
Appendix for Tree Structure-Aware Few-Shot
Image Classification via Hierarchical

Aggregation

Min Zhang124 Siteng Huang24 Wenbin Li3 Donglin Wang24⋆

1Zhejiang University 2Westlake University
3State Key Laboratory for Novel Software Technology, Nanjing University
4Institute of Advanced Technology, Westlake Institute for Advanced Study

liwenbin@nju.edu.cn, {zhangmin,huangsiteng,wangdonglin}@westlake.edu.cn

Appendix

The supplementary material is organized as:
1. The full algorithm for few-shot image classification with HTS is shown

in Appendix A.1.
2. The formulations of meta-learning based FSL methods are shown in Ap-

pendix A.2.
3. Additional experimental setups are shown in Appendix A.3.
4. Additional experimental results for RQ2 (main paper) are shown in Ap-

pendix A.4.
5. Additional experimental results for RQ4 (main paper) are shown in Ap-

pendix A.5.

A.1 Full HTS Algorithm

For easy reproduction, we present the full algorithm for few-shot image classifica-
tion with HTS in Algorithm 1. Once trained, with the learned model parameters,
we can perform the meta-testing phase over the test episodes with Eq. (9).

A.2 Meta-Learning based FSL Models

In the main paper, we have introduced the ProtoNet [7] as the FSL model of
the HTS in Sec. 3.2. Due to the flexibility of the HTS (i.e., it can be combined
with any meta-learning based FSL model), we also show the experimental results
obtained by using other popular meta-learning based models in Sec. 5.3. Next,
we detail these methods how work with the proposed HTS method.
Graph Neural Network (GNN). GNN [5,11,12,13] uses the posterior infer-
ence over a graphical model determined by the inputs and labels to formally
propagate information. It constructs a fully-connected graph GTe

= (V,E),

⋆ Corresponding author

2 M. Zhang et al.

Algorithm 1 Hierarchical Tree Structure-Aware Method

Require: The training set Db, the pretext-task operators G
The loss weight hyperparameter {βj |j = 1, · · · , J}

1: Randomly initialize all learnable parameters {ϕ, θr|r = 0, · · · , J}
2: for iteration=1,· · · , MaxIteration do
3: Randomly sample episode Te from Db

4: Generate the set of augmented episodes Tagg from Te using G
5: Extract image features of Te and Tagg using shared encoder Eϕ

6: // Hierarchical tree constructing component

7: The form of the tree {Eϕ(xi)
g1→ Eϕ(x

1
i)

g2→ · · ·
gj→ Eϕ(x

j
i) · · ·

gJ→ Eϕ(x
J
i)} is used

to construct tree structure
8: // Gated selection aggregating component

9: The learning process of the tree {h0
i

agg←− h1
i

agg←− · · · agg←− hr
i · · ·

agg←− Eϕ(x
J
i)} is

used to hierarchically aggregate node information
10: // Meta-training phase
11: if Data augmentation setting then
12: Update the FSL model using Eq. (7);
13: else if Self-supervised learning setting then
14: Update the FSL model using Eq. (8);
15: end if
16: end for

where nodes vn ∈ V correspond to the images present in each episode Te =
{Se,Qe}. en,n′ ∈ E represents the similarity of image xn and xn′ and uses a
parametric model (i.e. MLP) to learn. GNN contains a feature encoder Eϕ with
learnable parameters ϕ (e.g., CNN) to extract the image features. Then these
features are used to calculate the similarities between images using an MLP net-
work. Over the weighted graph G, a GNN is used to propagate and update the
node information. Finally, updated feature representations of query images are
input a classifier to predict the labels. The training process of GNN is shown as:

LFSL(Se,Qe) =
1

|Qe|
∑

(xi,yi∈Qe)
−log pyi

,

pyi = GNN(MLP (Eϕ(Se), Eϕ(xi))).

(A.1)

GNN adopts the message propagating process, which iteratively aggregates
the neighborhood information (i.e., support labeled information). Formally, the
aggregation and propagation process of the k-th layer in GNN is two steps:

mk,n = AGGREGATE({ak−1,u : u ∈ N(n)}),
ak,n = UPDATE(ak−1,mk,n, a0,n),

(A.2)

where Nn is the set of neighbors of node vn, a0,n is initial features and AG-
GREGATE is a permutation invariant function. After K message-passing layers,
the final node embeddings AK are used to infer the query image label. GNN
combined with the proposed HTS method only need to replace LFSL (Eq. (7) -
Eq. (9) in the main paper) with Eq. (A.1).

Few-Shot Image Classification via Hierarchical Aggregation 3

Matching Network (MatchingNet). MatchingNet [9] contains a feature en-
coder Eϕ and a attention or memory network. In each episode Te = {Se,Qe},
MatchingNet labels each query image as a consine distance-weighted linear com-
bination of the support labels and uses a attention mechanism to calculate. The
training process of MatchingNet is shown as:

LFSL(Se,Qe) =
1

|Qe|
∑

(xi,yi∈Qe)
−log pyi

,

pyi =
∑

x̂i,ŷi∈Se

a(xi, x̂i) · I(ŷi = yi),
(A.3)

where a(·, ·) represents an attention mechanism and it fully specifies the classifier.
I represents the indicator function with its output being 1 if the input is true or
0 otherwise. Our proposed HTS method with MatchingNet only need to replace
LFSL (Eq. (7) - Eq. (9) in the main paper) with Eq. (A.3).
Relation Network (RelationNet). RelationNet [8] is comprised of a feature
encoder Eϕ as usual, and a relation module Rω parameterized by ω. They first
embed each support and query using Eϕ and create a prototype p̃c for each class
c by averaging its support embeddings, as shown in Eq.(1) in the main paper.
Each prototype p̃c is concatenated with each embedded query and fed through
the relation module which outputs a number in [0, 1] representing the predicted
probability that that query belongs to class c. The query loss is then defined as
the mean square error of that prediction compared to the (binary) ground truth.
Both the encoder and the relation module are trained to minimize this loss.

LFSL(Se,Qe) =
1

|Qe|
∑

(xi,yi∈Qe)
−log pyi

,

pyi
=

∑
c∈Ce

(rc,i − I(yi = yc))
2,

rc,i = Rω(Ca(p̃c, Eϕ(xi))),

(A.4)

where Ca(·, ·) is a concatenated operator. The proposed HTS with MatchingNet
only need to replace LFSL (Eq. (7) - Eq. (9) in the main paper) with Eq. (A.4).

A.3 Additional Experimental Setup

Benchmark Datasets. Four benchmark few-shot learning datasets are used
to evaluate our HTS: (1) miniImageNet contains 600 images per class over
100 classes. These classes are divided into 64/16/20 for train/val/test [9]. (2)
tieredImageNet is much larger compared with miniImageNet with 608 classes
and each class about 1,300 samples. These classes were grouped into 34 higher-
level concepts and then partitioned into 20/6/8 disjoint sets for train/val/test to
achieve a larger domain difference between training and testing phases [4]. (3)
CUB-200-2011 is initially designed for fine-grained classification. It contains
200 classes and each class has around 60 samples. We divided these classes into
100/50/50 for train/val/test following the previous works [10] . (4) CIFAR-FS
is a subset of CIFAR-100 and has 600 images per class over 100 classes. The

4 M. Zhang et al.

train/val/test classes are same to miniImageNet [1]. We also list the images
number, classes number, images resolution and train/val/test splits following
the criteria of previous works in Tab. A.1.

Datasets Images Classes Train/Val/Test Resolution
miniImageNet 60000 100 64/16/20 84×84
tieredImageNet 779165 608 351/97/160 84×84
CUB-200-2011 11788 200 100/50/50 84×84
CIFAR-FS 60000 100 64/16/20 32×32

Table A.1. The details for four benchmark datasets.

Implementation Details. Following [2], we apply Conv4 and ResNet12 as
the convolution backbone networks to fairly compare the results. The Conv4
consists of a stack of four Conv-BN-ReLU convolutional blocks and each convo-
lutional block with 64 filters. ResNet12 mainly has four blocks, which include
one residual block. The last features of all backbone networks are processed by
a global average pooling, then followed by a fully-connected layer with batch
normalization [3] to obtain a 64-dimensions instance embedding. We use Adam
optimizer with an initial learning rate of 10−3, and reduce the learning rate by
15K episodes of all datasets. The weight decay is set to 5e−4.

A.4 Additional Experiments for RQ2

In this section, we report additional experiments to further prove the effective-
ness of our proposed HTS method.

Visualization of CAM. To evaluate whether a model exploits an important
or actual object when making a prediction, Fig. A.1 visualizes the gradient-
weighted class activation mapping (Grad-CAM) [6] from ProtoNet and HTS
under a Conv4-64 feature encoder. It is observed that using HTS makes the
model pay more attention to the local object features than the ProtoNet. It
also further shows that the hierarchical aggregated representations can avoid
semantic bias caused by pretext tasks. Therefore, the proposed HTS helps the
meta-learning based methods to use the correct visual features for prediction.

Performance on cross domain. In Fig. A.2, we give the cross-domain per-
formance of four datasets as the training and testing domains respectively. To
clearly show the performance, we use the same color bar with the same number of
shots based on baseline and our method. From Fig. A.2, our method outperforms
the ProtoNet under all domain settings including singe domain (diagonal line)
and cross domain (off-diagonal line). This indicates that our HTS can improve
the generalization ability of the FSL model with only a few labeled images.

Few-Shot Image Classification via Hierarchical Aggregation 5

A.5 Additional Experimental for RQ4

More experiment results are shown under different pretext tasks with the same
child nodes to supplement RQ4.
The effect of different pretext tasks. In the main paper, we have reported
the results of miniImageNet and CUB-200-2011 with rotation and color per-
mutation tasks under different pretext tasks. Using the same setting with Fig.
6 (a) and (b), we show the results of tieredImageNet and CIFAR-FS datasets
in Fig. A.3. From (a)-(d), we find that pretext tasks can bring semantic structure
information and improve the generalization ability on all classification datasets.

(1)

(2)

(3)

Fig.A.1. Grad-CAM visualizations of CUB-200-2011 dataset. Each column shows the
result of same test image, and each row shows: (1) The results of test images. (2) The
results of ProtoNet. (3) The results of our HTS. Best viewed in color and our proposed
HTS method achieves better results for all test images.

MINI CUB CIFAR TIERED

TIERED

CIFAR

CUB

MINI

(a) ProtoNet 1-shot

20

30

40

50

60

MINI CUB CIFAR TIERED

TIERED

CIFAR

CUB

MINI

(b) ProtoNet 5-shot

45

50

55

60

65

70

75

MINI CUB CIFAR TIERED

TIERED

CIFAR

CUB

MINI

(c) HTS 1-shot

20

30

40

50

60

MINI CUB CIFAR TIERED

TIERED

CIFAR

CUB

MINI

(d) HTS 5-shot

45

50

55

60

65

70

75

Fig.A.2. Cross-domain evaluation with rotation3 under 5-way 1-shot and 5-shot
settings. The horizontal axis represents training domains and the vertical axis is testing
domains on miniImagenet (MINI), CUB-200-2011 (CUB), CIFAR-FS (CIFAR) and
tieredImagenet (TIERED). To clearly show the performance, we use the same color
bar with the same number of shots under baseline and our method.

6 M. Zhang et al.

0 1 2 3

45

50

A
cc

ur
ac

y
(%

)

(a) tieredImageNet 1-shot

0 1 2 3
60

65

70

A
cc

ur
ac

y
(%

)

(b) tieredImageNet 5-shot

0 1 2 3

50

55

60

65

A
cc

ur
ac

y
(%

)

(c) CIFAR-FS 1-shot

0 1 2 3

65

70

75

A
cc

ur
ac

y
(%

)

(d) CIFAR-FS 5-shot

ProtoNet Rotation Color Permutation

Fig.A.3. (a)-(d) indiccate different pretext tasks with the same number of child nodes,
where (a) and (b) represent tieredImageNet under 5-way 1-shot and 5-shot settings.
(c) and (d) represent CIFAR-FS under 5-way 1-shot and 5-shot settings. Red dotted
lines represent the performance of baseline (ProtoNet).

Few-Shot Image Classification via Hierarchical Aggregation 7

References

1. Bertinetto, L., Henriques, J.F., Torr, P.H.S., Vedaldi, A.: Meta-learning with dif-
ferentiable closed-form solvers. In: International Conference on Learning Represen-
tations, ICLR (2019)

2. Huang, S., Zhang, M., Kang, Y., Wang, D.: Attributes-guided and pure-visual
attention alignment for few-shot recognition. In: Association for the Advancement
of Artificial Intelligence, AAAI (2021)

3. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML. pp. 448–456. PMLR (2015)

4. Ren, M., Triantafillou, E., Ravi, S., Snell, J., Swersky, K., Tenenbaum, J.B.,
Larochelle, H., Zemel, R.S.: Meta-learning for semi-supervised few-shot classifi-
cation. In: International Conference on Learning Representations, ICLR (2018)

5. Satorras, V.G., Estrach, J.B.: Few-shot learning with graph neural networks. In:
International Conference on Learning Representations, ICLR (2018)

6. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: Visual explanations from deep networks via gradient-based localization. In:
International Conference on Computer Vision , ICCV (2017)

7. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning. In:
Advances in Neural Information Processing Systems, NeurIPS (2017)

8. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H.S., Hospedales, T.M.: Learn-
ing to compare: Relation network for few-shot learning. In: IEEE Conference on
Computer Vision and Pattern Recognition, CVPR (2018)

9. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching
networks for one shot learning. In: Advances in Neural Information Processing
Systems, NeurIPS (2016)

10. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD
Birds-200-2011 Dataset. California Institute of Technology (CNS-TR-2011-001)
(2011)

11. Zhao, F., Huang, T., Wang, D.: Graph few-shot learning via restructuring task
graph. IEEE Transactions on Neural Networks and Learning Systems (2022)

12. Zhao, F., Wang, D.: Multimodal graph meta contrastive learning. In: Proceedings
of the 30th ACM International Conference on Information & Knowledge Manage-
ment. pp. 3657–3661 (2021)

13. Zhao, F., Wang, D., Xiang, X.: Multi-initialization graph meta-learning for node
classification. In: Proceedings of the 2021 International Conference on Multimedia
Retrieval. pp. 402–410 (2021)

	Appendix for Tree Structure-Aware Few-Shot Image Classification via Hierarchical Aggregation

