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Abstract. We present a novel method for few-shot video classifica-
tion, which performs appearance and temporal alignments. In particular,
given a pair of query and support videos, we conduct appearance align-
ment via frame-level feature matching to achieve the appearance similar-
ity score between the videos, while utilizing temporal order-preserving
priors for obtaining the temporal similarity score between the videos.
Moreover, we introduce a few-shot video classification framework that
leverages the above appearance and temporal similarity scores across
multiple steps, namely prototype-based training and testing as well as
inductive and transductive prototype refinement. To the best of our
knowledge, our work is the first to explore transductive few-shot video
classification. Extensive experiments on both Kinetics and Something-
Something V2 datasets show that both appearance and temporal align-
ments are crucial for datasets with temporal order sensitivity such as
Something-Something V2. Our approach achieves similar or better re-
sults than previous methods on both datasets. Our code is available at
https://github.com/VinAIResearch/fsvc-ata.
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1 Introduction

Recognizing video contents plays an important role in many real-world ap-
plications such as video surveillance [51,34], anomaly detection [41,17], video
retrieval [13,39], and action segmentation [22,21]. In the modern era of deep
learning, there exist a large number of studies focusing on learning to clas-
sify videos by fully supervising a neural network with a significant amount of
labeled data [43,6,47,44]. While these fully-supervised approaches provide satis-
factory results, the high costs of data collection and annotation make it unre-
alistic to transfer an existing network to new tasks. To reduce such high costs,
few-shot learning [37,45,38,11,25,32,42,36,31] is an emerging trend that aims to
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Fig. 1. Our Few-Shot Video Classification Approach. Given a pair of query and
support videos, we first perform appearance alignment (i.e., via frame-level feature
matching) to compute the appearance similarity score, and then temporal alignment
(i.e., by leveraging temporal order-preserving priors) to calculate the temporal simi-
larity score. The final alignment score between the two videos is the weighted sum of
appearance and temporal similarity scores.

adapt an existing network to recognize new classes with limited training data.
Considerable research efforts have been invested in few-shot learning on im-
ages [46,10,24,50,9,29,14]. Extending few-shot learning to videos has been rather
limited.

The main difference between a video and an image is the addition of tem-
poral information in video frames. To adapt few-shot learning for videos, recent
emphasis has been put on temporal modeling that allows the estimate of the
similarity between two videos via frame-to-frame alignment. In the few-shot set-
ting, this similarity function is crucial because it helps classify a query video
by aligning it with the given support videos. Early methods [53,2,12,1,4] achieve
low performance as they neglect temporal modeling and simply collapse the tem-
poral information in their video representation learning. Recent methods [5,28]
jointly consider appearance and temporal information by using Dynamic Time
Warping [8] or Optimal Transport [7] to align the videos.

We propose to separately consider appearance and temporal alignments,
yielding robust similarity functions for use in training and testing in both in-
ductive and transductive few-shot learning. Following previous works [5,57], we
sparsely sample a fixed number of frames from each video and extract their
corresponding features using a neural network-based feature extractor. We then
compute the pairwise cosine similarity between frame features of the two videos,
yielding the appearance similarity matrix. To compute the appearance similar-
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ity score between the videos, we first match each frame from one video to the
most similar frame in the other, ignoring their temporal order. We then define
our appearance similarity score between the two videos as the total similarity
of all matched frames between them. Next, motivated by the use of temporal
order-preserving priors in different video understanding tasks [40,5,16,23] (i.e.,
initial frames from a source video should be mapped to initial frames in a tar-
get video, and similarly the subsequent frames from the source and target video
should match accordingly), we encourage the appearance similarity matrix to
be as similar as possible to the temporal order-preserving matrix. Our tempo-
ral similarity score between the two videos is then computed as the negative
Kullback-Leibler divergence between the above matrices. Furthermore, we show
how to apply the above appearance and temporal similarity scores in different
stages of few-shot video classification, from the prototype-based training and
testing procedures to the finetuning of prototypes in inductive and transductive
settings. Our method achieves the state-of-the-art performance on both Kinet-
ics [20] and Something-Something V2 [15] datasets. Fig. 1 illustrates our ideas.

In summary, our contributions include:

– We introduce a novel approach for few-shot video classification leveraging
appearance and temporal alignments. Our main contribution includes an
appearance similarity score based on frame-level feature matching and a
temporal similarity score utilizing temporal order-preserving priors.

– We incorporate the above appearance and temporal similarity scores into
various steps of few-shot video classification, from the prototype-based train-
ing and testing procedures to the refinement of prototypes in inductive and
transductive setups. To our best knowledge, our work is the first to explore
transductive few-show video classification.

– Extensive evaluations demonstrate that our approach performs on par with
or better than previous methods in few-shot video classification on both
Kinetics and Something-Something V2 datasets.

2 Related Work

Few-Shot Learning. Few-shot learning aims to extract task-level knowledge
from seen data while effectively generalizing learned meta-knowledge to unknown
tasks. Based on the type of meta-knowledge they capture, few-shot learning
techniques can be divided into three groups. Memory-based methods [37,30]
attempt to solve few-shot learning by utilizing external memory. Metric-based
methods [45,38,32,42,18,49,19,52] learn an embedding space such that samples
of the same class are mapped to nearby points whereas samples of different
classes are mapped to far away points in the embedding space. Zhang et al. [52]
introduce the earth mover’s distance to few-shot learning, which performs spatial
alignment between images. Optimization-based approaches [11,25,36,31,55] train
a model to quickly adapt to a new task with a few gradient descent iterations.
One notable work is MAML [11], which learns an initial representation that can
effectively be finetuned for a new task with limited labelled data. A new group of
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works [24,50,9] utilize information from meta-training dataset explicitly during
meta-testing to boost the performance. While Le et al. [24] and Das et al. [9] use
base samples as distractors for refining classifiers, Yang et al. [50] finds similar
features from base data to augment the support set.
Few-Shot Video Classification. Zhu and Yang [56] extend the notion of
memory-based meta-learning for video categorization by learning many key-
value pairs to represent a video. However, the majority of existing few-shot video
classification methods are based on metric-based meta-learning, in which a gen-
eralizable video metric is learned from seen tasks and applied to novel unseen
tasks. The main difference between a video and an image is the extra tempo-
ral dimension of the video frames. Extending few-shot learning to videos thus
requires the temporal modeling of this extra dimension. This field of research
can be divided in two main groups: aggregation-based and matching-based. The
former prioritizes semantic contents, whereas latter is concerned with temporal
orderings. Both of these groups start by sampling frames or segments from a
video and obtaining their representations using a pretrained encoder. However,
aggregation-based methods generate a video-level representation for distance
calculation via pooling [1,4], adaptive fusion [2,12], or attention [53], whereas
matching-based methods explicitly align two sequences and define distance be-
tween the videos as their matching cost via different matching techniques such
as Dynamic Time Warping (DTW) [5] and Optimal Transport (OT) [28]. While
[5] performs temporal alignment between videos via DTW, which strictly en-
forces a monotonic frame sequence ordering, [28] handles permutations using
OT with the iterative Sinkhorn-Knopp algorithm, which can be practically slow
and poorly scaled [48]. Our proposed method balances between appearance and
temporal alignments which allows permutations to some extent. Moreover, it is
non-iterative, hence more computationally efficient. Lastly, [5] and [28] explore
the inductive setting only.
Transductive Inference. Transductive learning approaches exploit both the
labeled training data and the unlabelled testing data to boost the performance.
Many previous works [24,3,18,58,33] explicitly utilize unsupervised information
from the query set to augment the supervised information from the support
set. With access to more data, transductive inference methods typically outper-
form their inductive counterparts. However, existing transductive methods are
designed mostly for few-shot image classification. In this work, we develop a
cluster-based transductive learning approach with a novel assignment function
leveraging both temporal and appearance information to address few-shot video
classification.

3 Our Method

We present, in this section, the details of our approach. We first describe the
problem of few-shot video classification in Sec. 3.1. Next, we introduce our ap-
pearance and temporal similarity scores in Sec. 3.2, which are then used in our
prototype-based training and testing presented in Sec. 3.3. Lastly, we discuss
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how the prototypes are refined in both inductive and transduction settings in
Sec. 3.4.

3.1 Problem Formulation

In few-shot video classification, we are given a base set Db = {(Xi, yi)}Tb

i=1,
where Xi and yi denote a video sample and its corresponding class label for Nb

classes, respectively, while Tb is the number of samples. This base set is used for
training a neural network which is subsequently adapted to categorize unseen
videos with novel classes. At test time, we are given a set of support videos
Ds

n = {(Xi, yi)}N×K
i=1 , where N and K denote the number of novel classes and

the number of video samples per novel class, respectively. Note that the novel
classes do not overlap with the base classes. The support set provides a limited
amount of data to guide the knowledge transfer from the base classes to the novel
classes. The goal at test time is to classify the query videos Dq

n into one of these
novel classes. Such configuration is called an N -way K-shot video classification
task. In this paper, we explore two configurations: 5-way 1-shot and 5-way 5-shot
video classification.

There are two settings for few-shot learning: inductive and transductive learn-
ing. In the former, each of the query videos are classified independently, whereas,
in the latter, the query videos are classified collectively, allowing unlabeled vi-
sual cues to be shared and leveraged among the query videos, which potentially
improves the overall classification results. In this work, we consider both induc-
tive and transductive settings. To our best knowledge, our work is the first to
explore transductive learning for few-shot video classification.

Following prior works [5,57], we represent a video by a fixed number of M
frames randomly sampled from equally separated M video segments, or X =
[x1, . . . ,xM ] with xi ∈ R3×H×W and i ∈ {1, . . . ,M}, while H and W are the
width and height of the video frame, respectively. Next, a neural network f with
parameters θ is used to extract a feature vector fθ(x

i) ∈ RC (C is the number
of channels) for each sampled frame xi. Lastly, the features of a video X is
represented by fθ(X) = [fθ(x

1), . . . , fθ(x
M )] ∈ RC×M .

3.2 Appearance and Temporal Similarity Scores

Existing distance/similarity functions are either computationally inefficient [28],
imposing too strong constraint [5], or oversimplified that they neglect temporal
information [57]. To capture both appearance and temporal information with
low computational costs, we propose to explore appearance and temporal cues
via two simple yet novel similarity functions. The final prediction is then a linear
combination of the predictions from the two functions. We detailed our similarity
functions, below.
Appearance Similarity Score.Given a pair of videos (X,Y), we first compute
the appearance similarity matrixD ∈ RM×M between them. The elementD(i, j)
of D is the pairwise cosine similarity between frame xi in X with frame yj in Y
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Fig. 2. Appearance and Temporal Similarity Scores. a) The proposed appear-
ance similarity score is computed as the sum of the frame-level maximum appearance
similarity scores between frames in X and frames in Y. b) The proposed temporal
similarity score is based on the Kullback-Leibler divergence between the row-wise nor-
malized appearance similarity matrix D̃ and the row-wise normalized temporal order-
preserving prior T̃.

as follows:

D(i, j) =
fθ(x

i)T fθ(y
j)

||fθ(xi)|| ||fθ(yj)||
. (1)

For every frame xi in X, we can align it with the frame yk in Y which has the
highest appearance similarity score with xi (i.e., k = argmaxj D(i, j)), ignoring
their relative ordering. We define the appearance similarity score between X and
Y as the sum of the optimal appearance similarity scores for all frames in X as:

sima(fθ(X), fθ(Y)) =

M∑
i=1

max
j

D(i, j) ≈
M∑
i=1

λ log

M∑
j=1

exp
D(i,j)

λ , (2)

where we use log-sum-exp (with the smoothing temperature λ = 0.1) to continu-
ously approximate the max operator. Intuitively, the sima(fθ(X), fθ(Y)) shows
how similar in appearance frames in X to frames in Y. Note that sima is not
a symmetric function. Fig. 2(a) shows the steps to compute our appearance
similarity score.
Temporal Similarity Score. Temporal order-preserving priors have been em-
ployed in various video understanding tasks such as sequence matching [40], few-
shot video classification [5], video alignment [16], and activity segmentation [23].
In particular, given two videos X and Y of the same class, it encourages initial
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frames in X to be aligned with initial frames in Y, while subsequent frames in
X are encouraged to be aligned with subsequent frames in Y. Mathematically, it
can be modeled by a 2D distribution T ∈ RM×M , whose marginal distribution
along any line perpendicular to the diagonal is a Gaussian distribution centered
at the intersection on the diagonal, as:

T(i, j) =
1

σ
√
2π

exp−
l2(i,j)

2σ2 , l(i, j) =
|i− j|√

2
, (3)

where l(i, j) is the distance from the entry (i, j) to the diagonal line and the
standard deviation parameter σ = 1. The values of T peak on the diagonal and
gradually decrease along the direction perpendicular to the diagonal.

In this work, we adopt the above temporal order-preserving prior for few-shot
video classification. Let D̃ and T̃ denote the row-wise normalized version of D
and T respectively, as:

D̃(i, j) =
expD(i,j)∑M
k=1 exp

D(i,k)
, T̃(i, j) =

T(i, j)∑M
k=1 T(i, k)

. (4)

We define the temporal similarity score between X and Y as the negative
Kullback-Leibler (KL) divergence between D̃ and T̃:

simt(fθ(X), fθ(Y)) = −KL(D̃||T̃) = − 1

M

M∑
i=1

M∑
j=1

D̃(i, j) log
D̃(i, j)

T̃(i, j)
. (5)

Intuitively, simt(fθ(X), fθ(Y)) encourages the temporal alignment between X
and Y to be as similar as possible to the temporal order-preserving alignment
T. Fig. 2(b) summarizes the steps to compute our temporal similarity score.

3.3 Training and Testing

Training. We employ the global training with prototype-based classifiers [38]
in our approach. A set of prototypes W = [W1, . . . ,WNb

] are initialized ran-
domly, where each prototype Wp = [w1

p, . . . ,w
M
p ] ∈ RC×M represents a class in

the base set. Note that in contrast to few-shot image classification [38], where
each prototype is a single feature vector, in our approach for few-shot video
classification, each prototype is a sequence of M feature vectors. To learn W,
we adopt the below supervised loss:

LSup = −E(X,y)∼Db
log

expsima(fθ(X),Wy))∑Nb

p=1 exp
sima(fθ(X),Wp))

− αE(X,y)∼Db
simt(fθ(X),Wy).

(6)

Here, α is the balancing weight between the two terms, and the appearance and
temporal similarity scores are computed between the features of a video and the
prototype of a class. We empirically observe that the temporal order-preserving
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prior is effective for Something-Something V2 but not much for Kinetics. This
is likely because the actions in Something-Something V2 are order-sensitive,
whereas those in Kinetics are not. Therefore, we use both terms in Eq. 6 for
training on Something-Something V2 (i.e., α = 0.05) but only the first term for
training on Kinetics (i.e., α = 0).

Solely training with the above supervised loss can lead to a trivial solution
that the model only learns discriminative features for each class (i.e., the M
feature vectors within each prototype are similar). To avoid such cases, we add
another loss which minimizes the entropy of D̃:

LInfo = − 1

M

M∑
i=1

M∑
j=1

D̃(i, j) log D̃(i, j). (7)

The final training loss is a combination of the above losses and is written as:

L = LSup + νLInfo. (8)

Here, ν = 0.1 is the balancing weight.

Testing. At test time, we discard the global prototype-based classifiers, and
keep the feature extractor. Given an N -way K-shot episode, we first extract
the features of all support and query samples. We then initialize N prototypes
by the average features of support samples from the corresponding classes, i.e.,
Wc = 1

K

∑
X∈Sc

fθ(X), where Sc is the support set of the c-th class. Given
the prototypes, we define the predictive distribution over classes of each video
sample p(c|X,W), c ∈ {1, . . . , N}, as:

p(c|X,W) = (1− β)
expsima(fθ(X),Wc)∑N
j=1 exp

sima(fθ(X),Wj)
+ β

expsimt(fθ(X),Wc)∑N
j=1 exp

simt(fθ(X),Wj)
, (9)

where β is the balancing weight between the two terms. The above predictive
distribution is a combination of the softmax predictions based on appearance
and temporal similarity scores. As we discussed previously, since the actions on
Something-Something V2 are order-sensitive but those on Kinetics are not, the
temporal order-preserving is effective for Something-Something V2 but not for
Kinetics. Therefore, we set β = 0.5 for Something-Something V2 and β = 0 for
Kinetics. As we empirically show in Sec. 4.1, these settings yield good results.

3.4 Prototype Refinement

The prototypes can be further refined with support samples (in the inductive
setting) or with both support and query samples (in the transductive setting)
before being used for classification.
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Inductive Setting. For the inductive inference, we finetune the prototypes on
the support set with the following cross-entropy loss:

Linductive = −E(X,y)∼Ds log
expsima(fθ(X),Wy)∑N
i=1 exp

sima(fθ(X),Wi)
. (10)

Transductive Setting. We introduce a transductive inference step that utilizes
unsupervised information from the query set to finetune the prototypes. The
transductive inference typically has a form of Soft K-means [33] with a novel
assignment function. For each update iteration, we refine the prototypes with
the weighted sums of the support and query samples:

Wc =

∑
X∼S fθ(X)z(X, c) +

∑
X∼Q fθ(X)z(X, c)∑

X∼S z(X, c) +
∑

X∼Q z(X, c)
, (11)

where S and Q are the support and query sets, respectively. The assignment
function z(X, c) simply returns the c-th element of the one-hot label vector of
X if the sample is from the support set. For query samples, we directly use the
predictive distribution in Eq. 9, i.e., z(X, c) = p(c|X,W) for X ∈ Q. In our
experiments, the prototypes are updated for 10 iterations.

4 Experiments

There are two parts of experiments in this section. In the first part (Sec. 4.1),
we conduct ablation studies to show the effectiveness of appearance and tem-
poral similarity scores. In the second part (Sec. 4.2), we compare our proposed
method to state-of-the art methods on two widely used datasets: Kinetics [20],
and Something-Something V2 [15]. The evaluations are conducted on both in-
ductive and transductive settings.
Datasets. We perform experiments on two standard few-shot video classifica-
tion datasets: the few-shot versions of Kinetics [20] and Something-Something
V2 [15]. Kinetics [20] contains 10,000 videos, while Something-Something V2 [15]
has 71,796 videos. These two datasets are split into 64 training classes, 16 vali-
dation classes, and 20 testing classes, following the splits from [56] and [5].
Implementation Details. For fair comparisons, we follow the preprocessing
steps from prior works [5,57,54]. In particular, we first resize the frames of a
particular video to 256 × 256 and perform random cropping (for training) or
central cropping (for testing) a 224 × 224 region from the frames. The number
of sampled segments or frames for each video is M = 8. We use the same
network architecture as previous works, which is a ResNet-50 pretrained on
ImageNet [35]. Stochastic gradient descent (SGD) with a momentum of 0.9 is
adopted as our optimizer. The model is trained for 25 epochs with an initial
learning rate of 0.001 and a weight decay of 0.1 at epoch 20. In the inference
stage, we report mean accuracy with 95% confidence interval on 10,000 random
episodes.
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Table 1. Comparison to different aggregation methods in the inductive setting on
the Kinetics and Something-Something V2 datasets.

Kinetics Something V2
Method 1-shot 5-shot 1-shot 5-shot

OT 61.71± 0.41 77.16± 0.37 35.60± 0.41 47.82± 0.44
Max 73.46± 0.38 87.67± 0.29 40.97± 0.41 58.77± 0.43
Ours 74.26± 0.38 87.40± 0.30 43.82± 0.42 61.07± 0.42

4.1 Ablation Study

The Effectiveness of Appearance and Temporal Similarity Scores. In
this experiment, we compare our appearance and temporal similarity scores with
several methods for aggregating the appearance similarity matrix D in Eq. 2,
namely the optimal transport (OT) and the max operator. For OT, we use the
negative appearance similarity matrix −D as the cost matrix and employ the
equal partition constraint. It optimally matches frames of two videos without
considering temporal information. For the max operator, we replace the log-
sum-exp operator in Eq. 2 with the max operator. Tab. 1 shows their results
on Kinetics and Something-Something V2 datasets. Our method outperforms
the other two similarity functions by large margins on both datasets with the
exception that the max variant performs slightly better than our method in the
Kinetics 5-way 5-shot setting (87.67% as compared to 87.40% of our method).

Table 2. Comparison of different training losses in the inductive and transductive
settings on the Kinetics and Something-Something V2 datasets.

Kinetics Something V2
LSup LInfo Transd. 1-shot 5-shot 1-shot 5-shot

✓ 74.25± 0.38 87.15± 0.30 41.84± 0.42 57.26± 0.43
✓ ✓ 74.26± 0.38 87.40± 0.30 43.82± 0.42 61.07± 0.42
✓ ✓ 82.71± 0.44 92.91± 0.31 47.02± 0.54 67.56± 0.56
✓ ✓ ✓ 83.08± 0.44 93.33± 0.30 48.67± 0.54 69.42± 0.55

The Effectiveness of Training Losses. We perform analysis of our training
losses in Sec. 3.3 on both Kinetics and Something-Something V2 datasets. Re-
sults are shown in Tab. 2. As mentioned earlier, adding LInfo in the training
phase helps avoiding trivial solutions and hence consistently improves the per-
formance on both Kinetics and Something-Something V2 datasets. Using the
complete training loss with the transductive setting yields the best performance
on both Kinetics and Something-Something V2 datasets.
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The Relative Importance of Appearance and Temporal Cues. In this
experiment, we investigate the effectiveness of the hyperparameter β in the in-
ductive and transductive settings. More specifically, we train our model with the
loss in Eq. 6 and evaluate the result on the validation set with different values
of β. The results of the inductive and transductive settings are shown in Tab. 3.

Table 3. Ablation study on the relative importance of the appearance and temporal
terms in computing the predictive distribution and the assignment function of the
inductive and transductive inference on the Kinetics and Something-Something V2
datasets.

Kinetics Something V2
β Transd. 1-shot 5-shot 1-shot 5-shot

1.00

✗

21.09± 0.34 27.00± 0.39 25.28± 0.37 33.57± 0.41
0.90 24.02± 0.36 41.75± 0.44 28.09± 0.38 43.21± 0.43
0.80 28.94± 0.38 62.66± 0.43 32.24± 0.40 54.45± 0.43
0.70 39.75± 0.42 79.99± 0.35 39.13± 0.42 62.73± 0.42
0.60 58.87± 0.43 86.37± 0.30 45.40± 0.43 65.99± 0.41
0.50 74.05± 0.37 87.33± 0.29 48.05± 0.43 66.91± 0.40
0.40 75.16± 0.37 87.38± 0.29 48.55± 0.42 66.83± 0.40
0.30 75.34± 0.36 87.38± 0.29 48.54± 0.42 66.64± 0.41
0.20 75.37± 0.36 87.37± 0.29 48.36± 0.43 66.32± 0.41
0.10 75.38± 0.36 87.36± 0.29 48.21± 0.43 66.06± 0.41
0.00 75.37± 0.36 87.35± 0.29 48.13± 0.43 65.77± 0.41

1.00

✓

54.83± 0.49 66.61± 0.50 39.53± 0.48 51.46± 0.51
0.90 63.88± 0.49 80.48± 0.43 43.00± 0.50 58.45± 0.53
0.80 72.38± 0.48 88.71± 0.36 46.56± 0.53 65.33± 0.54
0.70 78.09± 0.45 91.49± 0.32 50.03± 0.54 70.46± 0.53
0.60 80.73± 0.44 92.66± 0.31 52.36± 0.55 73.42± 0.52
0.50 82.34± 0.43 93.24± 0.30 53.65± 0.55 74.77± 0.52
0.40 83.29± 0.43 93.51± 0.29 54.46± 0.55 75.42± 0.52
0.30 83.81± 0.43 93.59± 0.29 54.67± 0.55 75.47± 0.52
0.20 84.06± 0.43 93.60± 0.29 54.75± 0.55 75.25± 0.52
0.10 84.33± 0.42 93.55± 0.29 54.66± 0.55 74.77± 0.52
0.00 84.36± 0.41 93.42± 0.29 54.4± 0.54 73.97± 0.51

The two table shows that for order-sensitive actions in Something-Something
V2, balancing between the importance of appearance and temporal scores gives
the best performance. In particular, for the inductive setting, our approach opti-
mally achieves 48.55% for 1-shot with β = 0.4, whereas the best result for 5-shot
is 66.91% with β = 0.5. Next, β = 0.3 gives the best results for both 1-shot
and 5-shot in the transductive setting, achieving 54.76% and 75.47% respec-
tively. Jointly considering appearance and temporal cues consistently improves
the model performance as compared to the appearance-only version (β = 0.0).
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Fig. 3. Qualitative Results of 2-way 1-shot Tasks on Something-Something
V2 and Kinetics. For each task, we present the appearance similarity matrix D
between the query video and each support video in the second column. In the third
column, we show the row-wise normalized version D̃. Finally, we show the predictions
of the two similarity scores and the final prediction. Ground truth class labels are
shown at the top. a) Results from Something-Something V2. b) Results from Kinetics.

In contrast, temporal information does not show much benefits for an order-
insensitive dataset like Kinetics. For small values of β, there are minor changes
in the performance of our approach for both inductive and transductive settings
on Kinetics. In the worst case, the temporal-only version (β = 1.0) produces
nearly random guesses of 21.09% in the 1-shot inductive setting.

We show some qualitative results in Fig. 3. We respectively perform induc-
tive inferences on 2-way 1-shot tasks of Something-Something V2 and Kinetics
datasets with β = 0.5 and β = 0.0 respectively. On Something-Something V2
(Fig. 3(a)), we observe that appearance or temporal cues can misclassify query
samples sometimes, but utilizing both appearance or temporal cues gives correct
classifications. On the other hand, the actions on Kinetics ((Fig. 3(b)) are not
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order-sensitive, and hence the temporal similarity score is not meaningful, which
agrees with the results in Tab. 3.

Table 4. Comparison to the state-of-the-art methods in the inductive setting on
the Kinetics and Something-Something V2 datasets. Results of Meta-Baseline [38] and
CMN [56] are reported from [57]. † denotes results from our re-implementation.

Kinetics Something V2
Method 1-shot 5-shot 1-shot 5-shot

Meta-Baseline [38] 64.03± 0.41 80.43± 0.35 37.31± 0.41 48.28± 0.44
CMN [56] 65.90± 0.42 82.72± 0.34 40.62± 0.42 51.90± 0.44
OTAM [5] 73.00± n/a 85.80± n/a 42.80± n/a 52.30± n/a

Baseline Plus [57]† 70.48± 0.40 82.67± 0.33 43.05± 0.41 57.50± 0.43
ITANet [54] 73.60± 0.20 84.30± 0.30 49.20± 0.20 62.30± 0.30

Ours 74.26± 0.38 87.40± 0.30 43.82± 0.42 61.07± 0.42

4.2 Comparison with Previous Methods

We compare our approach against previous methods [38,56,33,26,5,54,57] in both
inductive and transductive settings. More specifically, in the inductive setting,
we first consider Prototypical Network [38] from few-shot image classification,
which is re-implemented by [57]. In addition, CMN [56], OTAM [5], Baseline
Plus [57], and ITANet [54], which are previous methods designed to tackle few-
shot video classification, are also considered. The results of Prototypical Network
(namely, Meta-Baseline) and CMN are taken from [57]. We re-implement Base-
line Plus [57]. The results of OTAM and ITANet are taken from the original
papers. Competing methods in the transductive setting include clustering-based
methods from few-shot image classification, namely Soft K-means [33], Bayes
K-means [26], and Mean-shift [26].
Inductive. We first consider the inductive setting. The results are presented
in Tab. 4. As can be seen from the table, our method achieves the best results
on the Kinetics dataset. It outperforms all the competing methods by around
1% for 1-shot setting and over 3% for 5-shot setting, establishing the new state
of the art. In addition, our method performs comparably with previous works
on Something-Something V2, outperforming all the competing methods except
for ITANet, which further adopts additional layers on top of the ResNet-50 for
self-attention modules.
Transductive. Next, we consider the transductive setting (shown in Tab. 5).
As can be seen in Tab. 5, our method outperforms all the competing methods by
large margins, which are around 9% for both 1-shot and 5-shot settings on Ki-
netics and 2% and 5% for 1-shot and 5-shot settings respectively on Something-
Something V2.
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Table 5. Comparison to the state-of-the-art methods in transductive setting on the
Kinetics and Something-Something V2 datasets. Results of other methods are from our
re-implementation on the trained feature extractor of [57].

Kinetics Something V2
Method 1-shot 5-shot 1-shot 5-shot

Soft K-means [33] 74.21± 0.40 84.13± 0.33 46.46± 0.46 64.93± 0.45
Bayes K-means [26] 70.66± 0.40 81.21± 0.34 43.15± 0.41 59.48± 0.42

Mean-shift [26] 70.52± 0.40 82.31± 0.34 43.15± 0.41 60.03± 0.43

Ours 83.08± 0.44 93.33± 0.30 48.67± 0.54 69.42± 0.55

5 Limitation Discussion

We propose two similarity functions for aligning appearance and temporal cues
of videos. While our results are promising in both inductive and transductive ex-
periments, there remain some limitations. Firstly, our temporal order-preserving
prior does not work for all datasets. Utilizing a permutation-aware temporal
prior [27] would be an interesting next step. Secondly, we have not leveraged
spatial information in our approach yet. Such spatial information could be im-
portant for scenarios like modeling left-right concepts. We leave this investigation
as our future work.

6 Conclusion

We propose, in this paper, a novel approach for few-shot video classification
via appearance and temporal alignments. Specifically, our approach performs
frame-level feature alignment to compute the appearance similarity score be-
tween the query and support videos, while utilizing temporal order-preserving
priors to calculate the temporal similarity score between the videos. The pro-
posed similarity scores are then used across different stages of our few-shot video
classification framework, namely prototype-based training and testing, and in-
ductive and transductive prototype enhancement. We show that our similarity
scores are most effective on temporal order-sensitive datasets such as Something-
Something V2, while our approach produces comparable or better results than
previous few-shot video classification methods on both Kinetics and Something-
Something V2 datasets. To the best of our knowledge, our work is the first to
explore transductive few-shot video classification, which could facilitate more
future works in this direction.
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31. Oreshkin, B., Rodŕıguez López, P., Lacoste, A.: Tadam: Task dependent adaptive
metric for improved few-shot learning. NeurIPS (2018) 1, 3

32. Qiao, S., Liu, C., Shen, W., Yuille, A.L.: Few-shot image recognition by predicting
parameters from activations. In: CVPR (2018) 1, 3

33. Ren, M., Triantafillou, E., Ravi, S., Snell, J., Swersky, K., Tenenbaum, J.B.,
Larochelle, H., Zemel, R.S.: Meta-learning for semi-supervised few-shot classifi-
cation. arXiv preprint arXiv:1803.00676 (2018) 4, 9, 13, 14

34. Rodriguez, M., Sivic, J., Laptev, I., Audibert, J.Y.: Data-driven crowd analysis
in videos. In: 2011 International Conference on Computer Vision. pp. 1235–1242.
IEEE (2011) 1

35. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. IJCV (2015) 9

36. Rusu, A.A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S.,
Hadsell, R.: Meta-learning with latent embedding optimization. arXiv preprint
arXiv:1807.05960 (2018) 1, 3

37. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning
with memory-augmented neural networks. In: ICML (2016) 1, 3

38. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In:
NeurIPS (2017) 1, 3, 7, 13

39. Snoek, C.G., Worring, M.: Concept-based video retrieval. Now Publishers Inc
(2009) 1

40. Su, B., Hua, G.: Order-preserving wasserstein distance for sequence matching. In:
CVPR (2017) 3, 6

41. Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance
videos. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 6479–6488 (2018) 1

42. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning
to compare: Relation network for few-shot learning. In: CVPR (2018) 1, 3



Few-Shot Video Classification via Appearance and Temporal Alignments 17

43. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotem-
poral features with 3d convolutional networks. In: ICCV (2015) 1

44. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at
spatiotemporal convolutions for action recognition. In: CVPR (2018) 1

45. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for
one shot learning. In: NeurIPS (2016) 1, 3

46. Wang, R., Pontil, M., Ciliberto, C.: The role of global labels in few-shot classifica-
tion and how to infer them. In: NeurIPS (2021) 2

47. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR
(2018) 1

48. Wertheimer, D., Tang, L., Hariharan, B.: Few-shot classification with feature map
reconstruction networks. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 8012–8021 (2021) 4

49. Wu, J., Zhang, T., Zhang, Y., Wu, F.: Task-aware part mining network for few-shot
learning. In: ICCV (2021) 3

50. Yang, S., Liu, L., Xu, M.: Free lunch for few-shot learning: Distribution calibration.
arXiv preprint arXiv:2101.06395 (2021) 2, 4

51. Zhan, B., Monekosso, D.N., Remagnino, P., Velastin, S.A., Xu, L.Q.: Crowd anal-
ysis: a survey. Machine Vision and Applications 19(5), 345–357 (2008) 1

52. Zhang, C., Cai, Y., Lin, G., Shen, C.: Deepemd: Differentiable earth mover’s dis-
tance for few-shot learning. arXiv preprint arXiv:2003.06777 (2020) 3

53. Zhang, H., Zhang, L., Qi, X., Li, H., Torr, P.H., Koniusz, P.: Few-shot action
recognition with permutation-invariant attention. In: ECCV (2020) 2, 4

54. Zhang, S., Zhou, J., He, X.: Learning implicit temporal alignment for few-shot
video classification. arXiv preprint arXiv:2105.04823 (2021) 9, 13

55. Zhang, X., Meng, D., Gouk, H., Hospedales, T.M.: Shallow bayesian meta learning
for real-world few-shot recognition. In: ICCV (2021) 3

56. Zhu, L., Yang, Y.: Compound memory networks for few-shot video classification.
In: ECCV (2018) 4, 9, 13

57. Zhu, Z., Wang, L., Guo, S., Wu, G.: A closer look at few-shot video classification:
A new baseline and benchmark. arXiv preprint arXiv:2110.12358 (2021) 2, 5, 9,
13, 14

58. Ziko, I., Dolz, J., Granger, E., Ayed, I.B.: Laplacian regularized few-shot learning.
In: ICML (2020) 4


	Inductive and Transductive Few-Shot Video Classification via Appearance and Temporal Alignments

