
Supplementary Material
Gradient-based Uncertainty for Monocular

Depth Estimation

Julia Hornauer1 and Vasileios Belagiannis2⋆

1 Institute of Measurement, Control and Microtechnology, Ulm University, Germany
julia.hornauer@uni-ulm.de

2 Department of Simulation and Graphics, Otto von Guericke University Magdeburg,
Germany

1 Further Visual Results

In Fig. 1 to Fig. 4, further visual results are provided. The examples show the
RGB images, the depth prediction, the true error in terms of RMSE as well as
the uncertainty obtained from the base model, inference dropout (In-Drop) and
the gradients extracted from the neural network (Ours).

(a) RGB Image (b) Depth (c) RMSE

(d) Post (e) In-Drop (f) Ours

Fig. 1. Uncertainty estimation example from Monodepth2 [2] trained on NYU Depth
V2 [3]. In (a), the input image is shown, while (b) and (c) display the depth prediction
and the true error in terms of RMSE, respectively. The second row demonstrates the
uncertainty estimated by post-processing (Post) (d), inference dropout (In-Drop) (e)
and gradients (Ours) (f).

⋆ Most of this work was done while Vasileios Belagiannis was with Ulm University.
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(a) RGB Image (b) Depth (c) RMSE

(d) Log (e) In-Drop (f) Ours

Fig. 2. Uncertainty estimation example from Monodepth2 [2] trained on NYU Depth
V2 [3] with log-likelihood maximization (Log). In (a), the input image is shown, while
(b) and (c) display the depth prediction and the true error in terms of RMSE, re-
spectively. The second row demonstrates the uncertainty estimated by log-likelihood
maximization (Log) (d), inference dropout (In-Drop) (e) and gradients (Ours) (f).

(a) RGB Image (b) Depth

(c) RMSE (d) Ours

(e) In-Drop (f) Post

Fig. 3. Uncertainty estimation example from Monodepth2 [2] trained on KITTI [1]
with stereo pair supervision. In (a), the input image is shown, while (b) and (c) display
the depth prediction and the true error in terms of RMSE, respectively. Note that
ground truth depth is not available for all pixels. In (d), (e) and (f), the uncertainty
estimated by gradients (Ours), inference dropout (In-Drop) and post-processing (Post)
is demonstrated, respectively.
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Fig. 4. Uncertainty estimation example fromMonodepth2 [2] trained on KITTI [1] with
stereo pair supervision and self-teaching. In (a), the input image is shown, while (b) and
(c) display the depth prediction and the true error in terms of RMSE, respectively. Note
that ground truth depth is not available for all pixels. In (d), (e) and (f), the uncertainty
estimated by gradients (Ours), inference dropout (In-Drop) and self-teaching (Self ) is
demonstrated, respectively.
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2 Additional Sparsification Error Plots

In Fig. 5 and Fig. 6, the sparsification error plots in terms of Abs Rel and
δ ≥ 1.25 are displayed for Monodepth2 [2] trained on KITTI [1] with monocular
sequences and stereo pairs, respectively. In Fig. 7, the sparsification error curves
in terms of Abs Rel, δ ≥ 1.25 and RMSE for Monodepth2 [2] trained on NYU
Depth V2 [3] are shown. The curves are averaged over the respective test sets.

(a) Abs Rel (b) δ ≥ 1.25

Fig. 5. The sparsification error in terms of Abs Rel (a) and δ ≥ 1.25 (b) over the
fraction of removed pixels is illustrated for Monodepth2 [2] trained on KITTI [1] with
monocular sequences.

(a) Abs Rel (b) δ ≥ 1.25

Fig. 6. The sparsification error in terms of Abs Rel (a) and δ ≥ 1.25 (b) over the
fraction of removed pixels is illustrated for Monodepth2 [2] trained on KITTI [1] with
stereo pairs.
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(a) Abs Rel (b) δ ≥ 1.25

(c) RMSE

Fig. 7. The sparsification error in terms of Abs Rel (a), δ ≥ 1.25 (b) and RMSE (c)
over the fraction of removed pixels is illustrated for Monodepth2 [2] trained on NYU
Depth V2 [3].

3 Additional Ablation Studies

Importance Loss Components In Tab. 1, we evaluate the importance of the
individual components of the loss function for the Bayesian models. Therefore,
we compare the use of the entire loss function Lb, the loss Lr without the vari-
ance and solely the variance σ2 for the gradient generation. We conduct the
experiments on the Log models.

Layer Selection In Tab. 2, we demonstrate the performance of our gradient-
based uncertainty estimation for the Monodepth2 [2] Post model trained on NYU
Depth V2 [3] with gradients extracted at different decoder layers. We consider
gradients extracted from the 6th to the 9th decoder layer. The layers are counted
starting from the first to the last decoder layer.

Variance over Augmentations as Gradient Extraction Loss In Tab. 3,
we evaluate the usage of the variance over test-time augmentations as loss func-
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Table 1. Uncertainty estimation results for Monodepth2 [2] trained on NYU Depth
V2 [3] or KITTI [1] with monocular (Mono) or stereo pair (Stereo) supervision com-
paring the importance of the single loss terms using the Log models. The estimated
uncertainty is evaluated with the Area Under the Sparsification Error (AUSE) and the
Area Under the Random Gain (AURG) in terms of absolute relative error (Abs Rel),
root mean squared error (RMSE) and accuracy δ ≥ 1.25.

Abs Rel RMSE δ ≥ 1.25

Setup Loss AUSE ↓ AURG ↑ AUSE ↓ AURG ↑ AUSE ↓ AURG ↑

NYU
Lb 0.053 0.032 0.176 0.193 0.086 0.069
σ2 0.054 0.031 0.163 0.205 0.085 0.070
Lr 0.059 0.026 0.236 0.133 0.100 0.055

KITTI
Mono

Lb 0.026 0.033 0.819 2.658 0.024 0.059
σ2 0.036 0.023 2.399 1.079 0.042 0.041
Lr 0.028 0.031 0.577 2.900 0.027 0.056

KITTI
Stereo

Lb 0.019 0.038 0.490 2.849 0.018 0.061
σ2 0.026 0.031 1.685 1.655 0.028 0.051
Lr 0.022 0.036 0.495 2.845 0.022 0.047

Table 2. Uncertainty estimation results for Monodepth2 [2] Post model trained on
NYU Depth V2 [3] with gradients extracted from different decoder layers. The esti-
mated uncertainty is evaluated with the Area Under the Sparsification Error (AUSE)
and the Area Under the Random Gain (AURG) in terms of absolute relative error (Abs
Rel), root mean squared error (RMSE) and accuracy δ ≥ 1.25.

Abs Rel RMSE δ ≥ 1.25

Layer AUSE ↓ AURG ↑ AUSE ↓ AURG ↑ AUSE ↓ AURG ↑
5 0.063 0.023 0.237 0.135 0.111 0.044
6 0.061 0.025 0.252 0.120 0.106 0.048
7 0.063 0.023 0.259 0.113 0.110 0.045
8 0.064 0.022 0.284 0.088 0.114 0.041
9 0.066 0.021 0.298 0.073 0.118 0.037

tion for the gradients extraction in comparison to the proposed loss function,
which is defined as the difference of the depth prediction on the input image and
its flipped counterpart. We report the results for the gradient extraction on the
Monodepth2 [2] Post model trained on NYU Depth V2 [3].

Reference Depth Augmentation In Tab. 4, the uncertainty estimation results
of our gradient-based approach on Monodepth2 [2] trained with NYU Depth
V2 [3] are reported for the Log model. We demonstrate different configurations
to define the loss for the gradient generation. We consider the squared difference
of the prediction to the ground truth depth (GT) and to transformed images by
image flipping (Flip), gray-scale conversion (Gray) and additive Gaussian noise
(Noise).
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Table 3. Uncertainty estimation results for Monodepth2 [2] Post model trained on
NYU Depth V2 [3] where the gradients are extracted with the variance over different
test-time augmentations. The estimated uncertainty is evaluated with the Area Under
the Sparsification Error (AUSE) and the Area Under the Random Gain (AURG) in
terms of absolute relative error (Abs Rel), root mean squared error (RMSE) and ac-
curacy δ ≥ 1.25.

Abs Rel RMSE δ ≥ 1.25

Layer AUSE ↓ AURG ↑ AUSE ↓ AURG ↑ AUSE ↓ AURG ↑
Var-Grad 0.064 0.023 0.256 0.116 0.113 0.042
Ours 0.061 0.025 0.252 0.120 0.106 0.048

Table 4. Uncertainty estimation results for Monodepth2 [2] Log trained on NYU Depth
V2 [3] when using different loss functions for the gradient generation. We compare
the error of the prediction to the ground truth depth (GT) and depth predictions
obtained by different image transformations. We consider image flipping (Flip), gray-
scale conversion (Gray) and additive Gaussian noise (Noise). The estimated uncertainty
is evaluated with the Area Under the Sparsification Error (AUSE) and the Area Under
the Random Gain (AURG) in terms of absolute relative error (Abs Rel), root mean
squared error (RMSE) and accuracy δ ≥ 1.25.

Abs Rel RMSE δ ≥ 1.25

Loss AUSE ↓ AURG ↑ AUSE ↓ AURG ↑ AUSE ↓ AURG ↑
GT 0.014 0.071 0.072 0.297 0.018 0.136
Flip 0.053 0.032 0.176 0.193 0.086 0.069
Gray 0.054 0.031 0.177 0.192 0.086 0.068
Noise 0.054 0.031 0.165 0.203 0.085 0.069
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