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The supplementary material is organized as follows. Section A provides an
additional review on Multi-task Representation Learning Theory. Section B pro-
vides the full proofs of the theoretical results discussed in the paper. Section C
gives more details behind the proposed regularization terms. Section D describes
the full experimental setup with all the hyperparameters used. Section E gives
the detailed results used to derive Figure 3 in the paper. Section F provides
more experiments showing that further enforcing the condition number assump-
tion for ProtoNet is unfavorable. In Section G, we study the effect of each
term in the proposed regularization. Section H provides a preliminary analysis
in the out-of-domain setting.

A Review of Multi-task Representation Learning Theory

We formulate the main results of the three main theoretical analyses of Multi-
task Representation (MTR) Learning Theory provided in [3, 10, 17] in Table 1
to give additional details for Sections 2.2 and 4.4 of our paper.

One may note that all the assumptions presented in this table can be roughly
categorized into two groups. First one consists of the assumptions related to the
data generating process (A1, A2.1, A2.4-7 and A3.1), technical assumptions
required for the manipulated empirical quantities to be well-defined (A2.6) and
assumptions specifying the learning setting (A3.3-4). We put them together as
they are not directly linked to the quantities that we optimize over in order to
solve the meta-learning problem. The second group of assumptions include A2.2
and A3.2: both defined as a measure of diversity between source tasks’ predictors
that are expected to cover all the directions of Rk evenly. These assumptions is
of primary interest as it involves the matrix of predictors optimized in Eq. 1 as
thus one can attempt to force it in order for Ŵ to have the desired properties.

Finally, we note that assumption A2.2 related to the covariance dominance
can be seen as being at the intersection between the two groups. On the one
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Table 1: Overview of main theoretical contributions related to MTR learning
with their assumptions, considered classes of representations and the obtained
bounds on the excess risk. Here Õ(·) hides logarithmic factors.
Paper Assumptions Φ Bound

[10] A1. ∀t ∈ [[T + 1]], µt ∼ η – O
(

1√
n1

+ 1√
T

)

[3]

A2.0. ∀t, ∥w∗
t ∥ = Θ(1)

A2.1. ∀t, x̄ is ρ2-subgaussian

A2.2. ∀t ∈ [[T ]], ∃c > 0 : Σt ⪰ cΣT+1 A2.1-2.4, linear, k ≪ d O
(

kd
cn1T

+ k
n2

)
A2.3. σ1(W

∗)
σk(W

∗) = O(1) A2.3-2.5, general, k ≪ d O
(

C(Φ)
n1T

+ k
n2

)
A2.4. w∗

T+1 ∼ µw : ||Ew∼µw [wwT ]|| ≤ O( 1
k
) A2.1,2.5,2.6, linear + ℓ2 regul., k ≫ d σR̄Õ

(√
Tr(Σ)

√
n1T

+

√
||Σ||2√
n2

)
A2.5. ∀t, pt = p,Σt = Σ A2.1,2.5,2.6,2.7, two-layer NN (ReLUs+ ℓ2 regul.) σR̄Õ

(√
Tr(Σ)

√
n1T

+

√
||Σ||2√
n2

)
A2.6. Point-wise+unif. cov. convergence

A2.7. Teacher network

[17]

A3.1. ∀t, x ∼ µXt is ρ2-subgaussian

A1-4, linear, k ≪ d Õ
(

kd
n1T

+ k
n2

)A3.2. σ1(W
∗)

σk(W
∗) = O(1) and ∀t, ∥wt∥ = Θ(1)

A3.3. Ŵ learned using the Method of Moments

A3.4. w∗
T+1 is learned using Linear Regression

hand, this assumption is related to the population covariance and thus is related
to the data generating process that is supposed to be fixed. On the other hand,
we can think about a pre-processing step that precedes the meta-train step of
the algorithm and transforms the source and target tasks’ data so that their
sample covariance matrices satisfy A2.2. While presenting a potentially interest-
ing research direction, it is not clear how this can be done in practice especially
under a constraint of the largest value of c required to minimize the bound. [3]
circumvent this problem by adding A2.5, stating that the task data marginal
distributions are similar.

An intuition behind the main assumptions studied in this paper (Assumption
1 and 2 in this paper, and A2.0, A2.3, A3.2 in Table 1) can be seen in Figure 1.
When the assumptions do not hold, the linear predictors can be biased towards
a single part of the space and over-specialized to the tasks. The representation
learned will not generalize well to unseen tasks. If the assumptions are respected,
the linear predictors are complementary and will not under- or over-specialize to
the tasks seen. The representation learned can more easily adapt to the target
tasks and achieve better generalization.

B Full proofs

B.1 Proof of Theorem 1

Prototypical Loss We start by recalling the prototypical loss Lproto used during
training of Prototypical Networks for a single episode with support set S and
query set Q:

Lproto(S,Q, ϕ) = E(q,i)∼Q

[
− log

exp(−d(ϕ(q), ci))∑
j exp (−d(ϕ(q), cj))

]
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Violated assumptions Satisfied assumptions

𝜅(𝐖) ≫ 1

𝜎𝑚𝑖𝑛𝜎𝑚𝑎𝑥

Source tasks

Target tasks

𝐖 = [𝐰1, 𝐰2, 𝐰3]

𝐰1

𝐰2

𝐰3

𝐰1

𝐰𝟐

𝐰3

𝜅(𝐖) ≈ 1

𝜎𝑚𝑖𝑛𝜎𝑚𝑎𝑥

Source tasks

𝐖 = [𝐰1, 𝐰2, 𝐰3]

𝟏/||𝐰3||

𝟏/||𝐰3||

Target tasks

Fig. 1: Illustration of the intuition behind the assumptions derived from the
MTR learning theory. (left) Lack of diversity and increasing norm of the linear
predictors restrict them from being useful on the target task. (right) When the
assumptions are satisfied, the linear predictors cover the embedding space evenly
and their norm remains roughly constant on source tasks making them useful
for a previously unseen task.

= E(q,i)∼Q [d(ϕ(q), ci)]︸ ︷︷ ︸
(1)

+ Eq∼Q log

n∑

j=1

exp (−d(ϕ(q), cj))
︸ ︷︷ ︸

(2)

with ci = 1
k

∑
s∈Si

ϕ(s) the prototype for class i, Si ⊆ S being the subset
containing instances of S labeled with class i.
Distance For ProtoNet, we consider the Euclidean distance between the rep-
resentation of a query example ϕ(q) and the prototype of a class i ci:

−d(ϕ(q), ci) = −∥ϕ(q)− ci∥22
= −ϕ(q)⊤ϕ(q) + 2c⊤i ϕ(q)− c⊤i ci.

Then, with respect to class i, the first term is constant and do not affect the
softmax probabilities. The remaining terms are:

−d(ϕ(q), ci) = 2c⊤i ϕ(q)− ∥ci∥22
=

2

|Si|
∑

s∈Si

ϕ(s)⊤ϕ(q)− ∥ci∥22.

Now we can recall Theorem 1:

Theorem 1. (Normalized ProtoNet) If ∀i ∥ci∥ = 1,
then ∀ϕ̂ ∈ argminϕ Lproto(S,Q, ϕ), the matrix of the optimal prototypes W∗ is
well-conditioned, i.e. κ(W∗) = O(1).
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Proof. We can rewrite the first term in Lproto as

E(q,i)∼Q [d(ϕ(q), ci)]

= −E(q,i)∼Q

[
2

|Si|
∑

s∈Si

ϕ(s)⊤ϕ(q)− ∥ci∥22

]

= −E(q,i)∼Q

[
2

|Si|
∑

s∈Si

ϕ(s)⊤ϕ(q)

]

+ E(q,i)∼Q

[
∥ci∥22

]
,

and the second term as

Eq∼Q


log

n∑

j=1

exp (−d(ϕ(q), cj))




= Eq∼Q


log

n∑

j=1

exp (
2

|Sj |
∑

s∈Sj

ϕ(s)⊤ϕ(q)− ∥cj∥22)




= Eq∼Q


log

n∑

j=1

exp (2c⊤j ϕ(q)− ∥cj∥22)




= Eq∼Q


log


n

n∑

j=1

1

n

[
exp (2c⊤j ϕ(q)− ∥cj∥22)

]





= Eq∼Q


log

n∑

j=1

1

n

[
exp (2c⊤j ϕ(q)− ∥cj∥22)

]
+ log n


 .

By dropping the constant part in the loss, we obtain:

Lproto(S,Q, ϕ) = −E(q,i)∼Q

[
2

|Si|
∑

s∈Si

ϕ(s)⊤ϕ(q)

]

+ Eq∼Q


log

n∑

j=1

1

n

[
exp (2c⊤j ϕ(q))

]

 .

Let us note Sd the hypersphere of dimension d, andM(Sd) the set of all possible
Borel probability measures on Sd. ∀µ ∈ M(Sd), u ∈ Sd, we further define the
continuous and Borel measurable function:

Uµ(u) :=

∫

Sd

exp(2u⊤v)dµ(v).
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Then, we can write the second term as

Eq∼Q

[
logEc∼C◦ϕ−1

[
exp (2ϕ(c)⊤ϕ(q))

]]

= Eq∼Q

[
logUC◦ϕ−1(ϕ(q))

]
,

where C is the distribution of prototypes of S, i.e. each data point in C is
the mean of all the points in S that share the same label, and C ◦ ϕ−1 is the
probability measure of prototypes, i.e. the pushforward measure of C via ϕ.

We now consider the following problem:

min
µ∈M(Sd)

∫

Sd

logUµ(u)dµ(u). (1)

The unique minimizer of Eq. 1 is the uniform distribution on Sd, as shown in [19].
This means that learning with Lproto leads to prototypes uniformly distributed
in the embedding space. By considering W∗ the matrix of the optimal prototypes
for each task then W∗ is well-conditioned, i.e. κ(W∗) = O(1).

B.2 Proof of Proposition 1

Let us recall the learning model of interest and Proposition 1:

ŷt = ⟨wt,xt⟩, ℓt = Ep(xt,yt|θt)(yt − ⟨wt,xt⟩)2. (2)

Proposition 1. Let ∀t ∈ [[T ]], θt ∼ N (0d, Id), xt ∼ N (0d, Id) and yt ∼
N (⟨θt,xt⟩, 1). Consider the learning model from Eq. 2, let Θi := [θi,θi+1]

T ,
and denote by Ŵi

2 the matrix of last two predictors learned by Maml at itera-
tion i starting from ŵ0 = 0d. Then, we have that:

∀i, κ(Ŵi+1
2 ) ≥ κ(Ŵi

2), if σmin(Θi) = 0.

Proof. We follow [1] and note that in the considered setup the gradient of the
loss for each task is given by

∂ℓt(ŵ − α∇ℓt(θ))
∂ŵ

∝ (1− α)2(ŵt − θt)

so that the meta-training update for a single gradient step becomes:

ŵt ← ŵt−1 − β(1− α)2(ŵt−1 − θt),

where β is the meta-training update learning rate. Starting at ŵ0 = 0d, we have
that

ŵ1 = cθ1,

ŵ2 = c((c− 1)θ1 + θ2),

. . .
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ŵn = c

n∑

i=1

θi(c− 1)n−i,

where c := β(1− α)2. We can now define matrices Ŵi
2 as follows:

Ŵ1
2 =


 cθ1,

c((c− 1)θ1 + θ2)


 ,

Ŵ2
2 =


 c((c− 1)θ1 + θ2),

c((c− 1)2θ1 + (c− 1)θ2 + θ3)


 ,

. . .

Ŵn
2 =


c

∑n
i=1 θi(c− 1)n−i,

c
∑n+1

i=1 θi(c− 1)n−i


 .

We can note that for all i > 1:

Ŵi+1
2 = (c− 1)Ŵi

2 + cΘi.

Now, we can write:

κ(Ŵi+1
2 ) =

σ1(Ŵ
i+1
2 )

σ2(Ŵ
i+1
2 )

=
σ1((c− 1)Ŵi

2 + cΘi)

σ2((c− 1)Ŵi
2 + cΘi)

≥ σ1((c− 1)Ŵi
2)− σ2(cΘi)

σ2((c− 1)Ŵi
2 + cΘi)

≥ σ1((c− 1)Ŵi
2)− σ2(cΘi)

σ2((c− 1)Ŵi
2) + σ2(cΘi)

≥ κ(Ŵi
2).

where the second and third lines follow from the inequalities for singular values
σ1(A+B) ≤ σ1(A) + σ2(B) and σi(A+B) ≥ σi(A)− σmin(B) and the desired
result is obtained by setting σmin(θi) = 0.

B.3 Proof of Proposition 2

Let us first recall Proposition 2:

Proposition 2. If ∀t ∈ [[T ]], ∥w∗
t ∥ = O(1) and κ(W∗) = O(1), and wT+1

follows a distribution ν such that ∥Ew∼ν [ww⊤]∥ ≤ O
(
1
k

)
, then

ER(ϕ̂, ŵT+1) ≤ O

(
C(Φ)

n1T
· κ(W∗) +

k

n2

)
. (3)
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Proof. Du et al. [3] assume that σk(W
∗) ≳ T

k (Assumption 4.3 in their work).
However, since we also have ∥w∗

t ∥ = O(1), it is equivalent to σ1(W
∗)

σk(W∗) = O(1).

We have σ1(W
∗) ≳ σk(W

∗) ≳ T
k and then σ1(W

∗)
T ·σk(W∗) = 1

T · κ(W∗) ≳ 1
k·σk(W∗)

which we use in their proof of Theorem 5.1 instead of 1
T ≳ 1

k·σk(W∗) to obtain
the desired result.

B.4 Proof of Proposition 3

Let us recall the data generating process and Proposition 3:

∀t ∈ [[T + 1]] and (x, y) ∼ µt,

y = ⟨w∗
t , ϕ

∗(x)⟩+ ε, ε ∼ N (0, σ2).
(4)

Proposition 3. Let T = 2, X ⊆ Rd be the input space and Y = {−1, 1} be
the output space. Then, there exist distributions µ1 and µ2 over X × Y, repre-
sentations ϕ̂ ̸= ϕ∗ and matrices of predictors Ŵ ̸= W∗ that satisfy Eq. 4 with
κ(Ŵ) ≈ 1 and κ(W∗)≫ 1.

Proof. Let us define two uniform distributions µ1 and µ2 parametrized by a
scalar ε > 0 satisfying the data generating process from Eq. 4:

1. µ1 is uniform over {1− kε, k, 1, . . .︸︷︷︸
d−3

} × {1} ∪ {1 + kε, k,−1, . . .︸︷︷︸
d−3

} × {−1};

2. µ2 is uniform over {1+kε, k, k−1
ε , . . .︸︷︷︸

d−3

}×{1}∪{−1+kε, k, 1+k
ε , . . .︸︷︷︸

d−3

}×{−1}.

where last d − 3 coordinates of the generated instances are arbitrary numbers.
We now define the optimal representation and two optimal predictors for each
distribution as the solution to the MTR problem over the two data generating
distributions and Φ = {ϕ| ϕ(x) = ΦTx, Φ ∈ Rd×2}:

ϕ∗,W∗ = argmin
ϕ∈Φ,W∈R2×2

2∑

i=1

E
(x,y)∼µi

ℓ(y, ⟨wi, ϕ(x)⟩), (5)

One solution to this problem can be given as follows:

Φ∗ =


1 0 0 . . . 0

0 1 0 . . . 0




T

, W∗ =


1 ε

1 −ε


 ,

where Φ∗ projects the data generated by µi to a two-dimensional space by dis-
carding its d− 2 last dimensions and the linear predictors satisfy the data gen-
erating process from Eq. 4 with ε = 0. One can verify that in this case W∗ have
singular values equal to

√
2 and

√
2ε, and κ(W∗) = 1

ε . When ε→ 0, the optimal
predictors make the ratio arbitrary large thus violating Assumption 1.
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Let us now consider a different problem where we want to solve Eq. 5 with
constraints that force linear predictors to satisfy both assumptions:

ϕ̂,Ŵ = argmin
ϕ∈Φ,W∈R2×2

2∑

i=1

E
(x,y)∼µi

ℓ(y, ⟨wi, ϕ(x)⟩),

s.t. κ(W) ≈ 1 and ∀i, ∥wi∥ ≈ 1.

(6)

Its solution is different and is given by

Φ̂ =


0 1 0 . . . 0

0 0 1 . . . 0




T

, Ŵ =


0 1

1 −ε


 .

Similarly to Φ∗, Φ̂ projects to a two-dimensional space by discarding the first and
last d− 3 dimensions of the data generated by µi. The learned predictors in this
case also satisfy Eq. 4 with ε = 0, but contrary to W∗, κ(Ŵ) =

√
2+ε2+ε

√
ε2+4

2+ε2−ε
√
ε2+4

tends to 1 when ε → 0. The construction used in this proof is illustrated in
Figure 2

C More Details on the regularization terms

By adding ∥W∥2F in the loss, we force the model to have a low norm on the
weights. Since it cannot be put to 0 or below, the model will keep the norm
relatively constant instead of increasing it. The second regularizer term is a softer
way to apply the constraint on the norm rather than considering normalized
weights as in Eq. 6.

According to Theorem 7.1 from [9], subgradients of singular values function
are well-defined for absolutely symmetric functions. In our case, we are comput-
ing in practice the squared singular values σ2(W) and we retrieve the singular
values by taking the square root, as explained in Section 3.2 of the paper. This
means that effectively, we are computing κ(W) = max(|σ(W)|)/min(|σ(W)|),
which is an absolutely symmetric function. Consequently, subgradients of the
spectral regularization term κ(W) are well-defined and can be optimized effi-
ciently when used in the objective function.

D Detailed Experimental Setup

We consider the few-shot image classification problem on three benchmark datasets,
namely:

1. Omniglot [7] is a dataset of 20 instances of 1623 characters from 50 different
alphabets. Each image was hand-drawn by different people. The images are
resized to 28 × 28 pixels and the classes are augmented with rotations by
multiples of 90 degrees.
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w∗1

κ(W∗) ε→0−−→ +∞

w∗2

κ(W∗) ε→0−−→ +∞

Source task 1 in Φ∗ space Source task 2 in Φ∗ space

ŵ1

κ( ̂W) ε→0−−→ 1

ŵ2

κ( ̂W) ε→0−−→ 1

Source task 1 in Φ̂ space Source task 2 in Φ̂ space

Fig. 2: Visualization of the distributions used in the constructive example for
the proof of Proposition 3, with ϵ = 0.02. In this example, κ(Ŵ) is closer to
1 than κ(W∗). It shows that we can search for a representation ϕ̂ such that
optimal predictors in this space are fulfilling the assumptions, while solving the
underlying problem equally well.

2. miniImageNet [13] is a dataset made from randomly chosen classes and
images taken from the ILSVRC-12 dataset [15]. The dataset consists of 100
classes and 600 images for each class. The images are resized to 84×84 pixels
and normalized.

3. tieredImageNet [14] is also a subset of ILSVRC-12 dataset. However, un-
like miniImageNet, training classes are semantically unrelated to testing
classes. The dataset consists of 779, 165 images divided into 608 classes.
Here again, the images are resized to 84× 84 pixels and normalized.

For each dataset, we follow a common experimental protocol used in [2, 4] and
use a four-layer convolution backbone (Conv-4) with 64 filters as done by [2]
optimized with Adam [6] and a learning rate of 0.001. On miniImageNet and
tieredImageNet, models are trained on 60000 5-way 1-shot or 5-shot episodes
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and on 30000 20-way 1-shot or 5-shot episodes for Omniglot. We use a batch
size of 4 and evaluate on the validation set every 1000 episodes. We keep the
best performing model on the validation set to evaluate on the test set. We
measure the performance using the top-1 accuracy with 95% confidence intervals,
reproduce the experiments with 4 different random seeds using a single NVIDIA
V100 GPU, and average the results over 2400 test tasks. The seeds used for all
experiments are 1, 10, 100 and 1000. For Maml and MC, we use an inner learning
rate of 0.01 for miniImageNet and tieredImageNet, and 0.1 for Omniglot. During
training, we perform 5 inner gradient step and 10 step during testing. For all
FSC experiments, unless explicitly stated, we use the regularization parameters
λ1 = λ2 = 1.

We also provide experiments with the ResNet-12 architecture [8]. In this
case, we follow the recent practice and initialize the models with the weights
pretrained on the entire meta-training set [12, 16, 21]. Like in their protocol,
this initialization is updated by meta-training with ProtoNet or Maml on
at most 20000 episodes, grouping every 100 episodes into an epoch. Then, the
best performing model on the validation set, evaluated every epoch, is kept and
the performance on 10000 test tasks is measured. For all experiments with the
ResNet-12 architecture, the SGD optimizer with a weight decay of 0.0005 and
momentum of 0.9 and a batch of episodes of size 1 are used. For ProtoNet,
following the protocol of Ye et al. [21], an initial learning rate of 0.0002, decayed
by a factor 0.5 every 40 epochs, is used. For Maml, following Ye et Chao [20], the
initial learning rate is set to 0.001, decayed by a factor 0.1 every 20 epochs. The
number of inner loop updates are respectively set to 15 and 20 with a step size
of 0.05 and 0.1 for 1-shot and 5-shot episodes on the miniImageNet dataset, and
respectively 20 and 15 with a step size of 0.001 and 0.05 on the tieredImageNet
dataset.

E Detailed performance comparisons

The plots showing the behavior of ProtoNet and Maml on Omniglot are
shown in Figure 4. The detailed training curves of the regularized and normal-
ized versions of ProtoNet, IMP, Maml and MC can be found in Figure 3.
The performance gap (difference of accuracy in p.p.) throughout training for
all methods is shown in Figure 5. Table 2 provides the detailed performance of
our reproduced methods with and without our regularization or normalization
and Figure 5 shows the performance gap throughout training for all methods on
miniImageNet. From them, we note that the gap in performance due to our reg-
ularization is globally positive throughout the whole training, which shows the
increased generalization capabilities from enforcing the assumptions. There is
also generally a high gap at the beginning of training suggesting faster learning.
The best performance with the proposed regularization is achieved after train-
ing on a significantly reduced amount of training data. These results are also
summarized in Table 1 of our paper and discussions about them can be found
in Section 4.2 and 4.3.
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Fig. 3: Evolution of κ(WN ) (left), ∥WN∥F (middle) and the accuracy (right) on
5-way 1-shot episodes from miniImageNet, for ProtoNet, IMP, Maml, MC
(from top to bottom respectively.) and their regularized or normalized counter-
parts. All results are averaged over 4 different random seeds. The shaded areas
show 95% confidence intervals.

F Further enforcing a low condition number on
Metric-based methods

To guide the model into learning an encoder with the lowest condition number,
we consider adding κ(WN ) as a regularization term when training a normalized
ProtoNet. In addition to the normalization of the prototypes, this should
further enforce the assumption on the condition number. Unfortunately, this
latter strategy hinders the convergence of the network and leads to numerical
instabilities. It is most likely explained by prototypes being computed from image
features which suffer from rapid changes across batches, making the smallest
singular value σN (WN ) close to 0. Consequently, we propose to replace the
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Fig. 4: Evolution of κ(WN ), ∥WN∥F and κ(W) (in log scale) during the training
of ProtoNet (red, left axes) and Maml (blue, right axes) on Omniglot with
5-way 1-shot episodes.

condition number as a regularization term by the negative entropy of the vector
of singular values as follows:

Hσ(WN ) :=

N∑

i=1

softmax(σ(WN ))i · log softmax(σ(WN ))i,

where softmax(·)i is the ith output of the softmax function. Since uniform dis-
tribution has the highest entropy, regularizing with κ(WN ) or Hσ(WN ) leads
to a better coverage of Rk by ensuring a nearly identical importance regardless
of the direction.
We obtain the following regularized optimization problem:

ϕ̂,Ŵ = argmin
ϕ∈Φ,W∈RT×k

1

Tn1

T∑

t=1

n1∑

i=1

ℓ(yt,i, ⟨w̃t, ϕ(xt,i)⟩) + λ1Hσ(W), (7)

where w̃ = w
∥w∥ are the normalized prototypes.

In Table 3, we report the performance of ProtoNet without normalization,
with normalization and with both normalization and regularization on the en-
tropy. Finally, we can see that further enforcing a regularization on the singular
values through the entropy does not help the training since ProtoNet natu-
rally learns to minimize the singular values of the prototypes. In Table 4, we
show that reducing the strength of the regularization with the entropy can help
improve the performance.

G Ablation studies

In this Section, we present a study on the effect of each term in the proposed
regularization for Maml and MTL. In Table 6, we compare the performance
of Maml without regularization (λ1 = λ2 = 0), with a regularization on the
condition number κ(WN ) (λ1 = 1 and λ2 = 0), on the norm of the linear
predictors (λ1 = 0 and λ2 = 1), and with both regularization terms (λ1 = λ2 =
1) on Omniglot and miniImageNet. We can see that both regularization terms are
important in the training and that using only a single term can be detrimental
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shaded areas report 95% confidence interval. We can see that the gap is globally
positive throughout training and generally higher at the beginning of training.
The increase in the gap at the end of training is linked to a lower overfitting.
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to the performance. Table 5 presents the effect of varying independently either
parameter λ1 or λ2 in the regularization, the other being fixed to 1. From these
results, we can see that performance is much more impacted by the condition
number regularization (parameter λ1) than by the normalization (parameter
λ2). Indeed, varying the regularization weight can lead from the lowest accuracy
(74.64%, for λ1 = 0) to one of the highest accuracies (76.15% for λ1 = 0.2).

H Out-of-Domain Analysis
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Fig. 6: Evolution of accuracy of 5-way 1-shot (top, resp. 5-way 5-shot, bottom)
meta-test episodes from CropDisease during meta-training on 5-way 1-shot (top,
resp. 5-way 5-shot, bottom) episodes from miniImageNet, for ProtoNet, IMP,
Maml, MC (from left to right) and their regularized or normalized counterparts
(in red, green, blue and purple, respectively). All results are averaged over 4
different random seeds. The shaded areas show 95% confidence intervals.

In the theoretical MTR framework, one additional critical assumption made
is that the task data marginal distributions are similar (see Appendix A and as-
sumption A2.5 for more information), which does not hold in a cross-domain set-
ting, where we evaluate a model on a dataset different from the training dataset.
In this setting, we do not have the same guarantees that our regularization or
normalization schemes will be as effective as in same-domain. To verify this, we
measure out-of-domain performance on the CropDiseases dataset [11] adopted
by [5]. Following their protocol, this dataset is used only for testing purposes. In
this specific experiment, evaluated models are trained on miniImageNet.

On the one hand, for metric-based methods, the improvement in the same-
domain setting does not translate to the cross-domain setting. From Figure 6,
we can see that even though the low condition number in the beginning of
training leads to improved early generalization capabilities of ProtoNet, this
is not the case for IMP. We attribute this discrepancy between ProtoNet and
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IMP to a difference in cluster radius parameters of IMP and normalized IMP,
making the encoder less adapted to out-of-domain features. On the other hand,
we found that gradient-based models keep their accuracy gains when evaluated
in cross-domain setting with improved generalization capabilities due to our
regularization. This can be seen on Figure 6, where we achieve an improvement of
about 2 p.p. for both Maml and MCmodels on both 1-shot and 5-shot settings.

These results confirm that minimizing the norm and condition number of
the linear predictors learned improves the generalization capabilities of meta-
learning models. As opposed to metric-based methods which are already implic-
itly doing so, the addition of the regularization terms for gradient-based methods
leads to a more significant improvement of performance in cross-domain.
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Table 2: Performance of several meta-learning algorithms without and with our
regularization (or normalization in the case of ProtoNet and IMP) to enforce
the theoretical assumptions. All accuracy results (in %) are averaged over 2400
test episodes and 4 different seeds and are reported with 95% confidence inter-
val. Episodes are 20-way classification for Omniglot and 5-way classification for
miniImageNet and tieredImageNet.

Method Dataset Episodes without Reg./Norm. with Reg./Norm.

ProtoNet

Omniglot
1-shot 95.56± 0.10% 95.89± 0.10%

5-shot 98.80± 0.04% 98.80± 0.04%

miniImageNet
1-shot 49.53± 0.41% 50.29± 0.41%

5-shot 65.10± 0.35% 67.13± 0.34%

tieredImageNet
1-shot 51.95± 0.45% 54.05± 0.45%

5-shot 71.61± 0.38% 71.84± 0.38%

IMP

Omniglot
1-shot 95.77± 0.20% 95.85± 0.20%

5-shot 98.77± 0.08% 98.83± 0.07%

miniImageNet
1-shot 48.85± 0.81% 50.69± 0.80%

5-shot 66.43± 0.71% 67.29± 0.68%

tieredImageNet
1-shot 52.16± 0.89% 53.46± 0.89%

5-shot 71.79± 0.75% 72.38± 0.75%

Maml

Omniglot
1-shot 91.72± 0.29% 95.67± 0.20%

5-shot 97.07± 0.14% 98.24± 0.10%

miniImageNet
1-shot 47.93± 0.83% 49.16± 0.85%

5-shot 64.47± 0.69% 66.43± 0.69%

tieredImageNet
1-shot 50.08± 0.91% 51.5± 0.90%

5-shot 67.5± 0.79% 70.16± 0.76%

MC

Omniglot
1-shot 96.56± 0.18% 95.95± 0.20%

5-shot 98.88± 0.08% 98.78± 0.08%

miniImageNet
1-shot 49.28± 0.83% 49.64± 0.83%

5-shot 63.74± 0.69% 65.67± 0.70%

tieredImageNet
1-shot 55.16± 0.94% 55.85± 0.94%

5-shot 71.95± 0.77% 73.34± 0.76%
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Table 3: Performance of ProtoNet with and without our regularization on
the entropy and/or normalization. All accuracy results (in %) are averaged over
2400 test episodes and 4 different random seeds and are reported with 95%
confidence interval. Further enforcing regularization on the singular values can
be detrimental to performance.

Dataset Episodes
without Norm., with Norm., with Norm.,

λ1 = 0 λ1 = 0 λ1 = 1

Omniglot
20-way 1-shot 95.56± 0.10% 95.89± 0.10% 91.90± 0.14%

20-way 5-shot 98.80± 0.04% 98.80± 0.04% 96.40± 0.07%

miniImageNet
5-way 1-shot 49.53± 0.41% 50.29± 0.41% 49.43± 0.40%

5-way 5-shot 65.10± 0.35% 67.13± 0.34% 65.71± 0.35%

tieredImageNet
5-way 1-shot 51.95± 0.45% 54.05± 0.45% 53.54± 0.44%

5-way 5-shot 71.61± 0.38% 71.84± 0.38% 70.30± 0.40%

Table 4: Ablative study on the strength of the regularization with normalized
ProtoNet. All accuracy results (in %) are averaged over 2400 test episodes
and 4 random seeds and are reported with 95% confidence interval.

Dataset Episodes Original λ1 = 0 λ1 = 1 λ1 = 0.1 λ1 = 0.01 λ1 = 0.001 λ1 = 0.0001

miniImageNet
5-way 1-shot 49.53± 0.41% 50.29± 0.41% 49.43± 0.40% 50.19± 0.41% 50.44± 0.42% 50.46± 0.42% 50.45± 0.42%

5-way 5-shot 65.10± 0.35% 67.13± 0.34% 65.71± 0.35% 66.69± 0.36% 66.69± 0.34% 67.2± 0.35% 67.12± 0.35%

Omniglot
20-way 1-shot 95.56± 0.10% 95.89± 0.10% 91.90± 0.14% 94.38± 0.12% 95.60± 0.10% 95.7± 0.10% 95.77± 0.10%

20-way 5-shot 98.80± 0.04% 98.80± 0.04% 96.40± 0.07% 97.93± 0.05% 98.62± 0.04% 98.76± 0.04% 98.91± 0.03%
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Table 5: Performance of MTL [18] when varying either λ1 or λ2, the other being
fixed to 1, on the miniImageNet 5-way 5-shot benchmark. All accuracy results
(in %) are averaged over 2000 test episodes on a single random seed.

λ1 1 0.8 0.6 0.4 0.2 0.1 0.05 0.01 0

Accuracy
75.84 75.85 76.02 76.11 76.15 75.99 75.65 75.08 74.64

(λ2 = 1)

λ2 1 0.8 0.6 0.4 0.2 0.1 0.05 0.01 0

Accuracy
75.84 76.09 75.81 76.28 76.23 76.1 76.25 76.42 76.06

(λ1 = 1)

Table 6: Ablative study of the regularization parameter for Maml, on Om-
niglot (left) with 20-way 1-shot (top values) and 20-way 5-shot (bottom values)
episodes, and miniImageNet (right) with 5-way 1-shot (top values) and 5-way
5-shot (bottom values) episodes. All accuracy results (in %) are averaged over
2400 test episodes and 4 different random seeds and are reported with 95% con-
fidence interval. We can see that in all cases, using both regularization terms is
important.

(a) Omniglot (20-way 1-shot / 5-shot)

λ1 = 0 λ1 = 1

λ2 = 0
91.72± 0.29% 89.86± 0.31%

97.07± 0.14% 72.47± 0.17%

λ2 = 1
92.80± 0.26% 95.67± 0.20%

96.99± 0.14% 98.24± 0.10%

(b) miniImageNet (5-way 1-shot / 5-
shot)

λ1 = 0 λ1 = 1

λ2 = 0
47.93± 0.83% 47.76± 0.84%

64.47± 0.69% 64.44± 0.68%

λ2 = 1
48.27± 0.81% 49.16± 0.85%

64.16± 0.72% 66.43± 0.69%
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