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In this supplementary material, we provide additional details and experi-
ments for ERA on both image classification, and 3d human pose and shape
reconstruction tasks. For the former, we report results also on the MNIST and
ImageNet datasets and we show more ablation studies on the CIFAR10 dataset,
together with more examples of learned ERAs and plots of loss surfaces. For the
latter task, we provide more details for training and ablate some architectural
choices.

A Image Classification

Implementation details. We train neural networks to perform image classification
on the MNIST [9], CIFAR10 [8] and ImageNet [3] datasets, using the Tensor-
flow [1] framework. As in the main part of the paper, we focus on two small
architectures on MNIST and CIFAR10. We consider fully-connected (FCN) and
convolutional neural (CNN) networks, defined recursively by

xi+1 = (σi ◦ ℓi)(xi), 1 ≤ i ≤ 4; (1)

where x1 is the input, ℓi is the ith linear layer of the network, followed by an
activation function σi. In the fully-connected case, ℓi is a dense layer and in the
convolutional case, ℓi is a convolutional layer. The CNN consists of 2 convolu-
tional layers with 64 filters, followed by 2 dense layers with 128 and 10 nodes,
respectively. The fully-connected network consists of 4 dense layers with 512,
256, 128 and 10 nodes, respectively. The fully-connected and the convolutional
neural network have ∼ 1, 740, 000 and ∼ 2, 140, 000 parameters, respectively. On
ImageNet, we use a ResNet-18 with ∼ 340, 000 parameters. As optimizer we use
SGD with momentum (with momentum parameter 0.9.) On CIFAR10, we train
the networks for 100 epochs using a batch size of 64 and an initial learning rate
of 0.01 which decays by a factor of 10 after having completed 25, 50 and 75
training epochs. On MNIST, we train the networks for 100 epochs using a batch
size of 32 and an initial learning rate of 10−4 which decays by a factor of 10 after
having completed 10, 20, 30, 40, 50 and 60 epochs. On ImageNet, we train the
networks for 200 epochs using a batch size of 1,024 and an initial learning rate
of 10−3 which decays by a factor of 10 after 80, 120, 160 and 180 epochs. All

⋆ Denotes equal contribution.
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non-rational network layers use l2 weight regularization with parameter 0.001.
We apply data augmentation with horizontal and vertical shifts of up to 6 pixels
and enabling horizontal flipping of images.
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A.1 Additional Results on CIFAR10

Batch Normalization Training a CNN with the same training configuration
as in Table 2 with the normalization replaced by BatchNorm, we observe the fol-
lowing test accuracies (over 5 runs): Leaky ReLU: 69.4±0.4%; ReLU: 72.2±0.2%;
Swish: 72.2 ± 0.4%; ERA: 74.4 ± 0.3%. Intuitively, we want to keep the distri-
bution of the inputs to the activation fixed during training because this makes
learning for rational activations easier. When using BatchNorm, the preactiva-
tion distribution of a given data point is influenced by statistics from all the other
data points in the batch, which could make learning more difficult. This may
be the reason why ERA achieves larger gains over the baselines when instance
normalization is used instead of batch normalization.

Experiments with MobileNet When running the official TensorFlow im-
plementation of MobileNet [4] with BatchNorm with ReLU (ReLU-6 variant as
originally proposed) activations on CIFAR10, we get 78.3±0.2% and 69.9±2.0%
test accuracy when using the Adam and SGD optimizers, respectively. When we
replace the ReLUs with ERAs, the test accuracies increase 78.9 ± 1.3% and
77.4± 0.6%, respectively.

Plots of ERAs Figures 1 and 2 show plots of the ERAs corresponding to net-
works shown in Figure 1 and 2 from the main part of the paper, respectively. In
line with the results in the main paper, we observe that the learned ERAs dif-
fer drastically from the initializations. As noted previously, compared to Swish
initialisation, random initialisation can result in very small or large derivative
values which can make the training more difficult. Moreover, the learned func-
tions in different layers seem to be more similar for Swish initialisation, whereas
they differ drastically for random initialisation.
We re-trained networks with the same configurations used in Figure 1 and 2
from the main part of the paper. The plots of the learned ERAs are shown in
Figures 3, 4, 5 and 6. We observe that rerunning the same configuration can
produce very different activation functions, in particular for randomly initialised
activations.

Loss Landscapes Figure 7 shows two additional loss landscapes of networks
trained on CIFAR10. As for the loss landscapes in the main paper, the network
at the bottom converged, whereas the network at the top did not converge. This
might be due to multiple local minima visible in the the blue part of the plots
in row 1. It is clear from the plot in row 2 that for a bad choice of initialisation,
the network risks getting stuck in a local minimum. This underlines the benefit
of Swish initialisation over random initialisation.

Effect of Gradient Clipping Table 1 shows the effect of gradient clipping
on the performance of the network after training. Gradient clipping greatly sta-
bilises the training of randomly initialised ERAs, but it does not seem to offer a
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Fig. 1: Plots of the second (row 1 & 2) and third (row 3 & 4) ERA of the
same CNN as in Figure 1 in the main paper. The ERA is initialised as a Swish
activation and has degree 5/4. The shaded curve in the background shows the
density distribution of the input to the activation (not true to scale on y-axis).
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Fig. 2: Plots of the second (row 1 & 2) and third (row 3 & 4) ERA of the same
CNN as in Figure 2 in the main paper. The ERA is randomly initialised and has
degree 5/4. The shaded curve in the background shows the density distribution
of the input to the activation (not true to scale on y-axis).



6 M. Trimmel et al.

Fig. 3: Plots of the first (row 1 & 2) and second (row 3 & 4) ERA of a CNN
re-trained with the same configuration in Figure 1 in the main paper. Initialisa-
tion: Swish, degree 5/4. The shaded curve in the background shows the density
distribution of the input to the activation (not true to scale on y-axis).
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Fig. 4: Plots of the third ERA of a CNN re-trained with the same configuration in
Figure 1 in the main paper. The ERA is initialised as a Swish activation and has
degree 5/4. The shaded curve in the background shows the probability density
distribution of the input to the activation (not true to scale on the y-axis).
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Fig. 5: Plots of the first (row 1 & 2) and second (row 3 & 4) ERA of a CNN re-
trained with the same configuration in Figure 2 in the main paper. Initialisation:
random, degree: 5/4. The shaded curve in the background shows the density
distribution of the input to the activation (not true to scale on y-axis).
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Fig. 6: Plots of the third ERA of a CNN re-trained with the same configuration in
Figure 2 in the main paper. The ERA is randomly initialised and has degree 5/4.
The shaded curve in the background shows the probability density distribution
of the input to the activation (not true to scale on the y-axis).
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Random Initialization, degree 5/4

Swish Initialization, degree 3/2

Fig. 7: Plots of the loss surfaces of neural networks trained on CIFAR10, using
ERA. Top: CNN, using randomly initialized ERA of degree 5/4. Training did
not converge.Bottom: FCN, using swish-initialized ERA of degree 3/2. Training
converged. In each row, the two images show the same loss surface from different
viewing angles.

benefit when using Swish initialisation.

Effect of Normalization Tables 2 and 3 show the effects of the learnable axes
in the normalization layers. We conclude that for training is most stable and
yields best results when layer normalization is used in fully-connected networks
and instance normalization is used in convolutional neural networks. For CNNs,
we have also experimented with different axes along which the standardization
happens, but this had a strong adverse effect on training stability.

A.2 Results on MNIST

Tables 4 and 5 show our results on the MNIST dataset. Since image classification
on MNIST is a very simple task, we reach 100% training accuracy with any
setting that we tried. As a result, the corresponding test accuracies are all very
similar. This underlines our observation that rational activation functions are
most beneficial when the classification problem is hard and when the capacity of
the network is limited. Interestingly, we observe that despite their potential to
increase the network capacity, rational activation functions are not more prone to
overfitting on simple data than standard activation functions. On the contrary,
the best ERA being initialised as a Swish activation, obtains a test accuracy on
par with the best non-rational activation function.
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Network Type Initialisation deg Q No grad clipping Grad clipping

FCN Random 2 40.5% 57.0%
FCN Random 4 23.6% 57.4%
FCN Swish 2 58.6% 59.9%
FCN Swish 4 58.8% 60.1%

CNN Random 2 68.6% 81.4%
CNN Random 4 59.2% 80.7%
CNN Swish 2 84.0% 83.1%
CNN Swish 4 84.3% 83.0%

Table 1: Examining the effect of gradient clipping on the performance of the
network after training. All networks were trained on CIFAR10. Gradient clipping
greatly stabilises the training of randomly initialised ERAs, but it does not seem
to offer a benefit when using Swish initialisation.

Initialisation deg Q Axis - Axis 3

Random 2 48.7% 48.8%
Random 4 33.4% 39.0%

Swish 2 58.9% 59.6%
Swish 4 48.4% 60.8%

Table 2: Effect on the learnable axis on the test accuracy of fully-connected
networks (FCNs) trained on CIFAR10. Axis - means that there is a single β
and a single γ parameter learned for rescaling and shifting all the nodes of a
given layer. Axis 3 means that there is one β and one γ parameter learned for
each node of a given layer (this corresponds to standard layer normalization in
TensorFlow). The latter shows consistent benefits across different initialisation
types and rational function degrees.

Initialisation deg Q Axis - Axis 1

Random 2 69.6% 80.4%
Random 4 51.0% 54.7%

Swish 2 83.5% 83.6%
Swish 4 64.2% 65.9%

Table 3: Effect on the learnable axis on the test accuracy of convolutional neural
networks (CNNs) trained on CIFAR10. Axis - means that there is a single β and
a single γ parameter learned for rescaling and shifting all the nodes of a given
layer. Axis 3 means that there is one β and one γ parameter learned for each
channel of a given layer (this corresponds to standard instance normalization in
TensorFlow). The latter shows consistent benefits across different initialisation
types and rational function degrees.
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Activation Initialisation deg Q Training Accuracy Test Accuracy

GELU - - 100.0% 99.3%
Leaky ReLU - - 100.0% 99.2%

ReLU - - 100.0% 99.3%
Swish - - 100.0% 99.2%

Rational GELU 2 100.0% 99.3%
Rational GELU 4 100.0% 99.2%

Rational Leaky ReLU 2 100.0% 99.2%
Rational Leaky ReLU 4 100.0% 99.2%

Rational Random 2 100.0% 99.1%
Rational Random 4 100.0% 99.1%

Rational ReLU 2 100.0% 99.3%
Rational ReLU 4 100.0% 99.2%

Rational Swish 2 100.0% 99.3%
Rational Swish 4 100.0% 99.3%

Table 4: The results of training a convolutional neural network (CNN) with
different activation functions on MNIST. Due to the simplicity of the dataset,
all the activation functions perform similarly well. This is in line with our working
hypothesis that rational activations have the greatest benefit when the network
is lacking the capacity to solve a problem.

Activation Initialisation deg Q Training Accuracy Test Accuracy

GELU - - 100.0% 98.5%
Leaky ReLU - - 100.0% 98.3%

ReLU - - 100.0% 98.4%
Swish - - 100.0% 98.5%

Rational GELU 2 100.0% 98.7%
Rational GELU 4 100.0% 98.5%

Rational Leaky ReLU 2 100.0% 98.5%
Rational Leaky ReLU 4 100.0% 98.3%

Rational Random 2 100.0% 98.2%
Rational Random 4 100.0% 98.2%

Rational ReLU 2 100.0% 98.5%
Rational ReLU 4 100.0% 98.3%

Rational Swish 2 100.0% 98.5%
Rational Swish 4 100.0% 98.5%

Table 5: The results of training a fully-connected neural network (FCN) with
different activation functions on MNIST. Due to the simplicity of the dataset, all
the activation functions perform similarly well. This is in line with our working
hypothesis that rational activations have the greatest benefit when the network
is lacking the capacity to solve a problem.
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A.3 Results on ImageNet

Our results on ImageNet are shown in Table 6 and Figure 8. In line with the
experiments on CIFAR10 presented in the main paper, ERAs with Swish initial-
isation outperform all other activations.

Activation Function Training Accuracy Test Accuracy

ReLU 47.4% 38.4%
Swish 48.9% 40.1%

ERA(Random init) 47.6% 39.5%
ERA(Swish init) 50.5% 40.7%

Table 6: Results of training a lightweight ResNet-18 on the ILSVRC 2012 (”Im-
ageNet”) dataset, showing the same experiment as in Figure 8. In line with our
results on CIFAR10, the best performing activation is a Swish-initialised ERA.
Although the randomly initialised variant has a lower test accuracy than the
standard Swish activation, it outperforms the ReLU activation.

Fig. 8: Training and ”test” (validation) accuracy of training a lightweight
ResNet-16 on the ILSVRC 2012 (”ImageNet”) dataset, showing the same ex-
periment as in Table 6. The jumps in test accuracy for the randomly initialised
ERA coincide with the epochs when the learning rate is reduced by a factor of
10.
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B 3D Human Pose and Shape Reconstruction

Implementation details. We train our networks with a learning rate of 1e − 4,
with exponential decay of 0.99 every 4000 steps. We use an ADAM optimizer.
For the Transformer architecture, we use 4 encoder layers with 8 heads. We
set the hidden dimension of the FFN to 1024. For the MLP-Mixer we use 4
mixer layers, with the tokens hidden dimension set to 1024 and 2048 for the
channels. The size of the input images is 480 × 480. We train the MarkerPoser
architecture, that translates from 3d marker positions to the GHUM[12] model
space, as described in [13]. The network has around 920k parameters.

Network capacity of state-of-the-art methods. We show in Table 7 the capacities
for competing methods on the Human3.6M dataset. Our proposed architectures
have significantly less parameters, by one or even two orders of magnitude.

Method #Parameters

HMR [5] 27.0M
GraphCMR [7] 42.7M
Pose2Mesh [2] 76.0M
I2L-MeshNet [11] 142.0M
SPIN [6] 27.0M
METRO [10] 243.0M
THUNDR [13] 25.0M

Table 7: Network capacity (i.e. number of trainable parameters) of state-of-the-
art methods. Note that our proposed architectures are one or two orders of
magnitude lower in capacity.

B.1 Additional ablations

Benefit of using ERA as a function of network capacity. We perform a
more in detail experiment, where we sweep over the capacity of a Transformer
(i.e. the hidden dimension) and show that the lower the capacity, the incresed
benefit of ERA relative to other standard activation functions. In Figure 9 we
present the MPJPE and MPJPE-PA metrics in a weakly supervised training
regime, reported on the Human3.6M test dataset.

Shared encoder/mixer layer weights. In the original work of [13], the
weights of the encoder layer for the Transformer were shared. We ablate this
choice for both Transformer and MLP-Mixer architectures. In Table 8 we show
the new number of parameters for our architectures, significantly lower than
those we experimented with in the main paper. In Table 9 we show the results
in a mixed training regime on the Human3.6M dataset. Our proposed activation
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Fig. 9: Reconstruction errors as a function of the number of hidden dimension of
the Transformer, for different activation functions. For our proposed activations,
the number between brackets represents the degree of the denominator. Results
are averaged over 3 trials, reported on the Human3.6M test dataset, protocol
P2.

ERA boosts the performance of the network, especially in low-capacity settings.
Results are overall improved over those presented in the main paper, showing
that the choice of sharing weights is beneficial.

Backbone Head Hidden dim #Parameters

MobileNet MLP-Mixer 64 4.1M
MobileNet MLP-Mixer 256 5.1M
MobileNet Transformer 64 3.5M
MobileNet Transformer 256 4.3M

ResNet50 Transformer 256 25.0M [13]

Table 8: Number of parameters for our lightweight versions of the architecture
introduced in THUNDR [13], for the task of 3d pose and shape reconstruction.
The weights for the encoder/mixer layers are shared.
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Activation deg Q Hidden dim MPJPE-PA MPJPE MPVPE

GELU - 64 54.7 ±1.1 75.0±2.5 79.4±2.5
ReLU - 64 51.4 ±0.9 71.0±0.6 75.6±0.2
Swish - 64 52.5 ±0.1 70.1±0.4 78.2±0.8
ERA 2 64 50.9 ±0.8 70.3 ±2.2 75.1±2.4
ERA 4 64 50.9 ±0.6 69.7±2.0 74.1±2.2

GELU - 256 48.2±0.5 67.3±1.7 71.8±1.5
ReLU - 256 48.8±1.4 66.8±2.4 70.9±2.7
Swish - 256 N/A N/A N/A
ERA 2 256 48.2±0.9 66.2±1.4 71.0±1.3
ERA 4 256 47.7±0.3 66.1±0.6 70.6±0.8

MLP-Mixer

Activation deg Q Hidden dim MPJPE-PA MPJPE MPVPE

GELU - 64 50.8±2.4 70.5±2.7 75.4±2.5
ReLU - 64 50.0±1.6 70.1±3.2 74.7±3.0
Swish - 64 N/A N/A N/A
ERA 2 64 47.5±1.0 66.9±1.4 71.3±1.0
ERA 4 64 47.3±1.1 65.8±0.4 70.3±0.1

GELU - 256 43.3±0.8 61.1±1.1 64.9±0.6
ReLU - 256 43.9±0.7 62.0±0.5 66.3±0.1
Swish - 256 43.4±0.9 60.8±0.4 65.4±0.3
ERA 2 256 43.3±0.2 61.5±0.8 65.7±0.7
ERA 4 256 42.5±0.7 60.4±0.8 64.6±1.2

Transformer

Table 9: Ablation for networks with MLP-Mixer (Top) and Transformer
(Bottom) architectures with a shared mixer or encoder layer, respectively.
These are pre-trained in a weakly supervised regime and fine-tuned in a fully-
supervised regime. Results are in mm, averaged over 3 trials, reported on the
Human3.6M test dataset, protocol P2. We mark the best and second best
results. For some experiments with the Swish activation, the training diverged
and so results are marked with ”N/A”.
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