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Abstract. Audio-visual generalised zero-shot learning for video clas-
sification requires understanding the relations between the audio and
visual information in order to be able to recognise samples from novel,
previously unseen classes at test time. The natural semantic and tem-
poral alignment between audio and visual data in video data can be ex-
ploited to learn powerful representations that generalise to unseen classes
at test time. We propose a multi-modal and Temporal Cross-attention
Framework (TCaF) for audio-visual generalised zero-shot learning. Its
inputs are temporally aligned audio and visual features that are ob-
tained from pre-trained networks. Encouraging the framework to fo-
cus on cross-modal correspondence across time instead of self-attention
within the modalities boosts the performance significantly. We show
that our proposed framework that ingests temporal features yields state-
of-the-art performance on the UCF-GZSLcls, VGGSound-GZSLcls, and
ActivityNet-GZSLcls benchmarks for (generalised) zero-shot learning.
Code for reproducing all results is available at https://github.com/

ExplainableML/TCAF-GZSL.

Keywords: Zero-shot learning, Audio-visual learning

1 Introduction

Learning task-specific audio-visual representations commonly requires a great
number of annotated data samples. However, annotated datasets are limited in
size and in the labelled classes that they contain. If a model which was trained
with supervision on such a dataset is applied in the real world, it encounters
classes that it has never seen. To recognise those novel classes, it would not be
feasible to train a new model from scratch. Therefore, it is essential to analyse
the behaviour of a trained model in new settings. Ideally, a model should be able
to transfer knowledge obtained from classes seen during training to previously
unseen categories. This ability is probed in the zero-shot learning (ZSL) task.
In addition to zero-shot capabilities, a model should retain the class-specific
information from seen training classes. This is challenging and is investigated in
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the so-called generalised ZSL (GZSL) setting which considers the performance
on both, seen and unseen classes.

Prior works [55,46,47] have proposed frameworks that address the (G)ZSL
task for video classification using audio-visual inputs. Those methods learn a
mapping from the audio-visual input data to textual label embeddings, en-
abling the classification of samples from unseen classes. At test time, the class
whose word embedding is closest to the predicted audio-visual output embed-
ding is selected. Similar to this, we use the textual label embedding space to
allow for information transfer from training classes to previously unseen classes.
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Fig. 1. Our temporal cross-attention framework for
audio-visual (G)ZSL learns a multi-modal embedding
(green circle) by exploiting the temporal alignment be-
tween audio and visual data in videos. Textual label em-
beddings (grey squares) are used to transfer information
from seen training classes (black) to unseen test classes
(pink). The correct class is playing harmonica (red).

However, [55,46,47] used
temporally averaged fea-
tures as inputs that were
extracted from networks
pre-trained on video data.
The averaging disregarded
the temporal dynamics
in videos. We propose a
Temporal Cross-attention
Framework (TCaF) which
builds on [47] and addi-
tionally exploits tempo-
ral information by using
temporal audio and visual
data as inputs. This gives
a significant boost in per-
formance for the audio-
visual (G)ZSL task com-
pared to using temporally
averaged input features.
Different from computa-
tionally expensive methods that operate directly on raw visual inputs [13,40,33],
our TCaF uses features extracted from networks pre-trained for audio and video
classification as inputs. This leads to an efficient setup that uses temporal infor-
mation instead of averaging across time.

The natural alignment between audio and visual information in videos, e.g. a
frog being visible in a frame while the sound of a frog croaking is audible, provides
a rich training signal for learning video representations. This can be attributed to
the semantic and temporal correlation between the audio and visual information
when comparing the two modalities. We encourage our TCaF to put special
emphasis on the correlation across the two modalities by employing repeated
cross-attention. This attention mechanism only allows attention to tokens from
the other modality. This effectively acts as a bottleneck which results in cheaper
computations and gives a boost in performance over using full self-attention
across all tokens from both modalities.
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We perform a detailed model ablation study to show the benefits of using tem-
poral inputs and our proposed cross-attention. Furthermore, we confirm that our
training objective is well-suited to the task at hand. We also analyse the learnt
audio-visual embeddings with t-SNE visualisations which confirm that training
our TCaF improves the class separation for both seen and unseen classes.

To summarise, our contributions are as follows: (1) We propose a tempo-
ral cross-attention framework TCaF for audio-visual (G)ZSL. (2) Our pro-
posed model achieves state-of-the-art results on the UCF-GZSLcls, VGGSound-
GZSLcls, and ActivityNet-GZSLcls datasets, demonstrating that using tempo-
ral information is extremely beneficial for improving the (generalised) zero-shot
classification accuracy compared to using temporally averaged features as model
inputs. (3) We perform a detailed analysis of the use of enhanced cross-attention
across modalities and time, demonstrating the benefits of our proposed model
architecture and training setup.

2 Related work

Our work relates to several themes in the literature: audio-visual learning, ZSL
with side information, audio-visual ZSL with side information, and multi-modal
transformer architectures. We discuss those in more detail in the following.
Audio-visual learning. The temporal alignment between audio and visual
data in videos is a strong learning signal which can be exploited for learning
audio-visual representations. [53,54,7,56,37,10]. In addition to audio and video
classification, numerous other tasks benefit from audio-visual inputs, such as the
separation and localisation of sounds in video data [52,65,8,24,15,4,1], audio-
driven synthesis of images [70,31], audio synthesis driven by visual information
[77,25,36,35,59,23,50], and lip reading [3,2]. Some approaches use class-label su-
pervision between modalities [20,16] which does not require the temporal align-
ment between the input modalities. In contrast to full class-label supervision,
we train our model only on the subset of seen training classes.
ZSL with side information. Visual ZSL methods commonly map the visual in-
puts to class side information [21,6,5], e.g. word2vec [48] class label embeddings.
This allows to determine the class with the side information that is closest at
test time as the class prediction. Furthermore, attribute annotations have been
used as side information [68,74,71,19]. Recent non-generative methods identify
key visual attributes [76], use attention to find discriminative regions [75], or dis-
ambiguate class embeddings [43]. In contrast, feature generation methods train
a classifier on generated and real features [73,51,78,72]. Unlike methods for ZSL
with side information with unimodal (visual) inputs, our proposed framework
uses multi-modal audio-visual inputs.
Audio-visual ZSL with side information. The task of GZSL from audio-
visual data was introduced by [55,46] on the AudioSetZSL dataset [55] using
class label word embeddings as side information. Recently, [47] proposed the
AVCA framework which uses cross-attention to fuse information from the av-
eraged audio and visual input features for audio-visual GZSL. Our proposed



4 O.-B. Mercea et al.

θwθa
lcrs

l =

+

θwθo

+

lrec

⍴o ⍴ww

θwθo lreg

Loss function 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

Text: 
Archery

Audio 

Video frames

Venc

Self attention

N
orm

 &
 addition

Feed forw
ard

Feed forw
ard

N
orm

 &
 addition

ɸv ɸo
att

Aenc

Attnproj

w ⍴w
Wproj

θo

θw

Cross-attention block

θwθa
lcrs

l =

+

⍴o

ɸa

θwθo

+

lrec

⍴o ⍴ww

θwθo lreg

Loss function 

Feature 
extractor

Feature 
extractor

D

D

a

v

θwθa
lcrsl = + +

θwθo

lrec

⍴o ⍴ww

θwθo lreg

Loss function 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

Fig. 2. TCaF takes audio and visual features extracted from video data as inputs.
Those are embedded and equipped with modality and time embeddings before passing
through a sequence of L transformer layers with cross-attention. The output classifica-
tion token co is then projected to embedding spaces that are shared with the textual
information. The loss functions operate on the joint embedding spaces. At test time,
the class prediction c is obtained by determining the word label embedding θjw that is
closest to θo.

framework builds on [47], but instead of using temporally averaged features as
inputs [47,55,46], we explore the benefits of using temporal cross-attention in-
formation. Unlike [47]’s two-stream architecture, we propose the fusion into a
single output branch with a classification token that aggregates multi-modal in-
formation. Furthermore, we simplify the training objective, and show that the
combination of using temporal inputs, our architecture, and training setup leads
to superior zero-shot classification performance.

Multi-modal transformers. The success of transformer models in the lan-
guage domain [67,17,57] has been translated to visual recognition tasks with the
Vision Transformer [18]. Multi-modal vision-language representations have been
obtained with a masked language modelling objective, and achieved state-of-the-
art performance on several text-vision tasks [61,62,44,38,39,60,63]. In this work,
we consider audio-visual multi-modality. Transformer-based models that oper-
ate on audio and visual inputs have recently been proposed for text-based video
retrieval [22,42,69], dense video captioning [28], audio-visual event localization
[41], and audio classification [12]. Different to vanilla transformer-based atten-
tion, our TCaF puts special emphasis on cross-attention between the audio and
visual modalities in order to learn powerful representations for the (G)ZSL task.

3 TCaF Model

In this section, we describe the problem setting (Section 3.1), our proposed
model architecture (Section 3.2), and the loss functions used to train TCaF
(Section 3.3).
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3.1 Problem setting

We address the task of (G)ZSL using audio-visual inputs. The aim of ZSL is to
be able to generalise to previously unseen test classes at test time. For GZSL,
the model should additionally preserve knowledge about seen training classes,
since the GZSL test set contains samples from both, seen and unseen classes.

We denote an audio-visual dataset with N samples and K (seen and unseen)
classes by V = {Xa[i],Xv[i], y[i]}Ni=1, consisting of audio data Xa[i], visual data
Xv[i], and ground-truth class labels y[i] ∈ RK . Naturally, video data contains
temporal information. In the following, we use Ta and Tv to denote the number
of audio and visual segments in a video clip.

A pre-trained audio classification CNN is used to extract a sequence of
audio features a[i] = {a1, . . . , at, . . . , aTa

}i to encode the audio information
Xa[i]. The visual data Xv[i] is encoded into a temporal sequence of features
v[i] = {v1, ..., vt, ..., vTv

}i by representing visual segments with features extracted
from a pre-trained video classification network.

3.2 Model architecture

In the following, we describe the architecture of our proposed TCaF (see Fig. 2).
Embedding the inputs and position encoder block. TCaF takes pre-
extracted audio and visual features a[i] and v[i] as inputs. For readability, we
will drop the subscript i in the following which denotes the i−th sample. In order
to project audio and visual features to the same feature dimension, a and v are
passed through two modality-specific embedding blocks, giving embeddings:

ϕa = Aenc(a) and ϕv = Venc(v), (1)

with ϕa ∈ RTa∗ddim and ϕv ∈ RTv∗ddim . The embedding blocks are composed
of two linear layers fm

1 , fm
2 for m ∈ {a,v}, where fm

1 : RTm∗dinm → RTm∗dfhidd

and fm
2 : RTm∗dfhidd → RTm∗ddim . fm

1 , fm
2 are each followed by batch normalisa-

tion [29], a ReLU [49], and dropout [58] with dropout rate dropenc.
The position encoder block adds learnt modality and temporal positional

embeddings to the outputs of the modality-specific embedding blocks. We ex-
plain this in detail below. To handle different frame rates in the audio and visual
modalities, we use Fourier features [64] post ∈ Rdpos for the temporal embed-
dings that encode the actual point in time in the video which corresponds to
an audio or visual representation. This allows to capture the relative temporal
position of the audio and visual features across the modalities.

For an audio embedding ϕat
at time t, a linear map ga : Rdpos+ddim → Rddim ,

and a dropout layer gD with dropout probability dropprob,pos, we obtain position-
aware audio feature tokens

apt = gD(ga(concat(ϕat , posat))) with posat = posa + post, (2)

with modality and temporal embeddings posa, post ∈ Rdpos respectively. Position-
aware visual tokens vpt are obtained analogously.
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Furthermore, we prepend a learnt classification token xc ∈ Rddim to the
sequence of feature tokens. The corresponding output classification token co is
used by our output projection Oproj to obtain the final prediction.
Audio-visual transformer layers. TCaF contains L stacked audio-visual
transformer layers that allow for enhanced cross-attention. Each of our trans-
former layers consists of an attention function fl,Att, followed by a feed forward
function gl,FF . The output of the l-th transformer layer is given as

xl,out = xl,ff + xl,att = gl,FF (xl,att) + xl,att, (3)

with
xl,att = fl,Att(xl,in) + xl,in, (4)

where

xl,in =

{
[xc, ap1, · · · , a

p
Ta
, vp1 , · · · , v

p
Tv
] if l = 1,

xl−1,out if 2 ≥ l ≤ L.

We explain the cross-attention used in our transformer layers in the following.
Transformer cross-attention. TCaF primarily exploits cross-modal audio-
visual attention to combine the information across the audio and visual modal-
ities. All attention mechanisms in TCaF consist of multi-head attention [67]
with H heads and a dimension of dhead per head.

We describe the first transformer layer M1, the transformer layer Ml oper-
ates analogously. We project the position-aware input features xc, {apt }t∈[1,Ta],

{vpt }t∈[1,Tv] to queries, keys, and values with linear maps gs : Rddim −→ RdheadH

for s ∈ {q, k, v}. We can then write the outputs of the projection as zero-padded
query, key, and value features. We write those out for the queries below, the keys
and values are padded in the same way:

qc = [gq(x
c), 0, · · · , 0], (5)

qa = [0, · · · , 0, gq(ap1), · · · , gq(a
p
Ta
), 0, · · · , 0], (6)

qv = [0, · · · , 0, gq(vp1), · · · , gq(v
p
Tv
)]. (7)

The full query, key, and value representations, q, k, and v, are the sums of their
modality-specific components

q = qc + qa + qv, k = kc + ka + kv, and v = vc + va + vv. (8)

The output of the first attention block x1,att is the aggregation of the per-
head attention with a linear mapping gh : RdheadH → Rddim , gDL dropout with
dropout probability dropprob and layer normalisation gLN [11], such that

x1,att = f1,Att(xl,in) = gDL(gh(f
1
1,att(g

LN (x1,in)), · · · , fH
1,att(g

LN (x1,in)))), (9)

with the attention fh
att for the attention head h. We can write the attention for

the head h as

fh
att(x1,in) = softmax

(
A√
dhead

)
v, (10)
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where A can be split into its cross-attention and self-attention components:

Ac = qc k
T + kqT

c , Ax = qa k
T
v + qv k

T
a , (11)

Aself = qa k
T
a + qv k

T
v .

We then get

A = Ac+Ax+Aself =

Acc Aca Acv

Aac
. . .

...
Avc . . . 0

+

0 . . . 0
...
. . . Aav

0 Ava 0

+

0 . . . 0
... Aaa

...
0 . . . Avv

 , (12)

where the Amn with m,n ∈ {c, a, v} describe the attention contributions from
the classification token, the audio and the visual modalities respectively.

Our TCaF uses the cross-attention Ac +Ax to put special emphasis on the
attention across modalities. Results for different model variants that use only the
within-modality self-attention (Ac+Aself ) or the full attention which combines
self-attention and cross-attention are presented in Section 4.3.
Feed forward function. The feed forward function gl,FF : Rddim −→ Rddim is
applied to the output of the attention function

xl,ff = gl,FF (xl,att) = gDL(gl,F2(g
DL(gGD(gl,F1(g

LN (xl,att)))))) (13)

where gl,F1 : Rddim −→ Rdff and gl,F2 : Rdff −→ Rddim are linear mappings, gGD

is a GELU layer [26] and a dropout layer with dropout probability dropprob, g
DL

is dropout with dropprob and gLN is layer normalisation.
Output prediction. To determine the final class prediction, the audio-visual
embedding is projected to the same embedding space as the textual class label
representations. We project the output classification token co of the temporal
cross-attention to θo = Oproj(co) where θo ∈ Rdout . The projection block is com-
posed of a sequence of two linear layers f3 and f4, where f3 : Rddim → Rdfhidd

and f4 : Rdfhidd → Rdout . f3, f4 are each followed by batch normalisation, a
ReLU, and dropout with rate dropprojo . We project the word2vec class label
embedding wj for class j using the projection block Wproj(w

j) = θjw, where
θjw ∈ Rdout . Wproj consists of a linear projection followed by batch normalisa-
tion, ReLU, and dropout with dropout rate dropprojw . The class prediction c is
obtained by determining the projected word2vec embedding which is closest to
the output embedding:

c = argmin
j

(∥θjw − θo∥2). (14)

3.3 Loss functions

Our training objective l combines a cross-entropy loss lce, a reconstruction loss
lrec, and a regression loss lreg:

l = lce + lrec + lreg. (15)
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Cross-entropy loss. For the ground-truth label yi with corresponding class
index kgt ∈ RKseen , the output of our temporal cross-attention θoi , and a matrix
containing the textual label embeddings for the Kseen seen classes θwseen , we
define the cross-entropy loss for n training samples as

lce = − 1

n

n∑
i

yi log

(
exp (θwseen,kgtθoi)∑Kseen

kj
exp (θwseen,kjθoi)

)
. (16)

Regression loss.While the cross-entropy loss updates the probabilities for both
the correct and incorrect classes, our regression loss directly focuses on reducing
the distance between the output embedding for a sample and the corresponding
projected word2vec embedding. The regression loss is based on the mean squared
error metric with the following formulation:

lreg =
1

n

n∑
i=1

(θoi − θwi
)2, (17)

where θoi is the audio-visual embedding, and θwi
is the projection of the word2vec

embedding corresponding to the i-th sample.
Reconstruction loss. The goal of the reconstruction loss is to ensure that the
embeddings θo and θw contain semantic information from the word2vec embed-
ding w. We use Du : Rdout 7→ Rddim with ρu = Du(θu) for u ∈ {o, w}. Dw is
a sequence of one linear layer, batch normalisation, a ReLU, and dropout with
rate dropprojw . Do is composed of a sequence of two linear layers each followed
by batch normalisation, a ReLU, and dropout with dropout rate dropprojo . Our
reconstruction loss encourages the reconstruction of the output embedding, ρoi ,
and the reconstruction of the word2vec projection, ρwi

, to be close to the original
word2vec embedding wi:

lrec =
1

n

n∑
i=1

(ρoi − wi)
2 +

1

n

n∑
i=1

(ρwi
− wi)

2. (18)

4 Experiments

In this section, we detail our experimental setup (Section 4.1), and compare to
state-of-the-art methods for audio-visual GZSL (Section 4.2). Furthermore, we
present an ablation study in Section 4.3 which shows the benefits of using our
proposed attention scheme and training objective. Finally, we present t-SNE
visualisations of our learnt audio-visual embeddings in Section 4.4.

4.1 Experimental setup

Here, we describe the datasets used, the evaluation metrics, and the implemen-
tation details for all models.
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Datasets. We use the UCF-GZSLcls, VGGSound-GZSLcls, and ActivityNet-
GZSLcls datasets [47] for audio-visual (G)ZSL for training and testing all models.
[47] introduced benchmarks for two sets of features, the first uses a model pre-
trained using self-supervision on the VGGSound dataset from [9], the second
takes features extracted from pre-trained VGGish [27] and C3D [66] audio and
video classification networks. Since the VGGSound dataset is also used for the
zero-shot learning task (VGGSound-GZSL), we selected the second option (using
VGGish and C3D) and use the corresponding dataset splits proposed in [47].

In particular, the audio features are extracted using VGGish [27] to obtain
one 128-dimensional feature vector for each 0.96 s snippet. The visual features
are obtained using C3D [66] pre-trained on Sports-1M [32]. For this, all videos
are resampled to 25 fps. A 4096-dimensional feature vector is then extracted for
16 consecutive video frames.

Evaluation metrics. We follow [71,47] and use the mean class accuracy to
evaluate all models. The ZSL performance is obtained by considering only the
subset of test samples from the unseen test classes. For the GZSL performance,
the models are evaluated on the full test set which includes seen and unseen
classes. We then report the performance on the subsets of seen (S) and unseen
(U) classes, and also report their harmonic mean (HM).

Implementation details. For TCaF, we use dina
= 128, dinv

= 4096, dfhidd =
512, ddim = 300 and dout = 64. Furthermore, TCaF has L = 6 transformer lay-
ers layers for UCF-GZSLcls and ActivityNet-GZSLcls, and L = 8 for VGGSound-
GZSLcls. We set dpos = 64, dff = 128. For ActivityNet-GZSLcls/ UCF-GZSLcls/
VGGSound-GZSLcls we use dropout rates dropenc = 0.1/0.3/0.2, dropprob,pos =
0.2/0.2/0.1, dropprob = 0.4/0.3/0.5, dropprojw = 0.1/0.1/0.1, and dropprojo =
0.1/0.1/0.2. All attention blocks use H = 8 heads with a dimension of dhead = 64
per head. We train all models using the Adam optimizer [34] with running aver-
age coefficients β1 = 0.9, β2 = 0.999, and weight decay 0.00001. We use a batch
size of 64 for all datasets. In order to efficiently train on ActivityNet-GZSLcls,
we randomly trim the features to a maximum sequence length of 60 during train-
ing, and we evaluate on features that have a maximum sequence length of 300
and which are centered in the middle of the video. We note, that TCaF can
be efficiently trained on a single Nvidia 2080-Ti GPU. All models are trained
for 50 epochs. We use a base learning rate of 0.00007 for UCF-GZSLcls and
ActivityNet-GZSLcls, and 0.00006 for VGGSound-GZSLcls. For UCF-GZSLcls

and ActivityNet-GZSLcls we use a scheduler that reduces the learning rate by a
factor of 0.1 when the HM on the validation set has not improved for 3 epochs.
To eliminate the bias that the ZSL methods have towards seen classes, we used
calibrated stacking [14] on the search space composed of the interval [0, 3] with
a step size of 0.2.

We train all models with a two-stage training protocol [47]. In the first stage,
we determine the calibrated stacking [14] and the epoch with the best HM per-
formance on the validation set. In the second stage, using the hyperparameters
from the first stage, we re-train the models on the union of the training and
validation sets. We evaluate the final models on the test set.
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4.2 Quantitative results

We compare our proposed TCaF to state-of-the-art audio-visual ZSL frame-
works and to audio-visual frameworks that we adapted to the ZSL task.
Audio-visual ZSL baselines. We compare our TCaF to three audio-visual
ZSL frameworks. CJME [55] consists of a relatively simple architecture which
maps both input modalities to a shared embedding space. The modality-specific
embeddings in the shared embedding space are input to an attention predictor
module that determines the dominant modality which is used for the output
prediction. AVGZSLNet [46] builds on CJME by adding a shared decoder and
introducing additional loss functions to improve the performance. AVGZSLNet
removes the attention predictor network and replaces it with a simple aver-
age between the output from the head of each modality. AVCA [47] is a recent
state-of-the-art method for audio-visual G(ZSL). It uses a simple cross-attention
mechanism on the temporally averaged audio and visual input features to com-
bine the information from the two modalities. Our proposed TCaF improves
upon the closely related AVCA framework by additionally ingesting temporal
information in the audio and visual inputs with an enhanced cross-attention
mechanism that gathers information across time and modalities.
Audio-visual baselines adapted to ZSL. We adapt two attention-based
audio-visual frameworks to the ZSL setting. Attention Fusion [20] is a method
for audio-visual classification which is trained to classify unimodal information.
It then fuses the unimodal predictions with learnt attention weights. The Per-
ceiver [30] is a scalable multi-modal transformer framework for flexible learning
with arbitrary modality information. It uses a latent bottleneck to encode in-
put information by repeatedly attending to the input with transformer-style
attention. The Perceiver allows for a comparison to another transformer-based
architecture with focus on multi-modality. We adapt the Perceiver to use the
same positional encodings and model capacity as TCaF. We use 64 latent to-
kens and the same number of layers and dimensions as TCaF. Both Attention
Fusion and Perceiver use the same input features, input embedding functions
Aenc and Venc, learning rate and loss functions as TCaF. For Attention Fu-
sion, we temporally average the input features after Aenc and Venc to deal with
non-synchronous modality sequences due to different feature extraction rates.

All baselines, except for the Perceiver, operate on temporally averaged audio
and visual features. This decreases the amount of information contained in the
inputs, in particular regarding the dynamics in a video. In contrast to methods
that use temporally averaged inputs, TCaF exploits the temporal dimension
which boosts the (G)ZSL performance.
Results. We compare the results obtained with our TCaF to state-of-the-art
baselines for audio-visual (G)ZSL and for audio-visual learning in Table 1.TCaF
outperforms all previous methods on the VGGSound-GZSLcls, UCF-GZSLcls,
and ActivityNet-GZSLcls datasets for both, GZSL performance (HM) and ZSL
performance. For ActivityNet-GZSLcls, our proposed model is significantly bet-
ter than its strongest competitor AVCA, with a HM of 12.20% compared to
9.92% and a ZSL performance of 7.96% compared to 7.58%. The CJME and
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Model VGGSound-GZSLcls UCF-GZSLcls ActivityNet-GZSLcls

S U HM ZSL S U HM ZSL S U HM ZSL

Attention Fusion 14.13 3.00 4.95 3.37 39.34 18.29 24.97 20.21 11.15 3.37 5.18 4.88

Perceiver 13.25 3.03 4.93 3.44 46.85 26.82 34.11 28.12 18.25 4.27 6.92 4.47

CJME 10.86 2.22 3.68 3.72 33.89 24.82 28.65 29.01 10.75 5.55 7.32 6.29

AVGZSLNet 15.02 3.19 5.26 4.81 74.79 24.15 36.51 31.51 13.70 5.96 8.30 6.39

AVCA 12.63 6.19 8.31 6.91 63.15 30.72 41.34 37.72 16.77 7.04 9.92 7.58

TCaF 12.63 6.72 8.77 7.41 67.14 40.83 50.78 44.64 30.12 7.65 12.20 7.96

Table 1. Performance of our TCaF and of state-of-the-art methods for audio-
visual (G)ZSL on the VGGSound-GZSLcls, UCF-GZSLcls, and ActivityNet-GZSLcls

datasets. The mean class accuracy for GZSL is reported on the seen (S) and unseen
(U) test classes, and their harmonic mean (HM). For the ZSL performance, only the
test subset of unseen classes is considered.

AVGZSLNet frameworks are weaker than the AVCA model. Similar patterns
are exhibited for the VGGSound-GZSLcls and UCF-GZSLcls datasets. Interest-
ingly, the GZSL performance for TCaF is improved by a more significant margin
than the ZSL performance compared to AVCA across all three datasets. This
shows that using temporal information and allowing our model to attend across
time and modalities is especially beneficial for the GZSL task.

Furthermore, we observe that the audio-visual Attention Fusion framework
and the Perceiver give worse results than AVGZSLNet and AVCA on all three
datasets. In particular, our TCaF yields stronger ZSL and GZSL performances
than the Perceiver which also takes temporal audio and visual features as inputs,
with a HM of 8.77% on VGGSound-GZSLcls for TCaF compared to 4.93% for
the Perceiver. Attention Fusion and the Perceiver architecture were not designed
for the (G)ZSL setting that uses text as side information. Our proposed training
objective, used to also train the Perceiver, aims to regress textual embeddings
which might be challenging for the Perceiver given its tight latent bottlenecks.

4.3 Ablation study on the training loss and attention variants

Here, we analyse different components of our proposed TCaF. We first compare
the performance of our model when trained using different loss functions. We
then investigate the influence of the attention mechanisms used in the model
architecture on the (G)ZSL performance. Finally, we show that using multi-
modal inputs is beneficial and results in outperforming unimodal baselines.
Comparing different training losses. We show the contributions of the dif-
ferent components in our training loss function to the (G)ZSL performance in Ta-
ble 2. Using only the regression loss lreg to train our model results in the weakest
performance across all datasets, with HM/ZSL performances of 16.25%/30.17%
on UCF-GZSLcls compared to 50.78%/44.64% for our full TCaF. Interestingly,
the seen performance (S) when using only lreg is relatively weak, likely caused by
the calibrated stacking. Similarly, on ActivityNet-GZSLcls, using only lreg yields
a low test performance of 0.43% HM. Jointly training with the regression and
cross-entropy loss functions (lreg+ lce) improves the GZSL and ZSL performance
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Loss VGGSound-GZSLcls UCF-GZSLcls ActivityNet-GZSLcls

S U HM ZSL S U HM ZSL S U HM ZSL

lreg 0.10 2.41 0.19 2.50 14.30 18.82 16.25 30.17 1.09 0.27 0.43 2.11

lreg + lce 13.67 4.06 6.26 4.31 75.31 37.15 49.76 41.75 11.36 5.28 7.21 5.31

l = lreg + lce + lrec 12.63 6.72 8.77 7.41 67.14 40.83 50.78 44.64 30.12 7.65 12.20 7.96

Table 2. Influence of using different components of our proposed training objective
for training TCaF on the (G)ZSL performance on the VGGSound-GZSLcls, UCF-
GZSLcls, and ActivityNet-GZSLcls datasets.

significantly, giving a ZSL performance of 4.31% compared to 2.50% for lreg on
VGGSound-GZSLcls. The best results are obtained when training with our full
training objective l which includes a reconstruction loss term, giving the best
performance on all three datasets.

Comparing different attention variants. We study the use of different at-
tention patterns in Table 3. In particular, we analyse the effect of using within-
modality (Aself ) and cross-modal (Ax) attention (cf. Eq. (11)), on the GZSL
and ZSL performance. Additionally, we investigate models that use a classifica-
tion token xc with corresponding output token co (with class. token) and models
for which we simply average the output of the transformer layers which is then
used as input to Oproj (w/o class. token).

Interestingly, we observe that with no global token, using the full atten-
tion Aself + Ax gives better results than using only cross-attention on UCF-
GZSLcls and ActivityNet-GZSLcls for ZSL and GZSL, but is slightly worse on
VGGSound-GZSLcls. This suggests that the bottleneck introduced by limiting
the information flow in the attention when using only cross-attention is benefi-
cial for (G)ZSL on VGGSound-GZSLcls. When not using the classification token
and only self-attention Aself , representations inside the transformer are created
solely within their respective modalities.

Using a classification token (with class. token) and the cross-attention variant
(Ac +Ax) yields the strongest ZSL and GZSL results across all three datasets.
The most drastic improvements over full attention can be observed on the UCF-
GZSLcls dataset, with a HM of 50.78% for the cross-attention with classification
token (Ac +Ax) compared to 39.18% for the full attention (Ac +Aself +Ax).
Furthermore, when using xc, cross-attention Ax instead of self-attention Aself

leads to a better performance on all three datasets. For Ax and xc, we obtain
HM scores of 8.77% and 50.78 % on VGGSound-GZSLcls and UCF-GZSLcls

compared to 6.71% and 37.37% with Aself and xc. This shows that using infor-
mation from both modalities is important for creating strong and transferable
video representations for (G)ZSL. Using the global token relaxes the pure cross-
attention setting to a certain extent, since Ac allows for attention between all
tokens from both modalities and the global token. The results in Table 3 have
demonstrated the clear benefits of our cross-attention variant used in TCaF.

The influence of multi-modality. We compare using only a single input
modality for training TCaF to using multiple input modalities in Table 4. For
the unimodal baselines TCaF- audio and TCaF- visual, we train TCaF only
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Model VGGSound-GZSLcls UCF-GZSLcls ActivityNet-GZSLcls

S U HM ZSL S U HM ZSL S U HM ZSL

w/o class. token

Aself +Ax 18.40 3.78 6.27 4.25 31.70 32.57 32.13 33.26 11.87 3.80 5.75 3.90

Aself 16.08 3.56 5.83 4.00 42.59 24.04 30.73 27.49 9.51 4.33 5.95 4.39

Ax 14.62 4.22 6.55 4.59 19.52 29.80 23.62 31.35 1.85 3.50 2.42 3.50

with class. token

Ac +Aself +Ax 11.36 5.50 7.41 5.97 36.73 41.99 39.18 42.56 17.75 6.79 9.83 6.89

Ac +Aself 12.23 4.63 6.71 5.25 40.14 34.95 37.37 35.74 4.24 3.23 3.67 3.25

Ac +Ax (TCaF) 12.63 6.72 8.77 7.41 67.14 40.83 50.78 44.64 30.12 7.65 12.20 7.96

Table 3. Ablation of different attention variants with and without a classification
token on the VGGSound-GZSLcls, UCF-GZSLcls, and ActivityNet-GZSLcls datasets.

Model VGGSound-GZSLcls UCF-GZSLcls ActivityNet-GZSLcls

S U HM ZSL S U HM ZSL S U HM ZSL

TCaF- audio 5.11 4.06 4.53 4.28 35.51 19.75 25.38 24.24 9.28 4.26 5.84 4.65

TCaF- visual 3.97 3.12 3.50 3.19 38.10 26.84 31.49 27.25 2.75 3.11 2.92 3.11

TCaF 12.63 6.72 8.77 7.41 67.14 40.83 50.78 44.64 30.12 7.65 12.20 7.96

Table 4. Influence of using multiple modalities for training and evaluating our proposed
model on the (G)ZSL performance on the VGGSound-GZSLcls, UCF-GZSLcls, and
ActivityNet-GZSLcls datasets.

with the corresponding input modality. Using only audio inputs gives stronger
GZSL and ZSL results than using only visual inputs on VGGSound-GZSLcls

and ActivityNet-GZSLcls. We obtain a HM of 5.84% for audio compared to
2.92% for visual inputs on ActivityNet-GZSLcls. Interestingly this pattern is
reversed for the UCF-GZSLcls dataset where using visual inputs only results in
a slightly higher performance than using the audio inputs with HM scores of
31.49% compared to 25.38%, and ZSL scores of 27.25% and 24.24%. However,
using both modalities (TCaF) increases the HM to 50.78% and ZSL to 44.64%
on UCF-GZSLcls. Similar trends can be observed for VGGSound-GZSLcls and
ActivityNet-GZSLcls which highlights the importance of the tight multi-modal
coupling in our TCaF.

4.4 Qualitative results

We present a qualitative analysis of the learnt audio-visual embeddings in Fig. 3.
For this, we show t-SNE [45] visualisations for the audio and visual input features
and for the learnt multi-modal embeddings from 7 classes in the UCF-GZSLcls

test set. We averaged the input features for both modalities across time. We ob-
serve that the audio and visual input features are poorly clustered. In contrast,
the audio-visual embeddings (θo) are clearly clustered for both, seen and unseen
classes. This suggests that our network is actually learning useful representations
for unseen classes, too. Furthermore, the word2vec class label embeddings (θjw)
lie inside the corresponding audio-visual clusters. This confirms that the learnt
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Fig. 3. t-SNE visualisation for five seen (apply eye makeup, archery, baby crawling,
basketball dunk, bowling) and two unseen (playing flute, writing on board) test classes
from the UCF-GZSLcls dataset, showing audio and visual input embeddings extracted
with C3D and VGGish, and audio-visual output embeddings learned with TCaF. Tex-
tual class label embeddings are visualised with a square.

audio-visual embeddings are mapped to locations that are close to the corre-
sponding word2vec embeddings, showing that our embeddings capture semantic
information from the word2vec representations.

5 Conclusion

We presented a cross-attention transformer framework that addresses (G)ZSL for
video classification using audio-visual input data with temporal information. Our
proposed model achieves state-of-the-art performance on the three audio-visual
(G)ZSL datasets UCF-GZSLcls, VGGSound-GZSLcls, and ActivityNet-GZSLcls.
The use of pre-extracted audio and visual features as inputs results in a com-
putationally efficient framework compared to using raw data. We demonstrated
that using cross-modal attention on temporal audio and visual input features and
suppressing the contributions from the within-modality self-attention is benefi-
cial for obtaining strong audio-visual embeddings that can transfer information
from classes seen during training to novel, unseen classes at test time.
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