative features and improve the data utilization.

– We present a constrained iterative prediction module to optimize the pre-
diction mask of the classifier, which can effectively discriminate the query
features learned by the network equipped with the DCL module.

– Our proposed method set the start-of-the-art performance of few-shot seg-
mentation in two famous medical image datasets.

2 Related Work

Few-shot Semantic Segmentation. The FSS methods for natural images
are emerging in endlessly [6, 17, 21, 32, 37, 39, 40, 44, 46, 50]. OSLSM [32] pro-
posed the pioneering two branches and generated weights from support images
for few-shot segmentation; PL [6] proposed a prototypical framework tailored for
few-shot natural image segmentation; PANet [40] designed an alignment loss to
help the network learn the consistency between the support and query feature
spaces. PMMs [44] applied the Expectation-Maximization algorithm to extract
multiple partial prototypes to help the query image’s segmentation; PPNet [21]
proposed to build local prototypes based on superpixels; PFENet [37] designed
to construct prior masks and effective feature enrichment module to reconcile the
spatial inconsistency of query and support features. More recently, both RePRI
[3] and CWT [22] considered some unique training schemes, such as transductive
inference or multi-stage training, opening up some thought-provoking few-shot
segmentation insights. And some of those innovative units for natural images
may be conductive to few-shot medical image segmentation.

As for medical imaging, the FSS methods have also progressed in recent
years, and most of them are implemented based on 2D frameworks [43, 45, 31, 35,
28, 36]. As a pioneering work, sSENet [31] designed a strong interactive segmen-
tation network tailored for the traits of medical images; GCN-DE [35] improved
part of the structure in sSENet by applying a global correlation module with dis-
criminative embedding; PoissonSeg [33] applied Poisson learning to propagate
supervised signals and spatial consistency calibration for representative learn-
ing; SSL-ALPNet [28] proposed to adopt the idea of self-supervision without
annotations, designed adaptive local prototypical network and obtained state-
of-the-art effect. RP-Net [36] designed a clever model combined class-level pro-
totypical network with iterative refinement to segment the query image and got
the state-of-the-art performance. Besides, AKFNet [41] proposed to subtly use
the anatomical knowledge from support images to guide the query segmentation.
There are also FSS methods based on 3D frameworks, such as BiGRU [14], which
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proposed to capture the correlation between adjacent slices of medical volumes.
It can be seen that most of the current few-shot segmentation methods rely on
images with target classes. Differently, we propose to apply slices without target
classes for auxiliary supervision to construct contrastive learning, which will help
the network to learn more discriminative features.

Contrastive Learning. Contrastive learning aims to learn the similarity of var-
ious samples in embedding space, that is, to pull closer the more similar samples
and push farther the dissimilar ones. Recent works have been increasingly used in
computer vision tasks, including self-supervised ideas [5, 11, 12] and supervised
methods [13, 42]. SimCLR [4] applied different data augmentations on same im-
ages for self-supervised contrastive learning; MoCo [12] proposed a momentum
encoder to increase memory banks to store considerable views of different data
transformations. Recently, contrastive learning has also been adopted to few-shot
learning tasks [10, 19, 23, 27]. Liu et al. [19] proposed to use distinct data aug-
mentations into a few-shot embedding network for contrastive learning; Ouali et
al. [27] employed spatial features to build contrastive learning for few-shot clas-
sification. For few-shot segmentation, there is a slow development of contrastive
learning. Liu et al. [20] presented to apply global and local contrastive losses to
pre-train feature extractor for query prior features to help few-shot segmentation
of natural images. DPCL [15] was designed as a dual prototypical contrastive
learning network suitable for few-shot natural image segmentation. By explor-
ing the traits and challenges of medical image datasets, we design contrastive
learning for few-shot medical image segmentation.

Superpixel Segmentation. Superpixels are pixel groups generated by clus-
tering pixels using statistical methods according to image features. Based on
superpixels, one image can be segmented to different degrees, which can gener-
ate pseudo-labels to provide effective supervision for unlabeled scenarios. There
are some popular methods for superpixel segmentation, such as SLIC [1], SEEDS
[2], Graph-cuts [25] and Felzenszwalb’s [8]. SSL-ALPNet [28] applied the way [8]
to produce pseudo-labels of unlabeled images by superpixel segmentation for self-
supervision; Li et al. [18] employed the same method [8] to generate superpixels
as pseudo- classes and construct self-supervised tasks. In this work, different su-
perpixel segmentation algorithms will be studied to generate pseudo-labels for
non-target medical slices to construct contrastive learning.

3 Method

3.1 Problem Definition

The general formulation of few-shot semantic segmentation (FSS) is mainly fol-
lowed by [32]. In the FSS setting, the idea is to train a model on an annotated
training dataset Dtrain that can perform segmentation well on the testing data
Dtest with a few labeled samples, without re-training. The training classes Ctrain
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Fig. 1. Workflow of the proposed framework for few-shot medical image segmentation,
which is based on the baseline sSENet [31] with skip connections, and instrumental
schemes are designed including AAS-DCL and CIP modules

have no overlap with the testing classes Ctest, i.e., Ctrain∩Ctest = Ø. The episodic
training is adopted in FSS, where the model is trained with many epochs and
one epoch contains many episodes. To be specific, in each episode, the few-shot
learning consists of a support and query data pair, i.e., Dtrain is composed
of the support set Str and query set Qtr. Here, Str = {(xs(ci),y

s(ci))} and
Qtr = {(xq(ci))}, where x ∈ X refers to the image and y ∈ Y refers to corre-
sponding binary mask, i = 1, 2, ..., |c| is the number index of class c ∈ Ctrain. In
inference, Dtest is defined in the same mode but for testing images and masks
with the unseen class set Ctest. The background class (denoted as c0) is not
counted in Ctrain and Ctest.

3.2 Network Overview

Inspired by the strong interactive structure designed by sSENet [31] for medi-
cal images, we adopt it as a basic network and improve it subtly. As shown in
Fig. 1, the framework includes the following parts: (1) Encoder-decoder struc-
tures: feature extraction and reconstruction referring to the sSENet with added
skip connections; (2) Non-target slices processing pipeline: generating pseudo-
labels for non-target slices and extracting features for randomly selected partial
slices of non-target slice set ; (3) Dual contrastive learning with anatomical aux-
iliary supervision (AAS-DCL): prototypes generation and feature processing for
prototypical and contextual contrastive learning, respectively; (4) Constrained
iterative prediction (CIP): a designed classifier for iterative query prediction.

Non-target Slices Processing Pipeline. For CT and MRI datasets, most raw
scans have several slices without target organs, and their masks are all black. We
define the slices as non-target slice set Dnt. Since those non-target slices are rich
in anatomical knowledge about irrelevant organs or tissues, they are inherently
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Fig. 2. The diagram of dual contrastive learning with anatomical auxiliary supervision
(AAS-DCL). (a) Non-target slices processing pipeline: applying superpixel segmen-
tation to generate pseudo-labels and then selecting randomly some slices to extract
features by the encoder. (b) The workflow of contextual contrastive learning (CCL).
(c) The structure of the prior embedding (PE) module. (d) The workflow of the pro-
totypical contrastive learning, including two sub-modules (CPCL and PPCL)

discriminative from target classes. To effectively utilize these information, as
shown in Fig. 2(a), we first use a superpixel segmentation algorithm ([1, 2] or
[8]) to produce pseudo-labels offline for Dnt. Besides, K non-target slices are
randomly selected in each training episode, defined as Xnt = {(xnt)}K . For their
pseudo-labels, one superpixel (denoted as a pseudo-class) in each pseudo-label
is randomly selected to binarize the label, and the K binary pseudo-labels are
defined as Ynt = {(ynt)}K . Then the non-target slices Xnt are sent to the network
encoder to extract non-target features Fnt = {(f nt)}K ; finally, the pseudo-labels
Ynt and the feature maps Fnt are input into the AAS-DCL scheme.

3.3 Dual Contrastive Learning with Anatomical Auxiliary
Supervision

Due to the low contrast of medical images, the demarcation between the target
class and the background tissues is not obvious, which makes it difficult to accu-
rately segment target organs. Therefore, we explore the utilization of non-target
slices with rich anatomical knowledge to provide more background guidance,
which can constitute contrastive learning with query and support features. For
one thing, that will help to enhance the discriminability of learned features of
the model and improve the segmentation performance; for another, it will also
take better advantage of medical image datasets in few-shot segmentation.

As shown in Fig. 2, in the AAS-DCL scheme, we design prototypical con-
trastive learning (PCL) and contextual contrastive learning (CCL) to form the
DCL module in each training episode, from the perspectives of semantic class and
spatial information, respectively, to make the features similar to the represen-
tation information of the target class closer, and the dissimilar ones are farther
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away. The contrastive losses applied in the DCL module all refer to infoNCE
[26]:

Lcl(q, k
+, k−) = − log

exp (q · k+/τ)∑K
i=0 exp

(
q · k−i /τ

) (1)

where K denotes the number of negative keys and τ is a temperature factor.

Prior Embedding. To further guide the activation of foreground class-specific
information in query features, inspired by PFENet [37], we design the Prior
Embedding (PE) (Fig. 2(c)). The module needs to obtain the confidence map
M by the normalized similarity map between the support and query feature
[37], and the class-level prototype ps generated from the support feature and its
mask. Then the similarity map M, the expanded prototype E(ps) and the query

feature f q are concatenated and convolved to get an enhanced query feature f̂ q.

Prototypical Contrastive Learning. Prototypes are vectors rich in seman-
tic information; and most few-shot methods obtain prototypes by global aver-
age pooling of features and corresponding masks, which are often denoted as
class-level prototypes to guide the segmentation of the query image. However,
since class-level prototypes are prone to lose intra-class information, many few-
shot methods [44, 21, 28] proposed to produce partial prototypes to retain suffi-
cient intra-class cues. Our PCL includes two sub-modules: class-level prototyp-
ical contrastive learning (CPCL) and patch-level prototypical contrastive learn-
ing (PPCL), which comprehensively discriminate semantic information from the
global and local prototypes, respectively.

(i) Class-level Prototypical Contrastive Learning. Class-level prototype-
based learning can distinguish foreground and background features from the
perspective of the overall semantic class. To be specific, the support feature and
support mask, non-target features and the corresponding binary pseudo-labels
are used to generate their class-level prototypes by masked averaged pooling

(MAP) operation [50], respectively. And the query feature f̂ q is used to obtain
a mean vector vq by global average pooling (GAP). In addition, the vector is
regarded as the query vector ; the support prototype is regarded as a positive
key; and those non-target prototypes are regarded as negative keys. As shown
in the CPCL of Fig. 2(d), the contrastive loss is formulated as:

Lcpcl = Lcl(v
q, ps, pnt) = − log

exp (vq · ps/τ)∑K
i=0 exp (v

q · pnti /τ)
(2)

(ii) Patch-level Prototypical Contrastive Learning. We propose the
PPCL for two reasons: for one thing, since the class-level prototypes obtained by
MAP will filter out other background information around the target class, which
may be utilized as negative samples to enhance the discriminativeness of the
semantics around the target class, so the PPCL is used to remedy this problem;
for another, because contrastive learning largely requires amounts of effective
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negative samples, it is not sufficient to only consider class-level prototypes. The
generation of patch-level prototypes is inspired by the local prototypes in [28].
First, the entire feature map is evenly divided based on patches, and then MAP
is applied to each feature patch and the mask patch of the corresponding position
to obtain the local prototypes, we called them patch-level prototypes. Given the
patch size (DH , DH) and a feature map f ∈ RC×H×W , the process is formulated
as follows:

pdj =

∑
(h,w)∈dj

f dj
(h,w) · ydj

(h,w)∑
(h,w)∈dj

ydj
(h,w)

(3)

where the (h,w) are spatial coordinates in each patch, pdj refers to the prototype

in a patch dj and j = 1, 2, ..., DH

H denotes the patch index.
The support feature and its mask can obtain both some patch-level back-

ground prototypes {ps−d } and the patch-level foreground prototype ps+d by setting
a threshold [28]. Similarly, each non-target feature and corresponding pseudo-
label are also used to produce mickle patch-level prototypes {pntd }. The query

feature f̂ q is used to generate a mean vector vq by GAP operation. When build-
ing the contrastive loss, the support foreground prototype ps+d is regarded as a
positive key, and other support patch-level prototypes {ps−d } and all non-target
patch-level prototypes {pntd } are regarded as negative keys. This scheme increases
the number of prototype samples, which is beneficial to learning the correlation
between local features of similar classes and the discriminativeness among local
features of dissimilar semantic classes. As shown in the PPCL of Fig. 2(d), the
contrastive loss is written as:

Lppcl = Lcl

(
vq, ps+d , (ps−d , pntd )

)
= − log

exp
(
vq · ps+d /τ

)
∑K

i=0 exp (v
q · pntd (i)/τ) +

∑(
DH
H −1)

i=0 exp
(
vq · ps−d (i)/τ

) (4)

Contextual Contrastive Learning. In order to increase the discriminative-
ness of context features, we propose the contextual contrastive learning (CCL),
as shown in Fig. 2(b). Specifically, the support feature, enhanced query feature

f̂ q and non-target features are first processed by a spatial attention block [30],
to make all feature maps focus on richer contextual information. Then, these
processed features are averagely pooled to obtain different feature vector sets,
which will be used to construct contrastive learning. When calculating once a
CCL loss, a query feature vector f

q

j is regarded as the query vector, the sup-

port feature vector f
s

j at the same position is regarded as a positive key, and
all non-target feature vectors are regarded as negative keys. The number of loss
calculations N is equal to the number of query feature vectors, and finally the
mean value of the cumulative sum of all CCL losses obtained is adopted as the
output contextual contrastive loss. The formula is as follows:

Lccl =
1

N

N∑
j=0

Lj
cl(f

q

j , f
s

j , f
nt
) =

1

N

N∑
j=0

[
− log

exp
(
f
q

j · f
s

j/τ
)

∑K
i=0 exp

(
f
q

j · f
nt

i /τ
)] (5)
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Fig. 3. The diagram of constrained iterative prediction (CIP). (a) The details of sim-
ilarity consistency constraint (SCC). (b) The main iteration optimization process of
CIP. (c) The structure of the designed classifier to generate the query prediction

3.4 Constrained Iterative Prediction

The design of the dual contrastive learning module is beneficial to enhance the
features’ discriminability of the encoder-decoder. To encourage the foreground
and background of query feature to be segmented more effectively on the final
classifier, so the CIP module is proposed to optimize the part, which can also as
an assistant to the DCL module. As shown in Fig. 3(b), the basic components
include similarity consistency constraint (SCC) and prediction head.

Prediction Head. As shown in Fig. 3(c), unlike only a generic classifier (1x1
convolution and softmax), in order to predict more meaningfully, we consider
integrating the query prediction into the query feature by convolution, which
is derived from the iterative optimization idea of RP-Net [36] and CANet [47].
RP-Net fuses the prediction and the high-level query feature by a correlation
matrix, where a prototype-based classifier is further employed to obtain a new
prediction. And CANet fuses the prediction and the middle-level query feature
by residual concatenation, where an ASPP is further used to produce a new
prediction. Differently, we first utilize the result of the generic classifier as the
initial prediction mask, fuse it with the query feature of the decoder’s tail and
send into the prior embedding(PE) module, where the new segmentation result is
obtained by a series of convolution operations. The application of PE is to make
use of the guidance information of the support feature to promote the fusion of
the predicted query mask. The new query prediction will be determined to be
updated through the following constraints in SCC.

Similarity Consistency Constraint. As shown in Fig. 3(a), we consider the
information distribution constraints and first compute two similarity maps, Sm

and Sf. The Sm is calculated between the predicted query mask and the support
mask; Sf is calculated from the support and query features obtained by the
encoder. Intuitively, the probability value distributions on Sm and Sf should be
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as consistent as possible, because a more consistent distribution means that the
predicted query mask is closer to ground truth. We minimize the MSE loss to
quantify the better distribution consistency between Sm and Sf, and employ
an iterative strategy to use this loss to constrain whether to update the final
prediction result and the iteration times I is experimentally set to 5.

3.5 Training Strategy

For each episode, one support and query pair is selected according to the strategy
in [31] to form a 1-way 1-shot few-shot setting, and K non-target slices and
corresponding pseudo-labels are randomly selected. All pairs are input to the
network for end-to-end learning. For loss function, we adopt cross-entropy loss
to supervise the segmentation of query image. And three contrastive losses are
employed to learn the feature discriminability of the model, so the total loss is:

L = Lce + λcpcl · Lcpcl + λppcl · Lppcl + λccl · Lccl (6)

where the λcpcl, λppcl and λccl are experimentaly set as 0.08, 0.12 and 0.06,
respectively.

4 Experiments

4.1 Dataset and Evaluation Metric

In order to evaluate the effectiveness of the proposed method, we conducted
experiments on two public medical image datasets: (1) CHAOS-T2 is from the
challenge (Task 5) of ISBI 2019 [38], and it contains 20 MRI scans of T2SPIR
with 623 axial 2D slices in total, including 492 slices with target classes and 131
non-target slices. (2) Synapse is from the public challenge [16], and it contains
30 CT scans with 3779 axial abdominal slices, including 1755 slices with target
classes involved in our experiments, the remaining are non-target slices.

Due to the 2D framework of our model, experiments are performed with
images sliced from 3D scans along the 2D axis. Then five-fold cross-validation
is applied in our experiments. To simulate the scarcity of annotated data in
realistic situations, we performed 1-way 1-shot setting experiments for four organ
classes, including the liver, left kidney(LK), right kidney(RK) and spleen. We
employ one of the four classes as the unseen class and the other three classes
as the base classes, so that four few-shot tasks are constructed. To evaluate the
segmentation performance of 2D slices on 3D scans, we follow the protocol in
the work [31] and apply the Dice coefficient as the major evaluation metric. In
addition, we also conduct the statistical significance analysis, which is reported
in the supplementary material.

4.2 Implementation Details

The network is implemented by Pytorch on an Nvidia RTX 2080Ti GPU. All
2D slices are resized to the resolution of 256 × 256. In PPCL, the number of
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Table 1. Statistical comparison (in Dice score %) of different methods on the validation
sets for CHAOS-T2 and Synapse datasets

Method
CHAOS-T2 Synapse

Liver RK LK Spleen Mean Liver RK LK Spleen Mean

PANet [40] 41.87 44.55 50.64 49.94 46.75 36.18 25.09 32.41 22.13 28.95
sSENet [31] 27.25 59.22 54.89 48.45 47.45 41.87 34.55 40.60 39.94 39.24
PoissonSeg [33] 61.03 53.57 50.58 52.85 54.51 58.74 47.02 50.11 52.33 52.05
GCN-DE [35] 49.47 83.03 76.07 60.63 67.30 46.77 75.50 68.13 56.53 61.73
SSL-ALPNet [28] 68.71 79.53 71.14 61.11 70.12 73.26 57.73 64.34 64.89 65.05
RP-Net [36] 69.73 82.06 77.55 73.90 75.81 74.11 68.32 63.75 65.24 67.85
Ours 69.94 83.75 76.90 74.86 76.36 71.61 69.95 64.71 66.36 68.16

patches is experimentally set to 4. By using an initial learning rate of 0.0001, we
use the loss function (Equ. 6) for episodic training with a batch size of 1. And
the learning rate is based on a polynomial decay learning rate policy. Besides,
the Adam algorithm is employed to optimize the learning process with power =
0.95 and weight decay = 1e-7. The model is trained by 70 epochs, each of which
contains the number of episodes equal to the scale of the training set. For data
augmentation, we focus more on random modifying the image sharpness, with
the visibility factor range of [0.2, 0.5] and the lightness factor range of [0.5, 1.0].

4.3 Comparisons with State-of-the-art Methods

To demonstrate the superiority of the proposed method, we compare our method
with the classical and current state-of-the-art FSS methods, as shown in Table
1 and Fig. 4. The PANet [40] proposed an alignment regularization loss, which
is utilized widely by other few-shot methods; sSENet [31] is the pioneering work
of FSS for medical imaging; GCN-DE [35] employs global correlation module
to optimize the structure of sSENet; PoissonSeg [33] considers Poisson learning
and spatial consistency calibration for few-shot medical image segmentation;
SSL-ALPNet [28] utilizes self-supervision and adaptive local prototypes for FSS;
RP-Net [36] applies global prototypes with recurrent refinement for prediction.
Since GCN-DE and PoissonSeg are not open source, we directly compare the
statistical results from their original works; besides, the results of other FSS
methods are obtained by re-experiments in a unified experimental environment.

Table 1 shows that compared with other few-shot methods of medical imag-
ing, for the CHAOS-T2 dataset, our method achieves relatively best perfor-
mance in most target classes, including right kidney, liver and spleen, as well as
the mean Dice score; for the Synapse dataset, our method also get the best Dice
scores on left kidney, spleen and mean Dice. It is precisely because our method
makes full use of anatomical auxiliary knowledge of non-target slices to help the
network learn more discriminative features through contrastive learning, and
applies the CIP module for more effective prediction to make the segmentation
performance better.
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Fig. 4. Visual comparison of different methods on the CHAOS-T2 and Synapse
datasets

4.4 Ablation Studies

Ablation experiments are performed on the CHAOS-T2 dataset. Based on the
baseline sSENet [31], we focus on the roles of the proposed dual contrastive
learning (DCL) and constrained iterative prediction (CIP), the impact of the
sub-modules (CPCL, PPCL and CCL) in DCL, and other factors of the network.

Effect of the DCL module. To demonstrate the effect of the DCL module,
we performed ablation experiments on it, the data results are shown in Table
2 and Table 3. And Fig. 5 shows the visualization results of the DCL module,
which applies the visualized feature map after 1×1 convolution and before the
softmax function. Table 2 shows that the DCL can effectively enhance the Dice
performance due to its promotion to the network’s ability of learning discrim-
inative features. For the sub-modules CPCL and PPCL in PCL, Table 3 and
Fig. 5 both show that when the two kinds of prototypical contrastive losses are
combined concurrently, the performance gets better. Because the two can assist
each other: CPCL is conducive to learning the gap among semantic classes, and
PPCL effectively utilizes local prototypes to improve the identifiability among
the local features within classes. Then the CCL can increase the discriminability
of contextual features and also help improve the segmentation performance.
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Fig. 5. Visual feature maps of different components based on the baseline‡(on the
CHAOS-T2 dataset). The warmer colors represent the better discriminative features

Table 2. Ablation study results (in Dice
score %) on the CHAOS-T2 dataset for the
DCL and CIP modules. Baseline†: sSENet
[31]; Baseline‡: sSENet with skip connections

Methods Liver RK LK Spleen Mean

Baseline†[31] 27.25 59.22 54.89 48.45 47.45
Baseline‡ 30.21 62.47 55.96 47.68 49.08
Baseline‡+CIP 51.02 69.84 63.77 63.65 62.07
Baseline‡+DCL 56.91 75.23 67.19 69.52 67.21
Baseline‡+DCL+CIP 69.94 83.75 76.90 74.86 76.36

Table 3. Ablation study results (in Dice
score %) on the CHAOS-T2 dataset for sub-
modules (CPCL, PPCL and CCL) of the DCL
module

CCL CPCL PPCL Liver RK LK Spleen Mean

✓ 59.25 71.64 69.04 65.66 66.40
✓ ✓ 67.63 79.14 71.09 70.79 72.16

✓ ✓ 68.00 80.26 72.22 71.85 73.08
✓ ✓ 68.53 80.80 73.17 72.54 73.76
✓ ✓ ✓ 69.94 83.75 76.90 74.86 76.36

Importance of the CIP module. Table 2 and Fig. 5 also show the ablation
experimental results of CIP. It can be seen that the design of CIP can help the
network to further improve the segmentation performance. The PerdHead and
SCC cooperate to perform iterative optimization, which is quite significant for
discriminative features learned by DCL in the network. More Dice performances
under different iteration numbers are shown in Fig. 6.

Influence of other factors. (1) For the superpixel segmentation algo-
rithms generating pseudo-labels for non-target slices, we adopt the SLIC [1],
SEEDS [2] and Felzenszwalb’s [8] to produce pseudo-labels respectively, the re-
sults are shown in Table 4. It is shown that Felzenszwalb’s method gets the
relatively best Dice score; because it could generate more irregularly shaped
superpixel pseudo-labels that better fit anatomical contours, enabling our PCL
to efficiently utilize them. The superpixels generated by SLIC are too regular
and not friendly to the learning of anatomical information. The SEEDs-based
method has a moderate performance. Moreover, the superpixels produced by
the latter two would contain more all-black backgrounds, which may also affect
the contrastive learning. So we employ the Felzenszwalb’s as main algorithm for
our experiments. Examples of related superpixels and pseudo-labels are shown
in Fig. 7. (2) For the iteration numbers of CIP module, we employ different
numbers for ablation experiments, the results are shown in Table 4. To get a
trade-off between the performance and memory usage, we utilize five iterations
in our experiments. (3) For the number of randomly selected non-target
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Table 4. Ablation study results (in Dice score) on the CHAOS-T2 dataset for other
factors

Alation Factors Settings Liver(%) RK(%) LK(%) Spleen(%) Mean(%)

SLIC [1] 45.23 70.45 68.72 61.00 61.35
Superpixel Segmentation SEEDS [2] 49.05 80.83 71.19 67.22 67.07

Felzenszwalb’s [8] 69.94 83.75 76.90 74.86 76.36

I = 3 67.53 78.47 72.39 71.93 72.58
Iteration Numbers I = 5 69.94 83.75 76.90 74.86 76.36

I = 7 70.11 83.58 76.17 74.62 76.12

K = 1 64.60 76.34 71.08 69.33 70.34
Number of Slices K = 3 69.94 83.75 76.90 74.86 76.36

K = 5 69.35 82.83 75.81 71.22 74.80

Fig. 6. Dice performance under differ-
ent iteration numbers in the CIP mod-
ule (on the CHAOS-T2 dataset)

Fig. 7. Examples of superpixels and
pseudo-labels obtained by different
methods on a same non-target slice

slices, we consider the memory usage and performance and apply K = 3 for
main experiments, the results are shown in Table 4.

5 Conclusion

We presented a network of dual contrastive learning with anatomical auxiliary
information from medical images without target classes, including prototypical
and contextual contrastive learning, and enhanced the discriminability of learned
features and the data utilization. Besides, the designed constrained iterative
prediction module optimized the query segmentation result. Experiments show
the superiority of the proposed method for CT and MRI datasets. Moreover, The
contrastive learning with the anatomical supervision from non-target images may
provide a developable insight for few-shot medical image segmentation.
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