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Appendix

A Implementation details

Number of training samples: The results reported in the main text used 5
training samples for each concept in the retrieval experiments, and 10 training
samples for each concept in the segmentation experiments. Below, in Sec. B, we
provide additional results that sweep over the number of training samples.

Cycle loss prompts: We use multiple prompts for querying the concept with
the cycle loss. In each epoch, we selected a template at random from the following
list of prompts.

“This is a photo of a [CONCEPT]”, “This photo contains a [CONCEPT]”, “A
photo of a [CONCEPT]”, “This is an illustrations of a [CONCEPT]”, “This il-
lustrations contains a [CONCEPT]”, “An illustrations of a [CONCEPT]”, “This
is a sketch of a [CONCEPT]”, “This sketch contains a [CONCEPT]”, “A sketch
of a [CONCEPT]”, “This is a diagram of a [CONCEPT]”, “This diagram con-
tains a [CONCEPT]”, “A diagram of a [CONCEPT]”, “A [CONCEPT]”, “We
see a [CONCEPT]”, “[CONCEPT]”, “We see a [CONCEPT] in this photo”,
“We see a [CONCEPT] in this image”, “We see a [CONCEPT] in this illus-
tration”, “We see a [CONCEPT] photo”, “We see a [CONCEPT] image”, “We
see a [CONCEPT] illustration”, “[CONCEPT] photo”, “[CONCEPT] image”,
“[CONCEPT] illustration”.

Contrastive loss: We apply all contrastive losses with a temperature hyperpa-
rameter (denoted by Temp = 0.25), dividing each cosine similarity in Eq.1,2. The
value of Temp was selected using a validation set (details about hyper-parameter
search below).

Ground-truth regularization for training the set encoder fθ: For train-
ing the set encoder fθ, we use a regularization term that maximizes the cosine
similarity of the predicted word embedding w0

c , with its ground truth word em-
bedding gc, keeping w0

c close to its ground truth value. Namely, ℓGT (w
0
c ,gc) =

−cos(w0
c ,gc), where gc is the word embedding of the concept type (e.g. the em-

bedding of “dog”). If the concept type includes more than a single word, we take
the first one.

Architecture: When using CLIP, we always used ViT-B/32 Vision Trans-
former.

Normalized embeddings:Wherever we use a textual or visual encoder output,
we first normalize the embedding vector to unit norm. The embedding can be
viewed as lying on a hypersphere.
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Training the alignment matrix A with images and captions: In addition
to updating the alignment matrix A during training of fθ with text (Section
4.2), we also update A by mapping from captions to images. Specifically, for
every image I embedded with CLIP v = hI(I), we took the respective caption
S embedded with u = hT (S), and trained A to project from the embedded
captions to the embedded images by minimizing an L2 loss:

ℓ
(
I, S,A

)
= ||hI(I)−AhT (S)||2 (A.3)

Using the alignment matrix A for the fine-tuning stage: In practice, in the fine
tuning stage (Eq. (2)), we replace ηc by A · ηc.

Training procedure for the set encoder fθ: We train fθ in an alternating fashion.
One batch with COCO images and one batch with augmented COCO captions.

Hyperparameters: Hyper parameters were tuned one at a time, on a validation set,
to maximize the MRR metric in the retrieval task.

We train fθ for 300 epochs. Batch size was set to 256. We used the Adam [33]
optimizer with a learning rate of 0.0001 for both the cycle loss and the alignment loss
(eq. A.3). DeepSet’s hidden dimension was set to 4096, and the dropout rate was set
to 0.25. The contrastive loss temperature was set to Temp = 0.25. To optimize the
word embeddings, we used 30 epochs, with a learning rate of 0.01. The weight of the
ground-truth regularization term λgt was set to 512.

We used the following ranges to search for hyper parameters: (1) number of epochs ∈
[100, 200, 300, 500, 1000] (2) batch size ∈ [128, 256, 512] (3) learning rate ∈ [0.01, 0.001, 0.0001, 0.00001]
(4) DeepSet’s hidden dimension ∈ [512, 1024, 2048, 4096] (5) dropout rate ∈ [0.15, 0.25, 0.35, 0.5]
(6) Temp ∈ [0.15, 0.25, 0.35, 0.5] (7) number of fine-tuning personalization epochs
∈ [10, 20, 30, 40, 50, 60] (8) fine-tuning learning rate ∈ [0.01, 0.001, 0.0001] (9) λgt ∈
[1, 2, 4, 8, . . . 2048].

Randomization: Model: For each of our 5 repetitions we trained a new fθ model.
Few-shot training data: When selecting a subset of few images from the few-shot train-
ing data, we made sure that the random seed (and subsets) are consistent between
PALAVRA and the baselines (e.g. COLLIE, AvgIm, etc . . . ).

Training COLLIE and Adapter: To use multiple concepts that share the same con-
cept type (category name), with the COLLIE and adapter baselines, we have assigned
a unique [CONCEPT] phrase for concept. The phrase is composed of its class (e.g.,
skirt) and a unique ID number (e.g., “skirt 241”).

B Additional Results

Accuracy versus number of shots: Fig. A.1 shows the performance of our model
and the baselines as a function of the number of few-shot training samples used to
learn each personalized concept. DeepFashion2 performance improves as the number
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Fig.A.1. MRR for image retrieval on DeepFashion2 (left) and YTVOS (right) as
function of the number of shots used to learn each personalized concept. DeepFashion2
performance improves as we increase the number of shots. YTVOS saturates early,
probably because the training images of each concept have less variability, since they
were all extracted from the same video.

of shots increases. YTVOS saturates early, probably because the training images of
each concept have less variability since they were all extracted from the same video.

Short versus detailed captions: Table A.1 shows retrieval results on DeepFashion2
when using longer, detailed captions. As expected, all text-based methods demonstrate
an increase in retrieval metrics across the board, indicating that they can successfully
leverage additional information. Our method remains at the front even in this scenario,
highlighting that the benefits of personalized concepts persist even when detailed de-
scriptions are provided.

MRR Recall@5 Recall@10

PALAVRA (Ours) 33.8 ± 0.5% 47.5 ± 0.9% 61.9 ± 0.9%
PALAVRA w.o. tuning 27.8 ± 0.3% 36.4 ± 0.6% 48.4 ± 0.6%
AvgIM+Text 20.9 ± 0.6% 29.0 ± 0.7% 38.4 ± 0.6%
Text (CLIP) 24.3 ± 0.0% 31.7 ± 0.0% 43.4 ± 0.0%

Table A.1. Retrieval results using detailed captions. As expected, all compared meth-
ods show improved performance when provided with extra textual information. No-
tably, our method maintains the advantage even in such a scenario, showing that it
can yield an increase in performance even when the concepts are described in detail.

In Sec. F.2 below we explain the data collection procedure of the “detailed” and
“short” queries.

COLLIE sensitivity to prompt:

In Sec. 6.1 we demonstrated that COLLIE performance degrades when using rich
textual queries. Here we describe results showing that COLLIE is even sensitive to
much simpler queries. Namely, template queries that only add a prefix prompt.

When the text query includes only the [CONCEPT] tag, as in COLLIE’s training
procedure, COLLIE achieves a 13.4% average MRR score on DeepFashion2 retrieval
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test set. When the query text is a sentence with a prefix, its score drops sharply. For
example, the query “This is a photo of a [CONCEPT]” results in an MRR score of
5.3%, the query “This looks like a [CONCEPT]” score is 4.6%, and the query “In this
image, there is a [CONCEPT]” yields 3.3%.

Qualitative results for semantic segmentation: In Fig. A.2 we show curated
qualitative segmentation results. We observe that our model can successfully segment
the correct object instance even in scenarios with visually similar distractors. On the
other hand, our model can sometimes fail to distinguish between multiple relevant
candidates, or segment other objects which exist near the target. However, this last
limitation may be an artifact of the underlying segmentation method.

Ours Ground Truth Ours Ground Truth Ours Ground Truth

A bright orange [CONCEPT] A [CONCEPT] A [CONCEPT] standing

with its full black dorsal fin and wearing a green shirt above another tiger

black tail with white tips visible and black jeans

A [CONCEPT] A [CONCEPT] [CONCEPT] sits at

wedged between brick and wood standing next to a doorway the back end of the sailboat

Wins Losses

Fig.A.2. Qualitative examples of PALAVRA used for semantic segmentation. Left
and middle: successful segmentations, where the correct specific object is identified
and extracted from the image despite similar distractors (other turtles).Right: Typical
failure cases: distractors are segmented along with the personalized object (top), or the
textual descriptions draw CLIP’s attention away from the main object (bottom).

C Ablation Study

To understand how various components of our approach contribute to its performance,
we conducted an ablation study. We report validation and test metrics for DeepFash-
ion2 and YTVOS.

We first ablate model components that affect training fθ. We report the results
without fine-tuning, to reveal how they affect the training of the set encoder. We call
this stage “no tuning”.

Then we compare components that affect the fine-tuning stage. We call this stage
“with tuning”. Specifically, we compare the following components:

1. PALAVRA is our approach described in Sec. 4. We tested it both with tuning
and no tuning.

2. no text augment shows the results of fθ trained only with visual concepts that
exist in the MS-COCO vocabulary, and without using the extended vocabulary for
augmentation.
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3. Only ℓGT does not use the cycle loss for training fθ (see Eq. 1).
4. Only ℓCycle does not use the ground-truth regularization term for training fθ (see

Eq. 1).
5. Only tuning initializes w0

c randomly, instead of using the prediction made by the
set encoder fθ.

6. no alignment shows the performance of our method when replacing the alignment
matrix A by an identity mapping.

Table A.2 shows the results of the ablation experiments. Several points worth dis-
cussing. First, PALAVRA without tuning improves by 25% compared to “Text Only”
(in Table 1), for both DeepFashion2 (22.1 vs. 17.6) and YTVOS (47.1 vs. 37.6). This
result indicates that fθ learns to predict the word embeddings of visual concepts, and
these concepts are better than using their vanilla CLIP embeddings.

Next, we find that text augmentation with extended vocabulary (Sec. 4.1) improves
concept learning with fθ. It yields an improvement of ∼16% for DeepFashion2 (22.1 vs.
19.1) and ∼6% for YTVOS (47.1 vs. 44.4).

Combining a cycle loss with the ground truth (GT) regularization term is effective.
When combined with the GT regularization term, the cycle loss improves by ∼16% for
DeepFashion2 (22.1 vs 19.2) ∼14% for YTVOS (47.1 vs 41.4). However, when the GT
regularization term is deactivated and only the cycle loss is used, fθ fails to generalize
(16.1 in DeepFashion2 and 37.3 in YTVOS). We hypothesize that this effect is similar
to the effect observed with inversion to the latent space of GANs [63]. There, inversions
into sparse regions of the latent space can better satisfy a cyclic reconstruction loss,
but they behave poorly under interpolation. Our fθ could similarly learn to invert
into sparse regions of CLIP’s input space. By adding the GT regularization term,
our inversions are encouraged to reside in better-behaved regions of the input space,
namely those observed during CLIP’s training. In these regions, the semantics of the
latent space hold better and the model can better generalize.

When fθ is replaced by a random initialization, the performance degrades by ∼6%
for YTVOS (57.1 vs 61.2) and ∼3% for DeepFashion2 (27.5 vs 28.4). Showing the
synergy between the two personalization steps.

Finally, integrating the alignment matrix A showed an improvement of ∼8% for
DeepFashion2 (28.4 vs. 26.3) and ∼5% for YTVOS (61.2 vs. 58.1).

D Personalization of Other Vision & Language

Vision & Language models other than CLIP may also benefit from an extended vo-
cabulary of personalized concepts. It is likely that a similar approach to ours can still
be applied. For example, in models like M-DETR [31], fθ could map from the CNN
output space to the input space of RoBERTa. The alignment matrix A can close the
cycle, mapping from the output of RoBERTa to the CNN output.

E Segmentation Details and Analysis

E.1 Baselines and hyper parameters

Our segmentation experiments use the framework of Zabari et al. [74]. The method
leverages transformer interpretability methods to identify image regions that relate to
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DeepFashion2 Validation Test

MRR Recall@5 MRR Recall@5

no tuning
PALAVRA (Ours) 26.9 ± 0.2 35.9 ± 0.2 22.1 ± 0.2 29.6 ± 0.3
no text augment 21.8 ± 1.9 29.2 ± 2.3 19.1 ± 0.2 25.7 ± 0.3
Only ℓGT 23.3 ± 0.4 31.9 ± 0.5 19.2 ± 0.5 25.1 ± 0.8
Only ℓCycle 19.3 ± 0.5 26.8 ± 0.8 16.1 ± 0.4 21.6 ± 0.8

with tuning
PALAVRA (Ours) 36.2 ± 1.3 53.7 ± 2.0 28.4 ± 0.7 39.2 ± 1.3
Only tuning 32.1 ± 0.6 44.1 ± 0.7 27.5 ± 1.0 37.9 ± 1.8
no alignment 32.9 ± 0.4 47.8 ± 1.1 26.3 ± 0.2 36.9 ± 1.6

YTVOS Validation Test

MRR Recall@5 MRR Recall@5

no tuning
PALAVRA (Ours) 47.3 ± 0.5 68.5 ± 0.5 47.1 ± 0.8 70.3 ± 0.8
no text augment 45.0 ± 0.3 63.8 ± 0.5 44.4 ± 0.3 65.6 ± 0.4
Only ℓGT 40.8 ± 0.8 59.3 ± 1.3 41.4 ± 0.2 62.0 ± 0.1
Only ℓCycle 35.5 ± 1.1 50.8 ± 2.4 37.3 ± 1.1 55.8 ± 2.1

with tuning
PALAVRA (Ours) 59.0 ± 0.8 76.2 ± 1.1 61.2 ± 0.4 78.7 ± 0.4
Only tuning 57.3 ± 0.9 76.1 ± 0.9 57.8 ± 0.3 77.1 ± 0.8
no alignment 56.5 ± 0.7 74.1 ± 0.3 58.1 ± 0.3 75.2 ± 0.9

Table A.2. Ablation study results, highlighting the importance of various framework
components. See the text for a full description of each setting and an analysis of the
results.
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a given textual prompt. In this process, the text-encoding branch is only used to supply
an embedding vector which is matched with the image branch. As such, the embedding
vector can be easily replaced with another vector from any source. We leverage this
property for all of our baselines.

When conducting an image-based search (AvgIM), we replace the embedding vector
with the normalized average embedding of a small set of images depicting the target
object. For the AvgIM&Text baseline, we further average this image embedding with
the text embedding of the query text.

To compare with COLLIE, we generate the embeddings using their adapter setup.
For our method, we utilize the original CLIP text encoder but substitute our learned
input word embeddings for the concept token.

Hyper parameters were tuned on the validation set and kept fixed for all methods.
We use a resizing factor of 0.5 and generate 3 ‘clicks’ from the relevancy maps for
the single image segmentation method. All other parameters were unchanged from the
baseline implementation of Zabari et al. [74].

E.2 Rich queries versus concept-only queries

In the main manuscript, we noted that surprisingly the segmentation model performed
better when provided with a text target of the form “A photo of a [CONCEPT]” (i.e.
a “Concept-only” query) than when provided with a rich textual caption.

To investigate this behavior, we turn to an analysis of the local relevance maps,
which are used to guide the segmentation. Our investigation reveals that often, when
the rich query describes other objects within the image, CLIP’s attention drifts towards
those objects. That is, CLIP struggles with leveraging relational information in the text
and instead splits its focus between several objects mentioned in the rich query. Figure
A.7 provides a qualitative visualization of this effect.

To quantitatively test this hypothesis, we re-ran segmentation, this time masking
out relevancy scores of the background, except for objects which are also valid retrieval
candidates. Now, context objects were no longer valid candidates. Indeed, we found
that with this manipulation, rich queries do outperform concept-only queries, as in
retrieval (Fig. A.3).

We conclude that a good caption for CLIP-guided personalized segmentation should
describe the object or its immediate vicinity, and not its relation to other objects.

Last, we further investigated whether COLLIE demonstrates a similar sensitivity
to rich queries. COLLIE’s segmentation performance in the two scenarios is shown in
Fig. A.4. We observe that, in contrast to our own approach and the baseline CLIP,
COLLIE’s performance on the segmentation task does not appear to be sensitive to
the level of detail in the query.

E.3 Qualitative Analysis

In this section, we provide an additional qualitative analysis of segmentation using
PALAVRA. We compare our results with the recent baseline COLLIE. Figure A.5
shows examples of successful segmentation, and Figure A.6 shows some failure modes.

F Evaluation datasets

We provide details for creating our two new benchmark datasets, based on DeepFashion
and YTVOS.
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Fig.A.3. Rich queries outperform concept-only queries when context objects are not
valid segmentation candidates.
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Fig.A.4. COLLIE performance when supplied with rich queries and with concept-only
queries. The performance of COLLIE does not depend on the rich query, indicating
that the additional information is largely ignored in the case of segmentation.
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Instruction Source Image Target Segment Ours COLLIE 
A bright orange fish 
with its full black 
dorsal fin and black 
tail with white tips 
visible.  

 
 

 
 

IOU:0.79 
 

IOU:0.04 
A white and black 
parrot sitting in 
front of another 
parrot. 

 
 

 
 

 
IOU:0.82 

 
IOU:0.05 

A black fox in front 
of a brown fox. 
 

  
 

 
 

 
IOU:0.84 

 
IOU:0.85 

a grey, white and 
black dog. 

 
 

 
 

 
IOU:0.76 

 
IOU:0.04 

a turtle wedged 
between brick and 
wood. 

 
 

 
 

 
IOU:0.82 

 
IOU:0.88 

A person wearing 
yellow skydiving 
gear. 

 
 

 
 

 
IOU:0.87 

 
IOU:0.01 

A turtle standing 
next to a doorway. 

 
 

 
 

 
IOU:0.83 

 
IOU:0.04 

An ape walking 
behind another 
ape. 

 
 

 
 

 
IOU:0.79 

 
IOU:0.80 

A tiger appears to 
be farthest from 
the person wearing 
a skirt. 

 
 

 
 

 
IOU:0.97 

 
IOU:0.17 

Fig.A.5. Examples of successful segmentation. For visualization purposes, we replaced
the [CONCEPT] tag by the name of its concept type, and highlighted it in cyan.
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Instruction Source Image Target segment Ours 

A tiger standing above 
another tiger. 

   

A dog faces the curved 
edge of the pool. 

   

An ape looking at 
another ape by the 
rocks. 

   

A fish is a distance 
above a white fish. 

   

A whale is furthest 
from the whale making 
the biggest white 
splashes. 
    

A sheep closest to the 
white  stone. 

   

A cow with its head 
lowered next to a light 
brown cow. 

   

A person with long 
brown hair. 

   
 

 

 

 

 

Fig.A.6. Examples of segmentation failures. For visualization purposes, we replaced
the [CONCEPT] tag by the name of its concept type, and highlighted it in cyan.
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Image Concept-Only Rich Query

“[CONCEPT] is on the head of the rider in a green poncho on a medium-brown horse”

“A [CONCEPT] perched inside a cage.”

Fig.A.7. Qualitative examples of ‘attention drift’ when using rich queries. When the
descriptor mentions other objects, CLIP’s attention visually drifts away from the target
concept and towards other objects described in the query. For example, in the top row,
focus moves from the hat and towards the brown horses. On the bottom row, focus
moved away from the parrot and towards the empty cage at the bottom of the frame.

F.1 DeepFashion2

To ensure that DeepFashion2 benchmark items are included in a rich visual context,
items were included in the dataset if they obey the following criteria: (1) Have at least
5 images with a proper scale (zoom). Specifically, the item covers no more than 50% of
the image. (2) There are at least 15 images of the same item in total. The set yielded
∼1700 images and 100 unique fashion items (concepts) which met these criteria. Each
unique fashion item was assigned a unique [CONCEPT] tag.

Next, we explain how we annotated a subset of this data with textual descriptions,
and how we selected the evaluation set.

We manually curated a subset of 652 images (out of 1700) that contain a person
wearing a fashion item and at least one additional object for a context. We did not
consider mobile phones or mirrors as valid context, as these objects are abundant in the
dataset. For each image, we collected a textual description that refers to each fashion
item. For instance, The [CONCEPT] is facing a glass store display.”.

To provide diverse captions, we instruct the raters to avoid trivial captions such as
“a [CONCEPT] in front of a mirror”. We also instructed them to avoid describing the
item itself, because the same item appears in several evaluation images, and we wished
to have a textual query which is specific to one single image.

We randomly sampled an evaluation set (out of the 652 images), by sampling 5
images per concept, or less, if not available. This results in 450 evaluation images and
1250 images for training. Finally, we made a concept-based split by randomly splitting
the dataset to 50 validation concepts and 50 test concepts.

Annotations for DeepFashion2 with Amazon Mechanical Turk
To simplify the instructions for collecting textual annotations, we used the fact

that every fashion item is worn by a person. When describing the images, we simply
asked the raters to relate to the person in the image in context of the objects in the
scene, and in a post-processing step, we replace every mention of the word “person”
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Fig.A.8. Instructions for collecting textual descriptions for images of the DeepFash-
ion2 benchmark.

Fig.A.9. Instructions for summarizing textual descriptions for images of the Deep-
Fashion2 benchmark.
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by the “[CONCEPT]” token. Additional instructions were inspired by the instructions
provided for collecting captions for the COCO dataset (See appendix of [40]).

Finally, to maintain the quality of the textual descriptions, we only worked with
the raters after they passed our qualification test, making sure that they followed the
instructions when describing 5-10 images. In addition, we only worked with raters with
AMT “masters” qualification, demonstrating a high degree of approval rate in a wide
range of tasks. We paid the raters 0.2$ for annotating each image.

Fig. A.8 provides an example of the data collection API for textual annotation of
images for the DeepFashion2 benchmark.

F.2 Summarizing textual annotations with AMT

As explained in Sec. B, for DeepFashion2 we created two types of captions for each
image, in order to quantify the effect of caption length. We expected that image retrieval
with short textual queries will pose a greater challenge, because they contain less
information about the target image, leading to queries that are more ambiguous.

To create the set of “short” text queries, we took the set of image captions de-
scribed in Sec. F.1, which we now denote as “detailed” captions, and asked the AMT
raters to summarize each caption. Given a detailed caption, their goal was to describe
the concept in the context of a single object in the scene. An example of a caption
and its summarized version is: “White cabinets, some with open drawers, are along-
side and behind the [CONCEPT].” was summarized to “White cabinets are behind the
[CONCEPT].”

Fig. A.9 provides an example of the data collection API to summarize textual
descriptions.

Similarly to the previous section, to maintain the quality of the textual descriptions,
we only worked with raters after they passed our qualification test and have AMT
“masters” qualification. We paid the raters 0.1$ for summarizing each caption.

Finally, for most of the DeepFashion2 experiments throughout the paper, we used
the more challenging “short” queries. In Sec. B we describe the evaluation results with
the “detailed” queries.

F.3 Youtube-VOS

Overview
We created an image segmentation benchmark of personalized visual concepts given

a textual query using Youtube-VOS (YTVOS) [72]. YTVOS is a dataset for instance
segmentation in video, which includes 4000+ videos, 90+ categories, and 7800+ unique
object instances. The original videos were 3− 6 second long with a 30 FPS frame rate.
The dataset contains a subset of the frames, sampled at rate of 6 FPS. To transform
the dataset into an image personalization benchmark, we take the last frame of each
video (scene) for evaluation and the object instances that appear in it as target con-
cepts. Earlier frames that contain that object are used as candidate frames for few-shot
training. See examples in Figures 5(left), A.2, A.5, A.6 and A.7.

For building the concept set, we consider each object instance (e.g. each animal in
the frame) as a unique personalized concept. We chose training samples such that their
object instantiations are not trivially solved by simple visual template matching with
the last (evaluation) frame. To that end, we use the following criteria: For each object
instance, we consider all the previous video frames that contain it. We keep only the
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frames where: (1) the object’s segmentation mask has a zero intersection-over-union
(IOU) score when compared with its mask at the last frame (i.e. the evaluation target)
and (2) the center of the mask moved at least 150 pixels when compared to the final
frame. We discard any object instance that does not have at least 4 training examples
left at the end of this filtering process. Finally, we take a box crop of the images around
the selected masks and use them as training examples.

Annotation with AMT

We annotated the instances in the evaluation frame with captions using AMT. We
instructed the AMT workers to concisely describe what makes a specific entity distinct,
compared with similar entities in the image, and, if possible, preferring descriptions that
relate to one object that is nearby.

Finally, similar to the previous sections, to maintain the quality of the textual de-
scriptions, we only worked with raters after they passed our qualification test and have
AMT “masters” qualification. We paid the raters 0.3$ for every textual description.

Fig. A.10 provides an example of the data collection API for textual annotation of
images for the Youtube-VOS benchmark.

Fig.A.10. Instructions for collecting textual descriptions for object instances in the
Youtube-VOS benchmark.

Personalized image retrieval:We also created an image retrieval variant of YTVOS.
We extract a set of images that correspond to the collected captions, where every image
in the retrieval set was extracted from a wide box cropped around every instance in
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each evaluation frame. The box size was set to twice the size of the instance mask on
each axis (that is, four times the area), to allow it to display some information about
the context of the instance.


