
CPrune: Compiler-Informed Model Pruning for
Efficient Target-Aware DNN Execution

(Supplementary Materials)

Taeho Kim1 , Yongin Kwon2 , Jemin Lee2 , Taeho Kim2 , and Sangtae
Ha1

1 University of Colorado Boulder
{taeho.kim,sangtae.ha}@colorado.edu

2 Electronics and Telecommunications Research Institute
{yongin.kwon,leejaymin,taehokim}@etri.re.kr

1 Identifying α and β for Each Pruning Iteration

CPrune evaluates the execution time and accuracy of the pruned candidate
model at each pruning iteration. Each iteration compares its performance with
the thresholds obtained by multiplying α and β to the last execution time and
accuracy, respectively. α is the ratio to represent the minimum allowable accu-
racy used during each iterative step of the pruning process, and β is the ratio
to define the target execution time of the next pruning iteration. We conducted
the following experiments to determine the α and β used in our experiments.

1.1 Identifying α

This experiment measures the accuracy and processed figures per second (FPS)
according to various α and determines our experiment’s α value. When the
pruned candidate model of CPrune shows an execution time lower than the
target execution time of the current iteration, it compares the accuracy of a
pruned model with the threshold (α · ap). Then, if its accuracy is higher than
the threshold, the pruned candidate model is selected as the pruned model of
the current iteration.

We execute CPrune process for the ResNet-18 using ImageNet on Kryo
385 CPU and compare their final CPrune models when choosing different α
(α ∈ {0.9975, 0.995, 0.99}). We observe a clear trade-off between fast FPS and
high accuracy based on the choice of α, as shown in Table 1. When α = 0.9975,
we can see that the FPS is improved, and the top-5 accuracy is slightly improved,
as shown in Figure 1. On the other hand, when α = 0.99, we obtain a high exe-
cution speed by sacrificing some accuracy. 0.9975 only marginally improves the
FPS, and 0.99 makes its accuracy too low. Therefore, although the appropriate
α varies depending on the accuracy requirement, we chose α = 0.995 as a suit-
able heuristic to address the observed trade-off during the pruning process. The
results in Table 1 confirm that we obtain significant increase rate in FPS (1.38×
∼ 2.23×) by using CPrune with α = 0.995.

2 Yongin Kwon is the corresponding author.

https://orcid.org/0000-0001-7787-3035
https://orcid.org/0000-0003-2973-246X
https://orcid.org/0000-0002-9332-3508
https://orcid.org/0000-0002-5061-206X
https://orcid.org/0000-0001-5983-5430


2 T. Kim et al.

Table 1: Mobile CPU (Kryo 385 and 585) and GPU (Mali-G72) performance
test (ResNet-18, MobileNetV2, MnasNet1.0 with ImageNet dataset)

FPS
Model α TFLite CPrune FLOPS

(Pruned)
Params
(Pruned)

Top-1
Acc

Top-5
Acc

ResNet-18
(Kryo 385)

Original 4.39 18.86 1.81B 11.7M 69.76% 89.08%
0.9975 4.60

(1.05×)
25.99
(1.38×)

1.61B
(11.0%)

11.0M
(5.74%)

69.73% 89.21%

0.995 5.94
(1.35×)

36.91
(1.96×)

1.17B
(35.7%)

10.3M
(11.8%)

68.30% 88.34%

0.99 6.57
(1.50×)

42.09
(2.23×)

844M
(53.5%)

7.17M
(38.6%)

65.02% 86.28%

Fig. 1: Comparison of CPrune perfor-
mance according to different α values.
0.9975 only marginally improves the
FPS, and 0.99 makes its accuracy too
low. Therefore we chose α = 0.995.

Fig. 2: Comparison of the results of
measuring execution time while reduc-
ing the number of filters. The dotted
line is the expected minimum execu-
tion time reduction with β = 0.99
when pruning the filters by the step
size.

1.2 Identifying β

This experiment measures a DNN model’s execution time after tuning while
pruning the filters one by one and determines our experiment’s β value. We
pruned filters in one of the convolution layers of the ResNet-18 model. The ex-
perimental results using ImageNet on Kryo 280 CPU are shown in Figure 2. The
step size in Figure 2 is the number of pruning filters decided by analyzing the
corresponding subgraph in the model. When we prune the number of filters by
the step size, its execution time is reduced by about 1% or more. Furthermore,
we also confirmed that the execution time is reduced by 1 ∼ 2% in other layers
after pruning the filters as much as their step size. In other words, if we decide
the target execution time of the next pruning iteration as 0.99 × the current ex-
ecution time, it fulfills the execution time condition in the next pruning iteration
with step size pruning. Therefore, we selected β = 0.99.



CPrune: Compiler-Informed Model Pruning 3

2 Details of Algorithm 1

This supplementary section includes additional information on Algorithm 1, in-
cluding the computational complexity and a table that summarizes the variables
used.

2.1 Computational Complexity

The algorithm consists of (1) finding a subgraph that could largely impact the
DNN execution and (2) pruning that subgraph. Finding a subgraph has the
worst-case running time of O(T · F ) where T is the number of tasks, and F is
the number of filters. Pruning a subgraph involves calculating the least common
multiple (LCM) of two values, which results in O(FlogF ). Finally, the worst-case
running time of CPrune becomes O(T · F · FlogF ).

2.2 Variables in Algorithm 1

Table 2: Notation

Symbol Description

M Current model

ag The minimum accuracy requirement

pr Pruning rate of each subgraph

lt Target execution time of the following pruning iteration

ap Short-term accuracy of the previous best model

C Connection table among tasks, subgraphs and fast programs of M

R List of tasks of M , prioritized by tuning

S Associated subgraphs of a task r in R

P the fastest program of a task r in R

M ′ Pruned candidate model

C′ Connection table among tasks, subgraphs and fast programs of M ′

R′ List of tasks of M ′, prioritized by tuning

lm Measured execution time on the target device

as Short-term training accuracy

α The ratio to represent the minimum allowable accuracy after pruning

β The ratio to define the target execution time of the next pruning iter-
ation

3 Impact of Tuning on CPrune’s Pruning Performance

This experiment checks if performing the tuning for task ordering is necessary
despite the relatively long time consumed in the Main step of CPrune. In the



4 T. Kim et al.

Table 3: Mobile CPU performance test (ResNet-18 with CIFAR-10 dataset)
Model Method FPS (Increase rate) FLOPS Params Top-1 Acc

ResNet-18
(Kryo 280)

Original (TVM) 33.82 555M 11.2M 94.37%
CPrune 109.45 (3.24×) 161M 2.62M 93.74%

ResNet-18
(Kryo 585)

Original 40.50 555M 11.2M 94.37%
CPrune 93.63 (2.31×) 297M 3.54M 94.14%
CPrune (w/o tuning) 57.77 (1.43×) 390M 5.08M 94.51%
CPrune (single sub-
graph pruning)

79.62 (1.97×) 294M 4.55M 94.27%

Fig. 3: Performance difference accord-
ing to the tuning application

Fig. 4: Selective vs Exhaustive Search
(ResNet-18, Kryo 585, ImageNet)

Main step, CPrune estimates the execution time of the current pruned candidate
modelM ′ involving tuning. To check the necessity of tuning, we compare CPrune
with and without tuning with ResNet-18, Kryo 585 CPU, and CIFAR-10, as
shown in Table 3.

If CPrune measures FPS immediately without tuning, the FPS is significantly
lower than FPS with tuning, as shown in Figure 3. This indicates that CPrune
without tuning may not select proper tasks and the number of filters to prune,
and as a result, pruning does not proceed sufficiently. This is why we think the
tuning process is necessary for CPrune.

4 Selective Search vs. Exhaustive Search

This experiment checks the effect of selective search used in CPrune. An on-
device measurement-based approach like NetAdapt [1] exhaustively measures
execution time and accuracy for each subgraph. After that, one optimal subgraph
is selected and pruned before moving to the next iteration. However, CPrune
introduces a mechanism for assigning dynamic priority for each task and reducing
the time taken in the Main step. We compare the relative time cost in the Main
step with CPrune’s selective search. Figure 4 shows that CPrune reduces the time
cost by nearly 90% with similar or better performance than when all subgraphs
are considered, respectively.



CPrune: Compiler-Informed Model Pruning 5

References

1. Yang, T.J., Howard, A., Chen, B., Zhang, X., Go, A., Sandler, M., Sze, V., Adam,
H.: Netadapt: Platform-aware neural network adaptation for mobile applications. In:
Proceedings of the European Conference on Computer Vision (ECCV). pp. 285–300
(2018) 4


