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1 Rationality of Transformation for Concatenation Layers

To explain the rationality of transformation for concatenation layers, we can
prove the following proposition.

Proposition 1 The output of a concatenation layer followed by a convolution
layer is equivalent to the sum of separate convolutions on the inputs.

Suppose we have M features X, € RNXCmxHxW 'y c [1_M]. By concate-
nating theses features along channel dimension, we can obtain a new feature X €
RN X (Zey Cn)xHXW A convolution with weights 0 € RCoX(Emizy Cm)xKXK jg
then applied on the concatenated feature X. Im2col operation transfers convo-
lution to matrix multiplication, and we get the input and weight matrix X, 0, as
shown in Fig. 1. X-6= Z%:l X, - ém, which is the sum of M multiplications
of small matrix, where X,, - ém is exactly the convolution on input feature X,,.
Consequently, Proposition 1 is proved.
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Fig. 1. Illustration of an input and weight matrix X, 8.
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Table 1. Search space size: small, medium, large, extra large. Total size equals the mul-
tiplication of the backbone and FPN space sizes. Four supernets in various depth/width
are designed. Details of the four search spaces are in the supplementary.

‘ Size of Search Space
| Backbone ~ FPN Total

EAutoDet-s | 7.9 x 10" 9.8 x 10** 7.7 x 10%°
EAutoDet-m | 3.8 x 10'® 5.2 x 103 2.0 x 10%°
EAutoDet-l | 1.8 x 10%° 2.8 x 10%® 5.0 x 10%!
EAutoDet-x | 87 x 10%' 1.5 x 10*? 1.3 x 10™

Supernet

2 Details of our Search Spaces

The size of search space is given in Table 1

Marco Architectures. To abosrb the knowledge of architectures of YOLO
models that are well designed by experts, we refer to YOLOvV5 [9] and build four
supernets with various depths and widths, denoted as s (small), m (medium), 1
(large), and x (extra large). The depth and width of various types of supernet are
illustrated in Table 2, where ‘C’ is the number of base output channels indicating
the supernet width, and ‘M’ is the number of bottleneck cells in the C3 block,
affecting the supernet depth. The details of our search space for the backbone
and FPN modules are introduced as follows.

Backbone Search Space. 1) For the down-sampling operator, we design
four candidates: {1x1 convolution, 3x3 convolution, 5x5 convolution, 3x3 dilated
convolution} and three candidate expansion rates for output channel: {0.5, 0.75,
1.0}; 2) For the bottleneck cell, which consists of two convolutions, we search
output channels for both convolutions with candidates {0.5, 0.75, 1.0}, and ker-
nel settings for the second convolution with candidates {3x3 convolution, 5x5
convolution, 3x3 dilated convolution}; 3) For the C3-block, which consists of M
bottleneck cells, we search for the expansion rate for its output channels among
two candidates: {0.75, 1.0}. We adopt macro search space in this work, where ar-
chitectures for bottlenecks and C3-blocks from different layers are independently
searched. Suppose a backbone contains Lp down-sampling layers, Lo C3-blocks
and Lp Bottlenecks, the size of search space is (4 x 3)Lr - 2L . (3 x 3)L&,

FPN Search Space. This work extracts three scales of features and builds
supernets for both Top-down and Bottom-up fusion blocks. Each node in the
supernet indicates a feature map connecting with all its predecessors, and each
edge owns four candidate operations: {1x1 convolution, 3x3 convolution, 5x5 con-
volution, 3x3 dilated convolution} with three possible expansion rates for output
channel: {0.5,0.75,1.0}. To derive the final architecture, each node in top-down
and bottom-up fusion blocks preserves top-2 connections, and each connection
will only preserve the best operation. Since we have three feature scales, there
are 6 connections in each fusion block, leading to (4 x 3)% x [(g) X (‘21) X (g)} =
5.4 x 10% candidate connection types for each feature fusion block in total. Fur-
thermore, we concatenate a C3 block with Kp Bottlenecks after each feature
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Table 2. Structures of the four supernet built based on YOLOv5. ‘C’ is the number
of output channels (width), and ‘M’ denotes the number of bottleneck cells in the C3
block (depth). The last line indicates the statistics of the supernet structures used to
calculate the size of the search space. Specifically, Lp, Lc, Lp is the number of down-
sampling layers, C3-blocks and Bottlenecks in the backbone, and Kg is the number of
Bottlenecks in each fusion block in the FPN module.

Module [Block | AutoYOLO-s | AutoYOLO-m | AutoYOLO-1 | AutoYOLO-x
[Focus | C=32 | C=48 | C=64 | C=80
‘Down—sample ‘ C=64 ‘ C=96 ‘ C=128 ‘ C=160
|c3 | C=64, M=1 | C=96, M=2 | C=128, M=3 | C=160, M=4

Backbone |pown-sample | C=128 [ 0=192 [ ©=256 [ =320
|c3 | C=128, M=3 | C=192, M=6 | C=256, M=9 | C=320, M=12
[Down-sample | C=256 | C=384 | C=512 | C=640
|c3 | C=256, M=3 | C=384, M=6 | C=512, M=9 | C=640, M=12
[Down-sample | C=512 | C=T68 | C=1024 | C=1280
|sPp | C=512 | C=T68 | C=1024 | C=1280

32/ C=512 32/ C=768 32/ C=1024 32/ C=1280

Top-down |Feature Fusion| 16/ C=256 16/ C=384 16/ C=512 16/ C=640

(FPN) 8/ C=128 8/ C=192 8/ C=256 8/ C=320
32/ C=512, M=1 32/ C=768, M=2 32/ C=1024, M=3 32/ C=1280, M=4
C3 16/ C=256, M=1 16/ C=384, M=2 16/ C=512, M=3 16/ C=640, M=4
8/ C=128, M=1 8/ C=192, M=2 8/ C=256, M=3 8/ C=320, M=4
32/ C=512 32/ C=768 32/ C=1024 32/ C=1280
Bottom-up|Feature Fusion| 16/ C=256 16/ C=384 16/ C=512 16/ C=640
(FPN) 8/ C=128 8/ C=192 8/ C=256 8/ C=320
32/ C=512, M=1 32/ C=T68, M=2 32/ C=1024, M=3 32/ C=1280, M=4
c3 16/ C=256, M=1 16/ C=384, M=2 16/ C=512, M=3 16/ C=640, M=4
8/ C=128, M=1 8/ C=192, M=2 8/ C=256, M=3 8/ C=320, M=4
Statistics |Lp=4,Lc=3,Lp=T7,Kp=3|Lp=4,Lc=3,Lp=14,Kp=6|Lp=4,Lc=3,Lp=21,Kp=9|Lp=4,Lo=3,Lp=28, Kp=12

fusion block, which has 2 - (3 x 3)K2. Since we have two fusion blocks: Top-
down and Bottom-up block, the size of search space for FPN is {(4 x 3)% x

[() x () x (3)] x2- (3% 3)Km)2,

3 Details of Experimental Settings

We search on MS-COCO 2017 detection dataset [14] and evaluation on the test
set of MS-COCO and DOTA-v1.0 benchmark. All our models are trained from
scratch without pre-training on ImageNet.

Search Settings. We construct a supernet and define architecture parame-
ters to represent the importance of candidate operations and connections. Unlike
DARTS that shares the same cell structure, we independently search architec-
tures for each C3 block and Bottleneck. The training set of MS-COCO is divided
into two parts for training architecture parameters and network weights, respec-
tively. The final architecture is derived after alternately optimizing architecture
parameters and network weights for 50 epochs by an SGD optimizer.

Evaluation Settings. The discovered architectures are trained from scratch
for 300 epochs by an SGD optimizer. We directly utilize the hyper-parameters
provided by YOLOv5 for a fair comparison. Our experiments are conducted
on V100 GPU. To fairly compare the speed (FPS) with YOLO methods, we
convert the trained models to the style of YOLOv4 [1] and evaluate the FPS
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Table 3. Detailed comparison between the discovered architectures and original
YOLOvV5 models. MAP is tested on the test set of MS-COCO.

Model #Params (M) FLOPs (G) FPS mAP (%)
YOLOV5-s 7.3 17.1 113 36.9
YOLOvV5-m 214 51.4 88 43.9
YOLOv5-1 47.1 112.5 59 46.8
YOLOvV5-x 87.8 219.0 43 49.1
AutoYOLO-s 9.1 24.9 120 40.1
AutoYOLO-m 28.1 60.8 70 45.2
AutoYOLO-1 34.4 115.4 59 47.9
AutoYOLO-x 86.0 225.3 41 49.2

on the Darknet platform [19], which is written in C and CUDA. Besides, we
evaluate the generalization of the discovered architectures by transferring them
to rotation detection task. Specifically, we train models on the training set of
DOTA-v1.0 from scratch for 300 epochs and evaluate on the validation and test
sets. Notice that we train and test on a single input scale unlike previous works [6,
28] that adopt multi-scale training technique and random rotation augmentation.
All our experiments are trained and tested on the V100 GPU, and our models
are trained on PyTorch platform.

4 Comparison to YOLOvV5 models.

Table 3 shows the detailed information of our models and YOLOv5 series models,
including number of parameters, FLOPs, and mAP on the test set of MS-COCO.
We observe that our models archieve better performance than YOLOv5 with
similar parameters and FPS, showing the effectiveness of our search method.
We will open-source our search and evaluation codes. Table 4 compares with
prior works on the test set of MS-COCO.

5 Results on Rotation Detection Benchmark: DOTA

We utilize Circular Smooth Label (CSL) technique [27] to obtain robust an-
gular prediction through classification without suffering boundary conditions.
The baseline adopts RetinaNet [13] detection framework with ResNet152 [7]
backbone and FPN [12] module. Our models are trained with rotation classifi-
cation loss used in CSL [27] from scratch for 300 epochs. Besides, we compare
to YOLOv5 based on the open-sourced codes [10]. Results are shown in Ta-
ble 5. We observe that: 1) Our EAutoDet-s achieves competitive performance
over many prior works in ResNet backbone; 2) EAutoDet-m outperforms the
baseline (CSL [27] with ResNet-152 backbone) by 0.8% mAP5q; 3) EAutoDet-
s model surpasses original YOLOv5-s model by more than 1.7% mAPs5y and
EAutoDet-m surpasses YOLOv5-m by over 0.7%.
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Table 4. Comparison with prior works on the COCO test-dev. FPS for YOLOv5
and our method are calculated on a single V100 GPU, and results for other methods
are directly obtained from their papers. Different blocks indicate models with various

inference speeds and prediction performance.

“¥*. The results are obtained by our ex-

periments. ‘-’: The value is not provided by the original paper. **’: The unit of search
cost is TPU-days, while the unit of other methods is GPU-days. ‘*’: SPNet[8] shows
the search cost on VOC is 26 GPU-days, and is six times lower than that on COCO.

S #Params mAP AP5sy) AP7; APs APy AP} Search

Method Resolution FP (M) (%) (%) (%) (%) (%) (%) Cost
YOLOv4 [1] 416 96 - 41.2 62.8 44.3 204 444 56.0 -
YOLOv5s! 9] 640 113 7.3 36.9 56.0 40.0 19.9 41.1 46.0 -
EfficientDet-DO [20] 512 98 3.9 33.8 52.2 35.8 12.0 383 51.2 -
NAS-FPN [4] 640 24 60.3 39.9 - - - - - 333"
NAS-FCOS@128 [23]  1333x800 - 27.8 379 - - - - - 28
SpineNet-49S [3] 640 - 11.9 39.5 59.3 43.1 20.9 422 54.3 -
SM-NAS:E2 [29] 800600 25 - 40.0 58.2 43.4 21.1 424 51.7 187
EAutoDet-s (ours) 640 120 9.1 40.1 58.7 43.5 21.7 43.8 50.5 1.4
YOLOv3 + ASFF [15] 416 54 - 40.6 60.6 45.1 20.3 44.2 54.1 -
YOLOvV4 [1] 512 83 - 43.0 64.9 46.5 24.3 46.1 55.2 -
YOLOv4-csp [21] 512 8of 43 46.2 64.8 50.2 24.6 50.4 619 -
YOLOv5m' 9] 640 88 214 43.9 625 47.6 25.1 48.1 549 -
EfficientDet-D1 [20] 640 74 6.6 39.6 58.6 42.3 17.9 44.3 56.0 -
DetNAS [2] 1333x800 - - 42.0 63.9 45.8 24.9 45.1 56.8 44
NAS-FPN [4] 1024 13 60.3 44.2 - - - - - 333"
Auto-FPN [25] 800 - 32.6 40.5 61.5 43.8 25.6 44.9 51.0 16
NAS-FCOS@256 [23]  1333x800 - 57.3 43.0 - - - - - 28
SpineNet-49 [3] 640 - 28.5 42.8 62.3 46.1 23.7 45.2 57.3 -
SM-NAS:E3 [29] 800x 600 20 - 42.8 61.2 46.5 23.5 45.5 55.6 187
Hit-Detector [5] 1200x800 - 27.1 414 624 459 252 45.0 54.1 -
OPA-FPN@64 [11] 1333x800 22 295 41.9 - - - - - 4
EAutoDet-m (ours) 640 70 28.1 45.2 63.5 49.1 25.7 49.1 57.3 2.2
YOLOv3 + ASFF [15] 608 46 - 424 63.0 47.4 255 45.7 523 -
YOLOv4 [1] 608 62 - 43.5 65.7 47.3 26.7 46.7 53.3 -
YOLOv4-csp [21] 640 65" 53 47.5 66.2 51.7 28.2 51.2 59.8 -
EAutoDet-csp (ours) 640 55 49.8 47.8 66.1 51.9 28.6 51.5 60.1 4.2
YOLOv5I 9] 640 59 471 46.8 65.4 50.9 27.7 51.0 58.5 -
EfficientDet-D2 [20] 768 57 8.1 43.0 62.3 46.2 225 47.0 584 -
SPNet(BNB) [8] 1333x800 10 - 45.6 64.3 49.6 28.4 48.4 60.1 156
SM-NAS:E5 [29] 1333x800 9 - 459 64.6 48.6 27.1 49.0 58.0 187
OPA-FPN@160 [11] 1333x800 13  60.6 47.0 - - - - - 4
EAutoDet-1 (ours) 640 59 34.4 47.9 66.3 52.0 28.3 52.0 59.9 4.5
YOLOv3 + ASFF [15] 800 29 - 43.9 64.1 49.2 27.0 46.6 53.4 -
YOLOv5x! 9] 640 43 87.8 49.1 67.5 53.6 30.2 53.4 614 -
EfficientDet-D3 [20] 896 35 12 45.8 65.0 49.3 26.6 49.4 59.8 -
SPNet(XB) [8] 1333x800 6 - 474 657 519 29.6 51.0 60.4 156%
EAutoDet-x (ours) 640 41 86.0 49.2 67.5 53.6 30.4 53.4 61.5 22
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