
Appendix for CLOSE: Curriculum Learning On
the Sharing Extent Towards Better One-shot

NAS

Zixuan Zhou13⋆, Xuefei Ning12∗, Yi Cai1, Jiashu Han1,
Yiping Deng2, Yuhan Dong3, Huazhong Yang1, and Yu Wang1†

1 Department of Electronic Engineering, Tsinghua University
∗zhouzx21@mails.tsinghua.edu.cn, ∗foxdoraame@gmail.com,

†yu-wang@tsinghua.edu.cn
2 Huawei TCS Lab

3 Tsinghua Shenzhen International Graduate School

1 Additional Discussions on CLOSE and CLOSENet

1.1 Insights into the Improvements by Increasing Sharing Extent

Sec. 3.1 of the main paper shows that Supernet-2 (with larger sharing extent)
significantly outperforms Supernet-1 (with vanilla sharing extent) in the early
training stages. This observation is a bit counter-intuitive, since the previous
studies have shown that a large sharing extent would aggravate the parameter
coupling and multi-model forgetting phenomenon [1,8,5,3]. Therefore, it might
be confusing where these improvements come from. To further understand our
observation, we conduct a deeper inspection into the estimation results of the
Supernet-1 and Supernet-2, and find out that there are two reasons underlying
the observation.

First, a larger parameter sharing extent accelerates the training pro-
cess of the supernet. This is due to the reduced number of the supernet’s
parameters. Previous studies reveal that a longer training can improve the rank-
ing quality, yet brings extra computational costs [2,3]. In our case, the highly-
shared supernet (Supernet-2) can achieve the same training performance under
a smaller computational budget, thus improve the ranking quality.

Second, a large parameter sharing extent alleviates the well-known
under-estimation phenomenon of larger architectures in vanilla one-
shot estimations [2,3]. Following the visualization technique of a recent study [3],
we divide the candidate architectures into five groups based on their complex-
ities, and obtain the average ranking difference of architectures in each group.
The ranking difference (RD) of an architecture is defined as the difference of
its true ranking and its estimated ranking by supernets. A negative RD indi-
cates the under-estimation of an architecture. As shown in Fig. A1, the average

⋆ Equal contribution.

2 Z. Zhou, X. Ning et al.

RDs of the largest architectures in the top 20% (80% and 100% on the X-axis)
in Supernet-2 are closer to zero than that in Supernet-1 on both NAS-Bench-
201 and NAS-Bench-301. This indicates the alleviation of the under-estimation
phenomenon of larger architectures.

20% 40% 60% 80% 100%

0.2

0.0

0.2

Ep
oc

h
10

0
NAS-Bench-201

Supernet-1
Supernet-2

20% 40% 60% 80% 100%
0.2

0.1

0.0

0.1

Ep
oc

h
20

0

20% 40% 60% 80% 100%
0.1

0.0

0.1

Ep
oc

h
30

0

20% 40% 60% 80% 100%
0.10

0.05

0.00

0.05
NAS-Bench-301

20% 40% 60% 80% 100%
0.10

0.05

0.00

0.05

20% 40% 60% 80% 100%
0.10

0.05

0.00

0.05

Fig.A1: Evaluation of the under-estimation phenomenon on NAS-Bench-201 and
NAS-Bench-301. X-axis: Complexity groups. Y-axis: Average RD.

1.2 More Discussion on Using The GATE Module for The Dynamic
Decision of Sharing Scheme

The “Strengths compared to Vanilla Supernets” section and Fig. 3 of the main
paper have discussed how the dynamic decision of sharing scheme between ar-
chitectures in CLOSENet can facilitate a more proper parameter sharing scheme
between architectures. For example, recall that the two 1×1 convolutions in Fig.
3 (bottom) are equivalent in two isomorphic architectures despite having differ-
ent positions. And the vanilla supernet uses different parameters for these two
convolutions, while CLOSENet gives out a more proper sharing scheme to share
the same GLOW block for them.

This strength comes from the dynamic decision design of the sharing scheme,
and also partly from the GCN-based architecture embedder [4] adopted in our
GATE module. As this architecture embedder conducts permutation-invariant

Appendix for CLOSE 3

aggregations on the graph, it can naturally map the counterpart nodes in isomor-
phic architectures to the same node embeddings. Therefore, for the equivalent
operations (i.e., the operations between the counterpart nodes) in two architec-
tures, the MLP in the GATE module takes the same embeddings as input, and
thus give out the same assignment.

The GCN-based architecture embedder adopted by CLOSENet, GATES [4],
mimics the actual data processing to model the NN architecture. Corresponding
to the computation flow of the cell-architecture in Sec. 3.2 of the main paper,
the embedding of node j (denoted as Ej in Eq. 3 of the main paper) is defined
as:

Ej =
∑
i<j

σ(OpEmb(o(i,j))Wo)⊙ EiWx, (1)

where σ is a sigmoid function, OpEmb(o) gives out the embedding of this type of
operation, and Wo and Wx denote two different linear transformation matrices.
The embedding of the input node is randomly initialized.

1.3 CLOSENet in Non-topological Search Spaces

In non-topological search spaces (e.g., ResNet-like search space [6]), the compu-
tation blocks (i.e., operations) are put in sequential order, which is different from
the topological structure in the generic search spaces. Therefore, we replace the
normal GATE module with a simple but effective strategy that assigns each
GLOW block to some consecutive operations in an interval. This assign-
ment strategy comes from the intuition that the consecutive operations in the
architectures have similar data processing functionality. Based on our analysis
in Sec. 3.2 of the main paper, it is more reasonable to share the parameters of
these operations. Since each operation has only one assigned block at the same
time, the assignment intervals of the GLOW blocks are nonoverlapping.

When adding a new GLOW block, we propose to choose an existing block and
divide its assignment interval down the middle. Then we assign the operations
in one of the divided intervals to the new block. In this way, we can naturally
apply the WIT to the new block to inherit the weights from the chosen one.

Fig. 5 in Sec. 4.1 of the main paper demonstrates that CLOSE consistently
achieves higher ranking quality across the training process on the two non-
topological search spaces (i.e., NDS ResNet and NDS ResNeXt-A).

1.4 Implementation of CLOSE

Alg. 1 shows the pipeline of using CLOSE to train CLOSENet. Specifically,
we construct CLOSENet with one GLOW block at the beginning. Then, we
gradually add blocks to reduce the sharing extent at the preset epochs. WIT
is applied to initialize the parameters of the new block and MLP unit. In each
training iteration, we randomly sample an architecture to update the parameters
of CLOSENet, including GLOW blocks and the GATE module, through the
Eq. 3 to Eq. 8 introduced in Sec. 3.2 of the main paper. SRT is applied to
restart the learning rate when it becomes too small.

4 Z. Zhou, X. Ning et al.

Algorithm 1 The Training Process of CLOSE on CLOSENet

Input:
D: Training data; T : Training epochs; A: Architecture search space;
SCL: The set of switch points (epochs) of sharing extent
SLR: The set of restart points (epochs) of learning rate

Training Process:
1: Construct a randomly initialized CLOSENet NA with one GLOW block
2: for t = 1, · · · , T do
3: if t ∈ SCL then
4: Adding a new GLOW block in NA

5: Using WIT to initialize the new block and GATE module
6: end if
7: if t ∈ SLR then
8: Using SRT to restart the learning rate and schedule
9: end if
10: for i = 1, · · · , I do
11: Randomly sample an architecture a ∈ A
12: Sample a batch of training data from D
13: Update parameters in NA with Eq. 3 ∼ Eq. 8
14: end for
15: end for
Output: The well-trained CLOSENet NA

2 Detailed Configurations

2.1 Supernet Training

In our experiments, we use the same training configurations for vanilla one-shot
supernets and CLOSENet. In detail, we train supernets via a SGD optimizer
with momentum 0.9 and weight decay 5e-4 . The learning rate is set to 0.05
initially and decayed by 0.5 each time the supernet accuracy stops to increase
for 30 epochs. In the training process, the dropout rate is set to 0.1, and the
gradient norm is clipped to be less than 5. The batch size is set to 512. For each
batch of examples, we randomly sample one architecture to update supernets’
parameters. Besides, we set the training epochs of all supernets to 1000 epochs.

2.2 Architecture Search

We adopt CARS [7], an improved evolutionary approach, to search the optimal
architectures in DARTS search space. The search process contains the supernet
training stage and the architecture search stage. We set the total epochs to
400, and set the population size to 100. We first train the supernet for 100
epochs to warm up the parameters. Then, in the supernet training stage, we
train the supernet for 5 epochs during one evolution iteration. In each mutation
step during the architecture search stage, random mutation, random crossover
and random sampling are conducted with a probability of 0.25, 0.25, and 0.5,
respectively, following CARS [7]. Fig. A2 shows the discovered architectures.

Appendix for CLOSE 5

c_{k-2}
0dil_conv_5x5

1

sep_conv_3x3

c_{k-1}

skip_connect

dil_conv_3x3

2sep_conv_5x5

3
sep_conv_5x5

avg_pool_3x3

c_{k}

sep_conv_5x5

(a) Normal Cell

c_{k-2}

0

max_pool_3x3 1

c_{k-1}

dil_conv_3x3

2sep_conv_3x3
3skip_connect

sep_conv_3x3

dil_conv_5x5 c_{k}

sep_conv_5x5

max_pool_3x3

(b) Reduction Cell

Fig.A2: The discovered cell architectures by CLOSE.

2.3 Training of the Discovered Architectures

On CIFAR-10, we stack the discovered architectures 20 times to construct the
network, and set its initial channel number to 36. The network is trained for 600
epochs with batch size 128. We use a SGD optimizer with momentum 0.9 and
weight decay 3e-4. The learning rate is decayed from 0.05 to 0.001 following a
cosine schedule. The dropout rate is set to 0.1, and the gradient norm is clipped
to be less than 5. Besides, the cutout augmentation with length 16, the path
dropout of probability 0.2 and the auxiliary towers with weight 0.4 are used.

When transferring the discovered architectures to ImageNet, we stack 14 cells
to construct the network, and set its initial channel number to 48. The network
is trained for 300 epochs with batch size 256. The weight decay is set to 3e-5,
and the learning rate is decayed from 0.1 to 0 following a cosine schedule. The
path dropout technique is not used.

3 Additional Experiments

3.1 Investigation of The GATE Module

In this section, we conduct an experiment to further investigate the effectiveness
and robustness of the GATE module in CLOSENet. Specifically, we randomly
sample four pairs of architectures on NAS-Bench-301, where two of them have a
big structure difference (labeled as 1 and 2), and the other two pairs (labeled as

6 Z. Zhou, X. Ning et al.

3 and 4) have a similar structure. Fig. A3 shows the four pairs of architectures.
We use a well-trained GATE module to obtain their assignment distribution
following the Eq. 4 of the main paper. Then we calculate the KL divergence of
the distribution between all the 3× 3 convolutions in each pair of architectures
and make a summation, which can reflect their assignment similarity. The results
of these four pairs are 4.9847 ± 0.0121, 3.2797 ± 0.0385, 0.4680 ± 0.0091 and
0.0003±0.0001. The stability of the KL divergence across different random seeds
shows the robustness of GATE. Meanwhile, the larger KL divergence of pair 1
and 2 also demonstrates the GATE module can give out a proper assignment of
blocks.

Arch Pair 2Arch Pair 1

Arch Pair 4Arch Pair 3

Very different in structure
KL divergence: 4.9847 ± 0.0121

Quite different in structure
KL divergence: 3.2797 ± 0.0385

Quite Similar in structure
KL divergence: 0.4680 ± 0.0091

Very Similar in structure
KL divergence: 0.0003 ± 0.0001

Fig.A3: The four pairs of the architectures we sample to investigate the GATE
module on NAS-Bench-301. We demonstrate the normal cells of the architectures
here. Architectures in Arch Pair 1 and Arch Pair 2 are different in structure,
while architectures in Arch Pair 3 and Arch Pair 4 are similar.

3.2 Effectiveness of The WIT Technique

The results shown in Sec. 4.3 of the main paper demonstrate that WIT plays
an important role in CLOSE. Here we provide a visualization to reveal its ne-
cessity more clearly. Fig. A4 shows that right after the curriculum (i.e., sharing
extent) switch, randomly initializing the parameters of the new GLOW block
and MLP unit significantly damages the ranking quality. On the contrary, WIT
helps CLOSE to retain the high ranking quality.

Appendix for CLOSE 7

600 601 602 603 604 605
0.1

0.2

0.3

0.4

0.5

800 801 802 803 804 805

0.2

0.3

0.4

0.5

CLOSE (w/o. WIT) Kendall's Tau
CLOSE (w. WIT) Kendall's Tau
CLOSE (w/o. WIT) P@top5%
CLOSE (w. WIT) P@top5%

Fig.A4: The trend of the ranking quality right after switching the sharing extent
(at 600 and 800 epoch) on NAS-Bench-301. X-axis: Training epochs. Y-axis:
Ranking quality (Kendall’s Tau or P@top5%).

3.3 A Simplified Version of CLOSE: CLOSE-S

In this section, we provide a simplified version of CLOSE (namely CLOSE-
S). Based on the analysis in Sec. 3.1 of the main paper, we simply use the
two sharing extents of Supernet-1 and Supernet-2 in two stages of the training
process. Specifically, in the first stage (0 to 400 epoch), CLOSENet shares only
one copy of parameters on all the edges in each cell-architecture. While in the
second stage (400 to 1000 epoch), CLOSENet enables the operations on different
edges to share different copies of parameters. The WIT and SRT are also adopted
when switching the sharing scheme and extent at 400 epoch. In this way, we
can easily apply CLOSE-S to train CLOSENet without the help of the GATE
module, since the assignments of GLOW blocks are preset (but different) in these
two stages.

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8 NAS-Bench-201

Vanilla Kendall's Tau
CLOSE Kendall's Tau
CLOSE-S Kendall's Tau

Vanilla P@top5%
CLOSE P@top5%
CLOSE-S P@top5%

0 200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

0.5
NAS-Bench-301

Fig.A5: Comparison of the vanilla one-shot supernet, CLOSE and CLOSE-S.
X-axis: Training epochs. Y-axis: Ranking quality (Kendall’s Tau or P@top5%).

As shown in Fig. A5, CLOSE-S achieves a higher KD and P@top5% than
the vanilla supernet on two generic search spaces across the training process.
Although it cannot reach the performances of CLOSE, CLOSE-S is easier to
implement, thus can be adopted when the performance demand is not as strict.

8 Z. Zhou, X. Ning et al.

References

1. Benyahia, Y., Yu, K., Smires, K.B., Jaggi, M., Davison, A.C., Salzmann, M., Musat,
C.: Overcoming multi-model forgetting. In: International Conference on Machine
Learning (ICML). pp. 594–603. PMLR (2019) 1

2. Luo, R., Qin, T., Chen, E.: Understanding and improving one-shot neural architec-
ture optimization. CoRR abs/1909.10815 (2019) 1

3. Ning, X., Tang, C., Li, W., Zhou, Z., Liang, S., Yang, H., Wang, Y.: Evaluating
efficient performance estimators of neural architectures. In: Annual Conference on
Neural Information Processing Systems (NIPS) (2021) 1

4. Ning, X., Zheng, Y., Zhao, T., Wang, Y., Yang, H.: A generic graph-based neural
architecture encoding scheme for predictor-based nas. In: European Conference on
Computer Vision (ECCV). pp. 189–204. Springer (2020) 2, 3

5. Niu, S., Wu, J., Zhang, Y., Guo, Y., Zhao, P., Huang, J., Tan, M.: Disturbance-
immune weight sharing for neural architecture search. Neural Networks 144, 553–
564 (2021) 1

6. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network
design spaces. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 10428–10436 (2020) 3

7. Yang, Z., Wang, Y., Chen, X., Shi, B., Xu, C., Xu, C., Tian, Q., Xu, C.: Cars:
Continuous evolution for efficient neural architecture search. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 1829–1838 (2020) 4

8. Zhang, M., Li, H., Pan, S., Chang, X., Su, S.: Overcoming multi-model forgetting in
one-shot nas with diversity maximization. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 7809–7818 (2020) 1

	Appendix for CLOSE: Curriculum Learning On the Sharing Extent Towards Better One-shot NAS

