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Abstract. Neural Architecture Search (NAS) aims to automatically pro-
duce network architectures suitable to specific tasks on given datasets.
Unlike previous NAS strategies based on reinforcement learning, genetic
algorithm, Bayesian optimization, and differential programming, we for-
mulate the NAS task as a Max-Flow problem on search space consisting
of Directed Acyclic Graph (DAG) and thus propose a novel NAS ap-
proach, called MF-NAS, which defines the search space and designs the
search strategy in a fully graphic manner. In MF-NAS, parallel edges
with capacities are induced by combining different operations, including
skip connection, convolutions and pooling, and the weights and capacities
of the parallel edges are updated iteratively during the search process.
Moreover, we interpret MF-NAS from the perspective of non-parametric
density estimation and show the relationship between the flow of a graph
and the corresponding classification accuracy of a neural network archi-
tecture. We evaluate the competitive efficacy of our proposed MF-NAS
across different datasets with different search spaces that are used in
DARTS/ENAS and NAS-Bench-201.

1 Introduction

Recent advances in deep neural networks result in growing interests in automated
machine learning (AutoML), whose goal is to optimize hyper-parameters and to
identify network architectures suitable to specific datasets without much human
intervention. The target of AutoML can be generally formalized as follows:

x* € argmin f(x), (1)
reX
where f: X — R is a function defined over a search space X.

In the past few years, white-box-based and black-box-based approaches have
been dedicated to developing algorithms for AutoML. In a white-box formulation
[27,47], the form of function f is explicitly known, so that 2 € X can be optimized
in a differential programming manner. In comparison, in a black-box assumption
[8,37], the function f can only be evaluated at x € X, yielding noisy observations.
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One important factor for AutoML is the definition and construction of search
space X. Different search spaces X give rise to different settings for AutoML,
and thus promote a variety of search strategies. Given a convex set X C R,
then Eq. (1) can be viewed as a hyper-parameter optimization (HPO) problem.
And Bayesian Optimization (BO) [37,39, 6] can provide an elegant compromise
in terms of capturing a surrogate model to indicate the likelihood of function f
and maximizing an acquisition function to trade off exploration and exploitation.
Given a tree-based search space X C T, which is often used for either building
the hyper-parameters’ dependency or searching for a macro neural architecture
where the layers are stacked sequentially, some works [40, 38] manage to capture
the dependency among layers and to decide a proper exploration-exploitation
balance by using Monte Carlo Tree Search (MCTS) strategy. Moreover, if the
searching space is extended to a Directed Acyclic Graph (DAG), i.e. X C G,
where G is a DAG search space, then the multi-branch and the skip relationship
of hyper-parameters can be established. This elastic expression leads to the
research direction called Neural Architecture Search (NAS). In [27,15,43,49,
12] the architecture is represented as a super-net, and a white-box approach
(i.e., differential programming based approach) is used to update architecture’s
importance and network’s weight. However, due to the approximation in bi-
level optimization, the differential based methods (both one-shot and single-
path approach) suffer instability, i.e.during the search process, the architecture
collapsing occurs and thus the skip-layer tends to dominate [10,41]. On the
contrary, some black-box BO methods are also introduced to design NAS strategy.
Nevertheless, because of the inconsistency between the vector space R? and
the DAG space G, BO solutions need extra efforts for encoding the neural
architecture [19, 35, 45, 30].

Another important factor for AutoML is search strategy, which has been
explored by most of the existing methods for NAS based on reinforcement
learning, genetic algorithm, Bayesian optimization, and differential programming.
These methods decouple the search space and search strategy, leading to lower
efficiency due to ignorance on graph property. To bridge the gap, we focus on
designing an efficient and stable search strategy on a DAG search space in a fully
graphic manner, which is akin to using MCTS in a tree-based search space or
adopting Gaussian process (GP) in an Euclidean space. A few prior works [21,
46] have pioneered to perform NAS using graph theory. However, [21] is limited
to linear search space and lacks evaluation results on real datasets; whereas [46]
lacks feedback reward, making it an open-loop strategy—rather than a NAS
method it is virtually a method to define search space. Recently, GFlowNet [4,
5] views a Markov Decision Processes (MDP) as a flow network, and connects
the flow-matching (conservation) conditions to the generated policy with the
target reward function. Though GFlowNet targets at sampling a diverse set
of candidates, which may be not the case of NAS, GFlowNet builds a solid
foundation for achieving the black-box optimization with the flow network.

In this paper, by introducing the maximum-flow calculation in a flow network,
we formulate the NAS task as a multi-graph maximum-flow problem directly
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defined on a DAG search space with edge capacity indicating the contribution
of the corresponding operation to the model performance. To be specific, our
contributions are three-fold:

1. We propose a Max-Flow based NAS approach, called MF-NAS, which defines
the search space and the search strategy both in a fully graphic manner.

2. To our best knowledge, we make the first attempt to address the NAS task
from a multi-graph maximum-flow perspective.

3. We conduct extensive experiments to evaluate the proposed search strategy
across multiple datasets on multiple search spaces and show competitive
performance.

2 Preliminaries

2.1 Multi-graph Flow in Graph Theory

Consider a directed graph G := (V, E), where V is the vertex set and F is the
edge set. A multi-graph is defined as a graph with multiple edges (i.e., parallel
edges) between two vertices. A flow graph is a directed graph where each edge
has a capacity and receives a flow that is limited by the edge capacity. The formal
definition of the problem for finding a feasible and maximal flow on a multi-graph
is given as follows.

Definition 1 (Maximum-Flow on Multi-Graph). Given a directed graph
G = (V, E) with a source node s € V, a sink node t € V, edge set E = {ek ,|u,v €
V,k € K}, edge capacity function ¢ : VXV XK — R, where K :={0,1,..., K—1}
and K is number of parallel edges, then the maz-flow on the multi-graph G is
defined as a feasible s-t-flow function f :V xV x K — R that mazimizes the
flow value |f|:== 3" cy rex f(ek ) on G, where f(ek ;) denotes the flow on the
k-th edge from node u to node t.

Flow graph [44, 2] has been a useful tool for modeling network traffic, circu-
lation, and etc. In this paper, we demonstrate that NAS can be modeled as a
maximum-flow selection problem on a multi-graph.

2.2 Hyperband and ENAS

Both Hyperband [24] and ENAS [32] are black-box methods. Hyperband [24]
speeds up random search by using an early-stopping strategy to allocate resources
adaptively. NAS and ENAS [52, 32] both involve training a RNN controller in a
loop, where the controller samples a child model (i.e., candidate architecture) for
training and its achieved performance is fed back to the controller as a reward
to train the LSTM controller. Specifically, in NAS, the child models are trained
from scratch to convergence, whereas in ENAS, the child models share their
weights to reduces the cost of architecture search. Qur proposed MF-NAS applies
to the pipeline of NAS: the controller is responsible for generating candidate
architectures (i.e., child models), then the parameters of the controller and the
weights of child models are updated alternately. Unlike NAS and ENAS, our
MF-NAS adopts a max-flow-based controller.
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Fig. 1. Illustration of NAS as a max-flow problem. a) A cell-based search space used in
DARTS and NAS-Bench-201. b) Connections within a cell in NAS-Bench-201, where
bold lines indicate a group of parallel edges (i.e., candidate operations). ¢) The flow
moves through a node following the conservation law, where ihe input flows are first
collected by a gather function (e.g., summation function) and then the converged flow
is split into output flows. d) Parallel edges with limited capacities between the node
pair. In each search step, only one path is selected to construct a child model, and the
capacity of the selected edge may be updated with respect to validation accuracy.

3 Methodology

In this section, we formulate the NAS task as a max-flow problem on a multi-graph
at first, and then show that MF-NAS can be interpreted from a non-parametric
density estimation perspective. Finally, we integrate MF-NAS into the classical
AutoML pipelines, demonstrating that MF-NAS enjoys wide applicability.

We regard the architecture as a directed acyclic graph (DAG) referring to NAS
[52], ENAS [32], DARTS [27] and its subsequent works [7,16,41]. For clarity, we
give a sketch of the search space in DARTS and NAS-Bench-201 in a multi-graph
perspective in Figure 1. Specifically, operations are regarded as parallel edges
between a pair nodes with learned capacities indicating the importance of the
architecture, and the moving flow across nodes follows the conservation law [4].

3.1 Neural Architecture Search with Maximum-Flow

Given a training dataset D for a certain task, NAS aims to find an architecture
m € A that maximizes a posterior probability, i.e.,

m* = arg max p(m|D). (2)
meA
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To formulate the task of NAS, we use a directed multi-graph to represent the cell-
based search space, where parallel edges are the operations, including convolutions,
skip connection, pooling, and no connection.

Instead of finding the optimal solution with maximum posterior probability
as in Eq. (2), in this paper, we consider the flow value on the operation-induced
multi-graph to be the candidate architecture’s fitness, which will be further
interpreted in Section 3.2. Consequently, we convert the task of searching for the
best architecture to a task of finding a feasible s-t-flow function f that achieves
the maximum-flow value, that is:

fr=agmax Y f(ey ) (3)

ucV,kek

Then, the optimal architecture m™* is selected as a set of edges whose flows are
nonzero according to the optimal s-t-flow function f:

m* = {e} ,Ju,v €V and k € K, where f*(el ) > 0}. (4)

In this way, the optimization problem in (2) can be solved by addressing the
optimal s-t-flow problem in (3) and (4).

Next, we give a proposition to show that the maximum-flow of the flow
network in Figure 1 (a) can be obtained by calculating the maximum-flow of the
normal cell and the reduce cell, separately.

Proposition 1. Suppose that the architecture is formed by connecting the normal
cells Mpormar and the reduce cells Myeguce 0 6 chain manner. Then, the set of
edges m* that mazimize the flow value |f| as defined in Definition 1 can be
achieved by calculating the union set of that maximizes the flow value of the
normal cell m} . and that maximizes the flow value of the reduce cell M, j,ces
i'e" m* = m;kzormal U m:educe4'

Proof. This can be proved by mathematical induction. Base case: if the layer
of architecture is only one (formed by one cell), obviously, the statement holds.
Inductive step: assume the statement holds for n-layers architecture (i.e.,
my = mk .. Umk ... )—this is the induction hypothesis (IH), then the
statement will be proved to hold for n + 1-layers architecture as shown in Figure
2(c). Without loss of generality, we consider the n + 1-th cell as a normal cell.
Denote | frormatls |fn] and |fn41] as the flow value of the normal cell in Figure
2(a), the flow of the n-layers and n 4 1-layer network in Figure 2(c), respectively.
According to Max-Flow Min-Cut Theorem [44], the flow of the n+ 1-layer network
in the chain can be represented as max |f,+1| = min{max |f,|, max |fnormail}-

If max |f,| >= max | fnormai|, then maximizing the flow of n+ 1-layer network is

equivalent to maximize that of the normal cell, and thus m}; ,; = my Um; £

normal
m JqJumi g Ifmax | fp| < max | frnormail, then the maximum flow problem

*
norma

4 If there are only the normal cells in the architecture, as NAS-Bench-201, then

* *
m = Mpormal-
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Fig. 2. Illustration of mathematical induction for flow network analysis (see Proposition
1): a) base case for normal cell; b) base case for reduce cell; ¢) inductive step.

of n 4 1-layers network is equivalent to maximize the flow of n-layers network.

Any Mpormal that satisfies max |frnormar| > max |f,| will not affect the result,
. IH

* ; 8 : : * _ *
hence m ; can be chosen as the optimal solution my ,, =m; Um} . . =

norma.
* * 3
My emal O Mereduce- Lhis completes the proof.

Hence, Eq. (3) can be solved in a greedy manner by separately optimizing
inside each cell:

argmax > f(el,) (5)
! uEVeer k€K
s.t. f(eﬁm) < c(eﬁﬂ)), Yu,v € Ve, Yk € K

Z Z ]I(eﬁ,v) =M, Yve Ve
uEVeen k#AK—1

H(eilf,gl) = H (1 - ]:[(eﬁﬂ)))’ V’U,,U € chella
k#K—1

where V. is the node set of a normal cell or a reduce cell, ¢ is the sink node of
the cell, the index of the sink node is related to the number of nodes N inside
the cell, M is the input degree of node, K and f (eﬁm) are defined in Definition
1, and the operation whose index is K — 1 denotes no connection®, and H(eﬁ,v)
is an indicator which is 0 if f(efj’v) = 0 and otherwise 1. The capacities ¢(-) of
the parallel edges in the multi-graph flow network are updated by the candidate
model’s reward (i.e., validation accuracy) as follows:

k) {e(lr)2 if ef ,em* & e (1= > clel ) (6)
c(ef,)  otherwise,

where m* is the edge set defined in Eq. (4), r is the accuracy on validation set
for image classification, thus the capacity ¢(-) will be scaled in [0, 1].

5 For the search space in ENAS and DARTS, we set N =4, M =2, K = 8; for the
search space in NAS-Bench-201, we set N = 3 and K = 5 without constraining M.
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MF-NAS benefits from the update rule in two aspects. On one hand, removing
less important operations has little influence on final prediction accuracy, while
deleting some important operations can lead to a significant drop [3]. We use
Eq. (6) to update the capacities, making important operations less prone to be
removed. On the other hand, the update formula of Eq. (6) can be viewed as a
contraction mapping of the accuracy, which promotes the exploration capability.

We can use dynamic programming (DP) to solve Eq. (5). Take the DARTS
search space as an example. In the DARTS search space, we assume that there
are two previous nodes of each cell whose initial flow value can be set to one (i.e.,
the upper-bound of the accuracy), and the feature maps of different nodes in
one cell are concatenated as the output. As shown in Fig. 3, there are two states
in each node within the cell of the search space: 1) there exists a link between
the (n — 1)-th node and the n-th node 2) there does not exist a link between
the (n — 1)-th node and the n-th node. Denote V7, as the sub-cell which is
terminated by the n-th node (i.e., the nodes in the sub-cell are 1, 2,...,n), whose
max-flow value can be defined as:

Frimmax Y feh,) (7)

ueV" ! kek

cell

We initialize F*; =1 and Fjj = 1, and then recursively compute the flow value
as follows:

F* =max{FV, F®} (8)
where
Fr(Ll) =2Ff | —F' ,+ max C(eﬁyn)7 9)
weV 2 ke
FT(LZ) =F 4+ max c(eﬁ’n) + c(eﬁ,n)v (10)

max
weVn 2 kek we V2 \{ur} kek\ {k*}

cell
in which (u*,k*) := arg MaX, cyn=2 e p c(ef ). We can see that updating the

two states corresponds to computing F,gl) and F7(l2), respectively. By using the DP
algorithm as in Eq. (8) and the selection method in Eq. (4), we get the candidates
architecture m* for the next running. There is an equivalent representation of Eq.
(8), where the flow value is normalized before moving to the next nodes, making
the factors slightly different. If the hypothesis space in Eq. (5) is small enough,
random search can be a practical alternative to solve Eq. (5).

3.2 MF-NAS: A Probabilistic Perspective

We now describe the motivation for the maximum-flow formulation as well as the
relationship between the flow of a graph and the performance (i.e., classification
accuracy) of a network architecture.

Let £2; be the set of available operations, {25 be the set of feasible edges in
a search space, 2 = (21 x (2, and A be a class (i.e., set of sets). Then each
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Fig. 3. Illustration for the dynamic programming (DP) to solve Eq. (5).

element A € A represents a feasible architecture in the search space, and it is a
subset of (2, i.e., A Cw. Let ¢ : A — R be a set function, indicating the reward
of an architecture. We define a probability measure of an architecture® that can
achieve the best reward, i.e.,

p(4) :=p(o(4) =r7), (11)

where r* = maxye4 ¢(A’). Furthermore, the conditional probability over an
architecture given a specific edge in it can be derived by p(A|a) := p(Ala € A) =
p(¢(A) = r*|a € A). Here, a is the same denotation as €} , in Definition 1.

To make less assumptions about the conditional distribution, we use a non-
parametric approach to estimate the density. Choosing a Gaussian kernel function

gives rise to the following kernel density estimation model (KDE):
r*— Ai 2
Il 24;(2 )i }

V2o ’

N A
PO =rlac ) =5 3 (12)

i=
a€A;

where N architectures containing edge a are sampled. For a small enough o, in
the exponential term the one for which ||r* — ¢(4;)||? is the smallest term will
approach zero most slowly, and hence the sample architectures with the best
reward—A* = argmax 4, ¢(A;) will dominate the density. That is, Eq. (12) can
be approximated by:

p(¢(A) = 1*la € A) o exp {—(r" — $(A7))*}. (13)

For image classification tasks, the reward is measured by the accuracy on vali-
dation set, and the upper bound of the reward can be set as r* = 1. Obviously,
Eq. (13) holds the same form as the equation of capacity update in Eq. (6). As a
consequence, the information flow on edge can be interpreted by an approximated
conditional probability as shown in Eq. (13), which reveals the preference for
different architectures that can achieve the best performance given the contained

5 Many architectures can get the same best reward.
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Fig. 4. Three types of network topology. a) one-to-one; b) many-to-one; ¢) one-to-many.

edge. We further show that the propagation of the conditional probability can be
viewed as a flow moving from the input edges to the output edges. In Fig. 4, three
basic types of the network topology are illustrated: a) one-input/one-output,
where an architecture A containing the output edge has only one input edge,
and thus the conditional probabilities conditioned on the output and input are
identical; b) many-input/one-output, where an architecture containing any input
edge will flow through the output edge, and thus the probability conditioned
on the output edge is the summation of the probabilities conditioned on the
input edges; c¢) one-input/many-output, where an architecture containing the
input edge spreads to multiple outputs which are chosen uniformly as a priori,
and thus the probability is divided equally by the number of output edges. Note
that all the network topology including residual or multi-branches graphs can be
derived from the three basic types of topology mentioned above. In a nutshell,
the probability defined in Eq. (11) can be propagated as a flow, therefore finding
an architecture with the highest validation accuracy is equivalent to finding an
architecture with the maximum conditional probability on the output edge, which
is also equivalent to finding a maximum flow on the DAG graph with the capacity
defined in Eq. (6).

3.3 MF-NAS Pipeline

The proposed MF-NAS provides a candidate architecture generation method in a
single-path NAS solution. To demonstrate the efficiency and the stability, we apply
MF-NAS to a multi-fidelity pipeline. For example, Hyperband [24] selects top-k
from its candidate pool; whereas MF-NAS dynamically generates new promising
candidates as the search progresses by maximizing the network flow. The reason is
that the maximum-flow controller involves the edge capacity constraint; and the
flow value on one edge can be different for the same net flow value of a cell. In other
words, multiple architectures may result in the same net flow value. To enhance
the exploration capability of MF-NAS, we choose the candidate architecture
using an e-greedy strategy [28]. With this strategy, a random architecture is taken
with probability €, and the max-flow architecture is chosen with probability 1 — e.
We anneal € from 1 to 0 such that the controller begins from an exploration phase
and slowly starts to moving towards the exploitation phase. We also keep a small
portion of top architectures during different rounds to stabilize the searching
process. We refer to Algorithm 1 for giving an implementation for MF-NAS,
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Algorithm 1 Max-Flow based Neural Architecture Search (MF-NAS)
Input:

1: Search space S, Capacity matrix with zeros initialization, and the fixed hyper-
parameters H, e.g., the learning rate and its decay policy, scale of the chain cell
structure, input degree of node in the cell, N search rounds, n; candidates, each
candidate trains r; steps in round i;

2: Initialization: e-greedy factor ¢;

Output:

3: The optimal architecture m*;

4: for i € {0,1,..., N — 1} do

5. if i = 0 then

. -1
6: Generate no architectures mg, ..., mi° ™" randomly;
7:  end if

. : 0 n;—1 _ . .
8:  Train m;,...,m;* = with r; steps;

9:  Evaluate validation accuracy, update network capacity ¢ by Eq. (6);
10:  for j € {0,1,...,n;41 — 1} do

11: if random() < € then

12: ml 41 + an architecture generated randomly;

13: else

14: ml 41 < an architecture with the maximum-flow calculated by Eq. (5) and
Eq. (4);

15: end if

16:  end for

17: end for

18: Model selection: return the best architecture m* with the maximum validation
accuracy seen so far.

which aims at finding an architecture whose classification accuracy on validation
set is maximized on the operation-induced DAG search space.

4 Experiments

To evaluate the effectiveness of our proposed MF-NAS approach, we conduct
experiments with different DAG search space on several benchmark datasets,
including CIFAR-10 [20], CIFAR-100 [20], STL-10 [13], FRUITS [29], FLOWER-
102 [31], Caltech-256 [17] and ImageNet [34].

Settings in Experiments. Specifically, we evaluate the efficiency and stability
of MF-NAS in three settings: a) the micro search space used in ENAS [32] and
DARTS [27], b) search space of NAS-Bench-201 [16], and c) performance on
ImageNet classification. Furthermore, we set the initial learning rate as 0.025
with a cosine scheduler, use SGD with a momentum 0.9. The maximal search
round is N = 4, and there are n=[30, 20, 10, 5] candidates that are trained r=[30,
60, 70, 80] epochs in different rounds. e=[1.0, 0.6, 0.5, 0.25] indicates it decays
for every search round. Experiments are conducted on RTX 3090 and NVIDIA
V100 GPUs.
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Table 1. Comparison with classification architectures on CIFAR-10. Similar to other
NAS algorithms, the search cost of MF-NAS does not include the final evaluation cost.

Methods Test Error Params FLOPs Search Cost Search

% (M) (M) GPU-days Method
AmoebaNet-B [33] 2.554+ 0.05 2.8 506 3150 Evolution
Hierarchical Evo [26] 3.75+£0.12  15.7 - 300 Evolution
PNAS [25] 3.4140.09 3.2 730 225 SMBO
DARTS (1st order) [27] 3.00+0.14 3.3 519 0.4 Gradient
DARTS (2nd order) [27] 2.7640.09 3.4 547 1.0 Gradient
SNAS (moderate) [47] 2.8540.02 28 441 15 Gradient
P-DARTS [11] 2.50 3.4 551 0.3 Gradient
PC-DARTS (1st order) [48] 2.57+0.07 3.6 576 0.1 Gradient
BayseNAS [51] 2.8140.04 3.4 - 0.2 Gradient
SGAS [22] 2.66+£0.24 3.7 - 0.25 Gradient
DARTS+PT [41] 2.614+0.08 3.0 - 0.8 Gradient
NASNet-A [53] 2.65 3.3 624 1800 RL
ENAS [32] 2.89 46 626 05 RL
ENAS+-e-greedy 2.82 3.7 578 0.5 RL
Hyperband [24] 2.96+0.19 2.9 476 2.2 Random
BANANAS [45] 2.64 - - 118 BO
MF-NAS 2.63£0.16 3.3 529 1.0 Max-Flow
MF-NAS (best) 2.40 4.0 653 1.0 Max-Flow
———DARTS DARTS+PT R-DARTS MF-NAS
975 __
=
974 8
o
973 9
972 £
2
971 &
—— 97 T
7 S~— 969 s
Q
96.8 2
I @
| 96.7 &
L T T T T 96.6
25 75 125 175 225

Search Epochs

Fig. 5. Stability of DARTS (w/ its amendment versions) and MF-NAS on CIFAR-10.

4.1 Results on Micro Cells based Search Space in ENAS/DARTS

We evaluate MF-NAS on micro cells-based DAG search space used in ENAS [32]
and DARTS [27]7. The main difference between MF-NAS and other algorithms lies
in the selection method for candidate networks. To be specific, MF-NAS applies
optimization algorithms with graph frameworks to choose candidates; whereas
others generate candidates by means of Bayesian optimization, reinforcement

7 Precisely, MF-NAS uses the search space of DARTS.



12 C. Xue et al.

Table 2. Top-1 test set accuracy with one GPU day budget.

STL-10 FRUITS FLOWER-102 Caltech-256

NAS method " g6y (100 x 100) (256 x 256) (256 x 256)
Hyperband 0.79 £0.02 0.99 % 0.0006 0.95 & 0.002  0.50 % 0.06
ENAS 0.79 £ 0.02 0.97 & 0.0012 0.93 + 0.007  0.49 + 0.05
DARTS 0.80 £ 0.01 0.99 % 0.0018 0.94 & 0.006  0.60 = 0.03
MF-NAS 0.80 £ 0.02 0.99 & 0.0009 0.95 + 0.002  0.65 £ 0.02

learning, evolution or gradient-based methods. For demonstrating the efficiency
of MF-NAS, we implement MF-NAS following the controller-child pipeline [32],
but do not use the weight-sharing. As shown in the Table 1, max-flow based
method gets a 2.63% error rate with 3.3M parameters by taking about one search
days, which is more efficient than RL/Evolution/Random/BO based methods
on DAG search space. This comes from the fact that the proposed MF-NAS are
coupled with DAG search space, and thus they can take advantage of the graph
structure, i.e. the relation of the edges and nodes. Also, unlike the gradient-based
methods, MF-NAS does not suffer the skip domination issue or the discretization
problem [41]. To validate the stability of MF-NAS, we evaluate the performance
at different search steps in Figure 5.

Figure 5 compares the stability of DARTS [27] and its amendment versions [50,
41] with MF-NAS. Note that the search epoch is not related to real search time.
For DARTS+PT [41], we get our results on the super-nets of DARTS pre-trained
from 25 to 250 training epochs. Both vanilla DARTS and DARTS+PT suffer from
the skip layer dominated problem [7,50], i.e. there are about 6 skip connections in
the normal cell at 250 epochs. The ultimate performance of differential methods
usually decreases over search epochs because they use some approximations to
solve the bi-level optimization. In contrast, thanks to the maximum-flow solution,
MF-NAS can steadily achieve improved performance.

Based on this search space, we evaluate MF-NAS’s generalization ability. We
use other four datasets with different image resolutions, including STL-10 [13],
FRUITS [29], FLOWER-102 [31], and Caltech-256 [17]. ENAS [32], DARTS
[27], and Hyperband [24] are evaluated as the baselines whose search protocols
cover reinforcement learning, differential method and closed-loop random search.
Similar to ENAS, we extend Hyperband to support neural network search in the
same search space of DARTS. The experiments are under the budget constraints
of one GPU day. As shown in Table 2, MF-NAS outperforms other methods
on the last dataset. We analyze that Caltech-256 is a challenging dataset, on
which the early performance of an architecture does not align with its ultimate
performance precisely, and thus Hyperband fails. Additionally, the limited GPU
memory restricts the batch size for DARTS on large-scale images, which can
cause a performance drop [36].
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Table 3. Top-1 accuracy (%) on NAS-Bench-201.

Methods CIFAR-10 CIFAR-100 ImageNet-16-120
valid test valid test valid test
DARTS-V1 [27] 39.7740.00 54.3040.00 15.03+0.00 15.61+0.00 16.4340.00 16.324+0.00
DARTS-V2 [27] 39.7740.00 54.3040.00 15.03+0.00 15.61+0.00 16.43+0.00 16.324+0.00
GDAS [15] 89.8940.08 93.6140.09 71.34+0.04 70.70+0.30 41.59+1.33 41.714+0.98
SETN [14] 84.0440.28 87.6440.00 58.86+0.06 59.05+0.24 33.06+0.02 32.524+0.21
RSPS [23] 82.254+4.90 86.09+4.90 56.56+8.91 56.39+8.70 31.17+6.28 30.27+5.80
DARTS-PT [41] - 88.11 - - - -
DARTS-PT(fix ) [41] - 93.80 - - - -
ENAS [32] 37.554+3.14 53.8040.71 13.47+2.21 14.00+2.27 14.88+2.19 14.874+2.05
ENAS-+e-greedy 77.37+3.08 84.10£3.16 56.85+4.47 57.31+4.95 32.164+2.95 32.93+3.14
MF-NAS 90.8640.52 93.724+0.55 71.23+1.07 71.86+0.64 44.16+0.10 44.334+0.18
ResNet [18] 90.83 93.97 70.42 70.86 44.53 43.63
Optimal 91.61 94.37 73.49 73.51 46.77 47.31

4.2 Results on Search Space of NAS-Bench-201

In NAS-Bench-201, the architectures are stacked by 17 cells with five operations,
and three datasets are evaluated, including CIFAR-10 [20], CIFAR-100 [20], and
ImageNet-16-120 [16]. We follow the training settings and split protocol as the
paper [16]. We search for the architecture based on MF-NAS three times with
different random seeds, and the results are reported in Table 3, showing that our
method achieves competitive results with the state-of-art methods. We observe
that ENAS can also benefit from the e-greedy strategy, indicating that ENAS
may suffer from the weight-sharing problem: it is hard to figure out whether the
improvement under the weight-sharing strategy is attributed to a better-chosen
architecture or comes from well-trained weights. Thus, there will still be a big
room to improve the weight-sharing strategy in the NAS area.

4.3 Results on ImageNet Classification

For ImageNet [34], the one-shot NAS approaches cost too much memory to
build a super-net. Works [53,27,9] directly transfer the architecture searched on
CIFAR-10 to ImageNet with little modification. Specifically, the search phase
runs on CIFAR-10, while the evaluation phase uses the architecture transferred
from the searched cells with deeper and wider scales as suggested in DARTS [27].
Learning rate decay policy is different between the last two blocks of Table 4.
Table 4 evaluates the performance on ImageNet. In general, MF-NAS can get
competitive results in transfer cases.

4.4 Ablation Study on e-greedy

The proposed MF-NAS follows the reinforcement learning based NAS method
[1] to involve the e-greedy strategy into the algorithm pipeline. To eliminate the
influence of e-greedy, we show the ablation study in Table. 5.

The results show that MF-NAS and ENAS [32] can benefit from the e-greedy
strategy. In fact, e-greedy strategy can enhance the exploration capacity, which
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Table 4. Study on full ImageNet. The first block represents the direct search case
while the last two blocks show the transfer cases. T and 1 represent Ir decay strategy as
DARTS and P-DARTS/PC-DARTS, respectively.

Methods Params FLOPs GPU (days) Top-1 Acc.
NASNet-A  5.3M  620M 1800 0.740
AmoebaNet-A 5.1M  541M 3150 0.745
DARTS' 49M  545M 1 0.731
MF-NAST 49M 549M 0.4 0.744
P-DARTS* 4.9M 557M 0.3 0.756
PC-DARTS' 5.3M  586M 0.1 0.749
MF-NAS? 4.9M 549M 04 0.753

Table 5. Test accuracy (%) with different e-greedy strategies on CIFAR-10. e = 0
means the e-greedy strategy has no effect on the corresponding NAS method; Note that
€ = 1 degrades to Random Search.

Methods € =0 ¢ =1 e-greedy used in our paper

Hyperband 97.04 96.75 97.06
ENAS 97.11 96.75 97.18
MF-NAS  97.32 96.75 97.40

may be more critical in a maximum-flow/RL strategy than a random search
solution. As a consequence, max-flow-based and reinforcement learning-based NAS
methods turn out to be more efficient than random search schemes considering
the pure random search solution only gets 96.75 £ 0.2 % accuracy.

5 Conclusion and Future Work

We have proposed a multi-graph maximum-flow approach for NAS, called MF-
NAS, which casts the problem of optimal architecture search as finding a path
on DAG. In the search phase, the weights and the capacities of the parallel
edges in the multi-graph are updated alternately. Extensive experiments on the
image classification task demonstrated the effectiveness of our proposal. As the
future work, we will explore for using larger search space, with non-linear gather
functions in a general maximum-flow network, and test for other vision tasks,
e.g., segmentation and detection [42].
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