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Martin Trimme

Abstract. Activation functions play a central role in deep learning since
they form an essential building stone of neural networks. In the last few
years, the focus has been shifting towards investigating new types of ac-
tivations that outperform the classical Rectified Linear Unit (ReLU) in
modern neural architectures. Most recently, rational activation functions
(RAFs) have awakened interest because they were shown to perform on
par with state-of-the-art activations on image classification. Despite their
apparent potential, prior formulations are either not safe, not smooth,
or not "true” rational functions, and they only work with careful initiali-
sation. Aiming to mitigate these issues, we propose a novel, enhanced
rational function, FRA, and investigate how to better accommodate
the specific needs of these activations, to both network components and
training regime. In addition to being more stable, the proposed function
outperforms other standard ones across a range of lightweight network
architectures on two different tasks: image classification and 3d human
pose and shape reconstruction.

Keywords: rational activation, activation function, deep learning, neu-
ral networks

1 Introduction

Neural networks keep ever-increasing in size and modern architectures can have
billions of parameters. While larger models often perform better than smaller
ones, their training entails heavy requirements on the computing infrastructure,
resulting in increased costs and environmental concerns due to the electricity
they consume [2136]. The trend towards larger architectures has been rein-
forced in recent times by the advent of the Transformer [39], which has since
its introduction moved into the field of computer vision [9], reducing the us-
age of more parameter-efficient CNN architectures like VGG [35] and ResNet
[11]. The trend away from convolutions to dense linear layers continues with [37]
who recently introduced a full-MLP architecture that performs on par with the
state-of-the-art on large vision datasets.

* Denotes equal contribution. | Code available at: github.com/martrim/rational
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Fig. 1: Plots of the first ERA of a CNN before and after training on CIFAR10.
The FRA is initialised as a Swish activation and has degree 5/4. The plots show
that the learned activations differ drastically from the initialization. The shaded
curve in the background shows the probability density distribution of the input
to the activation (not true scale on the y-axis). The training of the network
decreases the variance of the input. Plots of the derivatives are in the appendix.

Since the mathematical form of the learned network function depends heavily
on the employed activation functions, choosing the right activation may be a
key to increasing the network capacity while limiting the number of training
parameters. Research has for a long time focused on non-parametric activation
functions like ReLU [10/31], Leaky ReLU [27], GELU [12], Swish [34] and Mish
[28]. On the other hand, parameterized activation functions may be auspicious
because they have the potential to better adapt to the task at hand.

Recently, [29] showed that rational activation functions (previously employed
by [5] in the context of graph convolutional networks) can perform on par with
more traditional activation functions on image classification and proved that ra-
tional neural networks are universal function approximators. Moreover, rational
functions can almost perfectly approximate all standard activation functions.
Using rational functions as activations adds only around 10 parameters per net-
work layer, which is negligible compared to the total number of network weights.
[3] employ rational activations to train a GAN on the MNIST dataset and math-
ematically show that rational networks need exponentially smaller depth com-
pared to ReLU networks to approximate smooth functions. [33] propose an inter-
pretable network architecture based on continued fractions, which is a rational
function of the input, despite not employing rational activations.

On the other hand, the applicability of rational activations is impeded by
the fact that initializing them like the rest of the network via a normal or a uni-
form distribution typically results in the divergence of training. To mitigate this
fact, [29] and [3] fit the activation’s parameters to standard activation functions
like Leaky ReLU and ReLU. Since each of [29], [3] and [7] use different ratio-
nal functions, it is unclear whether there is a specific version which should be
preferred in practice. Furthermore, rational activations have so far mostly been
employed in large architectures to solve simple tasks. Their larger expressivity
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and adaptability thus begs the question of whether they have additional benefits
when used in smaller networks or on more complex tasks.

Our Contributions

— We propose an enhanced rational activation (i.e. FRA), incorporating a fac-
torised denominator, which negates the requirement of using absolute values,
as in prior work. This results in a safe, smooth rational function that exhibits
better performance than previous versions.

— ERA allows us to derive a partial fractions representation, reducing memory
requirements and further benefiting network performance.

— We investigate different ways of normalizing the input of the activation func-
tions. We show that the right normalization has a great effect on the stability
of training, allowing for the first time to investigate rational activations with
random initialisation. In line with the recent paper [26], we find that layer
normalization benefits all types of activations in CNNs, when compared to
batch normalization. In the case of lightweight networks that we employ, we
find that instance normalization achieves even better results.

— We study how ERA changes during training and conclude that neural net-
works are able to learn non-trivial activations that drastically differ from
their initialisation.

— We ablate FRA across different types of neural network architectures, rang-
ing from FCNs, CNNs, MLP-Mixers and Transformers on two different tasks:
image classification and 3d human pose and shape reconstruction. For the
latter task, we show that a very lightweight, real-time network, of just 3.9M
parameters, can achieve results on par with state-of-the-art methods that
employ networks in the order of tens or hundreds of millions of parameters.

2 Background

We start with a formal definition of rational functions:

Definition 1. We say that f : R — R is a rational function if there are numbers
ag, - - Qm, bo,y ..., by € R such that

P(x) ao+aiz+---+ans™
Q) bo+biz+ -+ byan

(1)

and b; # 0 for at least one j. The numbers a;,b; are called the coefficients of
f- If m and n are the largest indices such that a,, # 0,b, # 0, we say that
deg(f) := m/n is the degree of f.

There are a number of points to consider when applying rational functions
as activations. Firstly, the function f is undefined on poles (numbers z for which
Q(z) = 0) and numerically unstable close to poles. In order to make the ra-
tional function safe, [7] and [29] propose the following modified denominators,
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respectively:
Qa(z) =14 |ba’| (2)
i=1

n
E biZL'Z
i=1

Since neither @ 4 nor @ p are polynomials, using them in the denominator does
not produce a rational function. Apart from lacking the interpretability of a ra-
tional function, this makes gradient computation more costly. As an alternative,
[3] do not consider the possibility of numerical instabilities and report that using
a non-safe quadratic denominator is stable in their experiments. However, there
persists the risk of numerical instabilities in more complex settings and deeper
networks.

Another important point is the degree of the rational function. [29] uses a
rational function of degree 5/4, whereas [3] uses a degree of 3/2, which may
have helped them to avoid instabilities, due to the lower order of the denomina-
tor. They also note that superdiagonal types behave like a non-constant linear
function at oo, which is intuitively desirable to avoid exploding, diminishing
or vanishing values.

Qp(r) =1+ (3)

3 Enhanced Rational Function

We now investigate mathematically how to define a rational function without
poles in R, thus avoiding the problems mentioned in the previous section.

By a corollary to the Fundamental Theorem of Algebra, every univariate polyno-
mial @ of degree n with coefficients in C has n complex roots. If the polynomial
coefficients are real, the roots can moreover be shown to appear in complex
conjugates, implying a factorization of the form:

Q@) = [J@—a) [[lw =)@ =), @

with z; € R;z; € C\ R. Since we want () to have no real roots (i.e. no poles in
R), we discard the first factor and obtain a factorisation of @ of the form:

n/2

Qo(@) = ((w—e)* + ) (5)

i=1
for some ¢; € R,d; € Ryg. This gives us a rational function of the form:

_ P
Qc(z)’

o(x)
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which we call ERA. Since the numerator P has its degree one higher than the
denominator, we may perform polynomial division. Moreover, by Theorem 2.4
in [4] we can make use of partial fractions to get an expression of the form

n/2

o) =ax+b+ Z Filx)
i=1

Qi(w)

with deg(P;) = 1,deg(Q;) = 2 for all . The numbers a,b € R denote learnable
parameters. Our main motivation for using partial fractions is to make ratio-
nal activations more computationally efficient: e.g. a rational function of degree
5/4 requires 9 additions/subtractions in equation @ and equation , but the
former requires 13 multiplications/divisions and the latter only 6 multiplica-
tions/divisions. Table [4 shows that the use of partial fractions also increases the
accuracy of the network.

(7)

Denominator ‘ Add ‘ Subtract|Multiply [Divide

Non-factorised [29]| 9 0 13 1
FERA no partial frac| 7 2 12 1
ERA| 7 2 4 2

Table 1: Number of arithmetic operations to compute different types of ratio-
nal functions. Using partial fractions decreases the number of costly multiplica-
tion/division operations from 14 to 6.

Using a polynomial @) as in equation as the denominator may result in
numerical instabilities when the d; are small. Hence, we propose a numerically
safe version by adding a small number € > 0:

n

Qo) =e+ [ (@ —ci)® + df) (8)

=1

In practice, we choose € = 1076,

The proposed activation functions FRA in equations @ and are not
polynomials. Hence, it follows from the following theorem that networks using
ERA as activation function are universal function approximators. (We note that
[29] use the same argument to show that the use of their proposed rational
activation function yields networks that are universal function approximators.)

Theorem 1 (Theorem 3.1, [32]). For any i, let C(R?) denote the set of con-
tinuous functions R* — R. Let o € C(R). Then

M(o) = span{oc(w-x—0):0 € R,w € R"} (9)

is dense in C(R™) in the topology of uniform converge on compacta, if and only
if o is not a polynomial.
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4 Experiments

4.1 Image Classification

Setup We train neural networks to perform image classification on the MNIST
[22], CIFARI10 [19] and ImageNet [8] datasets, using the Tensorflow [I] frame-
work. Since we are aiming to improve lightweight networks, we focus on two
small architectures. We consider fully-connected (FCN) and convolutional neu-
ral (CNN) networks, defined recursively by

Xip1 = (070 0)(xi), 1<i<4 (10)

where x; is the input, ¢; is the i*" linear layer of the network, followed by an
activation function o;. In the fully-connected case, ¢; is a dense layer and in the
convolutional case, ¢; is a convolutional layer. We train the networks for 100
epochs using SGD, a batch size of 64 and an initial learning rate of 0.01 which
decays by a factor of 10 after having completed 25, 50 and 75 training epochs. All
network layers use 12 weight regularization with parameter 0.001. We apply data
augmentation with horizontal and vertical shifts of up to 6 pixels and enabling
horizontal flipping of images.

Input Normalization There is a range of existing normalization methods that
are commonly being employed in neural networks [I4|2I3840]. In general, the
input x to a normalisation layer undergoes two steps: A standardization step

X— [
_ 11
y p (11)

that makes x have zero mean and unit standard deviation along one or multiple
standardization axes, and a learnable step

z=0B+~"y (12)

where the distribution of the output z the learned mean (3 and the learned
standard deviation « along some learnable azes. By exploring multiple options,
we find that instance normalization [38] works best for CNNs and layer nor-
malization [2] works best for fully-connected networks. Our ablations on the
standardization and learnable axes are available in the supplementary material.

Initialization and Stability Whereas previous works [29/3] have each focused
on a single activation (ReLU and Leaky ReLU) for initializing the rational func-
tion, we perform a broader ablation study, encompassing also the newer GELU
and Swish activations. Initialising rational activation functions as any standard
activation always leads to convergence in our image classification experiments
(except when the activation from [29] was initialised as Swish). This leads us
to ask whether such an initialisation is necessary or if standard random Glorot
initialization can also be used. Unfortunately, random initialization always leads
to divergence of the network training in the standard setting. We notice that
this is due to 2 reasons:
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1. The distribution of the input to the activation shifts during training, which
hampers training because the activation parameters need to be constantly
adjusted to the input.

2. Random initialisation can lead to unstable derivatives, which can lead to
very large gradient values.

Problem 1 is solved via the normalization techniques that we investigated
previously. In order to mitigate problem 2, we apply weight clipping. Both tech-
niques together greatly stabilise the training of randomly initialised activations
and lead to network convergence in all of our image classification experiments.

Network| Activation |Test Accuracy
FCN | Leaky ReLU 51.8 £0.1
FCN ReLU 52.6 £0.1
FCN Swish 52.3+£0.2
FCN |Rational, [29] 55.0+0.2
FCN ERA 58.8+0.2
CNN | Leaky ReLU 76.0 £ 0.2
CNN ReLU 77.3+£0.1
CNN Swish 76.8£0.2
CNN |Rational, [29] 82.1+£0.2
CNN ERA 84.44+0.2

Table 2: Test accuracy on CIFAR10 in percent, conditioned on the network type
and the activation function. Our version outperforms all the baselines for both
of the network types.

Results

Outperforming the baselines. As shown in Table 2] our best results outper-
form non-rational activation functions considerably by a margin of more than
6% in both fully-connected and convolutional neural networks on CIFAR10. In
addition, the test accuracy of the modified rational function we proposed is signif-
icantly higher than the one achieved by the function proposed by [29], achieving
a margin of more than 2% for the CNN and almost 4% for the fully-connected
neural network. The fact that both our rational function and the baseline one
clearly outperform standard activations, shows that rational activation functions
are indeed qualified for increasing the network capacity.

Ablation studies. We perform multiple ablations, in particular on the initiali-
sation of the network, the normalisation of the input of the activation functions
and the use of partial fractions. Table [3| shows consistent benefits of initialising
ERAs as Swish activations. We note that although randomly initialised FRAs
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perform somewhat worse than the other initialisations, they still outperform all
the standard activations that we investigated (cf. Table . As shown in Table
also note that normalising the input of the activations gives consistent benefits
across different settings and multiple network types. Table {4| also indicates a
small benefit in performance when using partial fractions instead of standard
fractions.

We refer the reader to the supplementary material for a more comprehensive
overview of our ablation studies.

Initialization| FCN | CNN

GELU 58.7+0.3[82.8 £ 0.5
Leaky ReLU |57.840.2|82.7 +0.2
Random 57.5+0.4(82.5£0.5
ReLU 57.9+0.1/82.9 +0.2
Swish |58.8£0.2/84.4 0.2

Table 3: Test accuracy on CIFAR10 in percent, conditioned on the network type
and the initialisation of the rational activation. Swish consistently outperforms
the other initialisations, whereas random initialisation performs slightly worse.
Layer Normalisation was applied to the input of the activation.

Configuration ‘ FCN CNN

Ours (baseline) 57.0+£0.4|81.8+£0.3

+ layer normalization|57.9 0.2 |84.1 £ 0.2

+ partial fraction |58.8 +0.2{84.4 +0.2
Table 4: Test accuracy on CIFAR10 in percent, conditioned on the network type
and if partial fractions are used. Both layer normalization and partial fractions
give consistent benefits. All networks were initialised with the Swish activation.

Analysis

Plotting of ERAs In Figure[I]we compare one of our the best ERAs before and
after training. The activation function was initialised as a Swish activation and
after training vaguely resembles a quadratic function where most of the prob-
ability mass of the data lies. We observe similar results for many other EFRAs
that were initialised as Swish activations. On the other hand, the shapes of ran-
domly initialised ERAs vary a lot, depending on initial parameter configuration
and the convergence of training. Figure [2| displays a successfully trained (final
test accuracy higher than 80%) randomly initialised ERA of degree 5/4 and its
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first derivative before and after training. In this particular example, we observe
an activation function that is close to linear on the data distribution which is
something that we observe regularly in the case of random initialisation. We also
note that the relatively small values of the first derivative do not seem to hurt
network performance.

Due to space limitations, we present a more in-depth analysis of plots of rational
activations and their derivatives in the appendix.

ERA (Before Training) ERA (After Training)
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Fig.2: Plots of the first FRA of a CNN before and after training on CIFAR10.
The ERA is randomly initialised and has degree 5/4. Both the activation and
its derivatives differ drastically from the initialization. The shaded curve in the
background shows the probability density distribution of the input to the acti-
vation (not true to scale on the y-axis). In contrast to Swish initialised ERAs,
random initialisation can result in very small or large derivative values which
can make the training more difficult.

activation output
~
|

Loss landscapes Inspired by the analysis in [28], we use the methodology of
[23], based on filter normalisation, to create 3D visualisations of the loss func-
tions. Figure |3 shows the plots of two Convolutional Neural Networks trained on
CIFARI10. Here the xzy-plane corresponds to configurations of network parame-
ters and the z-axis corresponds to the corresponding value of the loss function
evaluated on the training data. The FRA used in the top row is randomly ini-
tialised, whereas the one used in the bottom row was initialised with the Swish
activation. In both cases, the rational activation had degree 5/4. Both networks
achieve a high test accuracy of more than 80%. We see that despite the differ-
ent initalisations, the loss landscapes are similar and reasonably well-behaved
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Fig.3: Plots of the loss surfaces of a CNN trained on CIFAR10, using ERA.
Top: randomly initialized ERA of degree 5/4. Bottom: Swish-initialized ERA
of degree 5/4. In each row, the two images show the same loss surface from
different viewing angles. The plots are best viewed digitally in 3d. The 3d versions
are included in the supplementary material.

(i.e. there is a single local minimum in the ”valleys”). We perform a more de-
tailed comparison in the supplementary material, where we also show the loss
landscapes of randomly initialised networks that did not converge or achieved a
mediocre performance.

4.2 3D Human Pose and Shape Reconstruction

Backbone Head Hidden dim|#Parameters
MobileNet | MLP-Mixer 64 6.6M
MobileNet | MLP-Mixer 256 10.0M
MobileNet | Transformer 64 3.9M
MobileNet | Transformer 256 6.7M
ResNet50 | Transformer 256 25.0M [41]

Table 5: Number of parameters for our lightweight versions of the architecture
introduced in THUNDR [41], for the task of 3d pose and shape reconstruction.

In this section, we experiment with and ablate our activation function FRA
for the task of 3d pose and shape reconstruction of humans from a monocular
image. We choose an implementation of FRA initialised from a Swish activation
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and using a partial fraction formulation as suggested in our previous experi-
ments on image classification. We adopt and adapt the architecture previously
introduced in THUNDR [41]. At its core, THUNDR is a hybrid convolutional-
transformer architecture [9]. In its original implementation, the backbone con-
sists of a ResNet50 [I1] and the regression head is a Transformer [39] architec-
ture. We replace the backbone with a lightweight MobileNet [I3] architecture
and further ablate the choice of the head architecture, by also considering an
MLP-Mixer [37]. Our focus here is to assess the impact of FRA on lightweight
networks and, more specifically, in more recent architectures, i.e. Transformers
and MLP-Mixers. We do not replace the standard activations used in the back-
bone convolutional architecture, which is pre-trained on ImageNet. This could
have an impact on the performance even further, but this is not in the scope of
this paper and we leave it aside for future work.

Setup As in the original THUNDR paper, we experiment with two different
training regimes, both weakly supervised and a mixed regime, weakly and fully
supervised. For weak supervision, we use images from both the COCO2017 [25]
and Openlmages [20] datasets. We use a mix of ground-truth 2d keypoint an-
notations, where available, and 2d detections from pre-trained models. For fully
supervised training we consider the standard Human3.6M [I5] dataset, where
ground-truth 3d is available. For all experiments we report results on protocol 2
(P2) of the Human3.6M test set.

Ablations. MLP-Mixers and Transformers both have a hidden dimension hy-
perparameter that has a big impact on the number of network parameters. We
ablate two settings, one with low capacity (64) and one with higher capacity,
as proposed in 1] (256). Different from [41I], we do not share the parameters
across the encoder layers, to better assess the stability of training when multiple
instances of EFRA are learned. We ablate FRA with two denominator settings,
one with lower expressivity (deg(Q) = 2) and one with higher (deg(Q) = 4). For
a comparison with other activation functions, we use ReLU (as in [4I]), GELU
and Swish.

We follow the training schedule and hyper-parameters described in [41]. We
do not investigate further the impact of these choices on the performance of
the different activation functions, and leave this for future work. Note that the
parameters are tailored in the original paper for the specific choice of ReLU
as the activation function. For each different choice of head-model architecture,
hidden size and activation function we run 3 different trials and report averaged
metrics over the trials. The metrics we use are the standard ones for 3d recon-
struction. For 3d joint errors we report mean per joint position error (MPJPE)
and MJPE-PA, which is MPJPE after rigid alignment via Procrustes Analysis.
For evaluating 3d shape we use the mean per vertex position error (MPVPE)
between the vertices of the predicted and ground-truth meshes, respectively.
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Results

Number of parameters and running time. In Table[§ we show the number
of parameters for our lightweight networks as a function of the backbone and
head architectures, and the hidden dimension. Our networks have significantly
fewer parameters than the one used in [4I], with the smallest one having around
3.9M parameters. Using ERA as activation only adds an insignificant number of
parameters (depending on the degree of the denominator), between 10 and 20
more for each FRA instance. On a desktop computer with an NVIDIA GeForce
RTX 2080 Ti graphics card, all of our networks run in real-time at inference,
with a frame-per-second rate of around 100 — 110.

Numerical results. We present results in tables [6] [7] for different training
regimes, weakly supervised and mixed, respectively. In the former, our proposed
activation ERA achieves the best results across the board, with the most notice-
able performance boost in the case of lowest capacity (i.e. hidden dimension of
64) for both head-networks type. In the mixed training regime, this observation
still holds. But, as the network capacity increases, the gap between ERA and
other standard activations shrinks, and even reverses, as in the case of MLP-
Mixers with higher capacity. Nevertheless, we see in Table [7] that the best per-
forming setting is ERA with a high capacity Transformer. Overall, the biggest
improvement in performance is achieved in the setting with the lowest capacity, a
Transformer with a hidden dimension of 64, where FRA has a significantly lower
error than all other activations. This holds true for both training regimes, either
weakly or with mixed supervision. We compare this setting to the state of the
art, and show that this lightweight network is on par or better than other meth-
ods with considerably bigger architecture sizes. For this comparison we selected
the network that achieved the best training error out of 3 different trials.

The effect of the degree of the denominator @ for ERA, seems to be quite
minimal, with a slight edge for the setting in which the denominator is set to 2.
In general, Transformers seem to perform better than MLP-Mixers for this task,
but we did not perform any hyperparameter search for either of the architectures.
Additional details, experiments and ablations are included in the supplementary.

5 Conclusions

We have presented FRA, a learnable rational activation function that can replace
standard activations in a wide range of neural network architectures. Under a
theoretical framework, we analysed and showed that ERA is a smooth, safe,
rational function and can be refactored using a partial fraction representation,
which empirically exhibits improved performance. We also showed that the right
normalization of inputs has a great effect on the stability and the performance of
ERA, and, as a byproduct, we can mitigate some of the effects of initialization,
even from a random distribution, something not possible before in prior work on
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rational layers. Across different types of lightweight neural network architectures
and for two different tasks, image classification, and 3d human pose and shape
reconstruction, FRA increases network performance and closes the gap between
different sized architectures by increasing the expressivity of the network. Specif-
ically, on the task of 3d human pose and shape reconstruction, we show that a
real-time, lightweight network, with only 3.9M parameters, can achieve results
that are competitive with state-of-the-art methods, where network parameters
are in the order of tens or hundreds of millions.
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0180, Swedish Foundation for Strategic Research (SSF) Smart Systems Pro-
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Activation|deg Q|Hidden dim| MPJPE-PA| MPJPE | MPVPE
GELU - 64 72.2 £1.3 (109.4 +2.1|117.1 £2.0
ReLU - 64 69.2 £1.8 [102.8 +2.9| 109.8 £+3.2
Swish - 64 72.8 £0.8 [109.5 +£0.5| 117.2 0.3
ERA 2 64 67.7 £0.5 [98.0 +1.0/104.3 +1.5
FERA 4 64 69.0 £1.2 |100.3 £1.6| 107.0 +2.1
GELU - 256 66.4 +0.5 95.0 £1.0 | 101.1 £1.1
ReLU - 256 66.8 +£1.2 |[97.2 £1.7|103.5 2.0
Swish - 256 67.0 £0.2 | 97.0 £0.6 | 103.6 0.6
ERA 2 256 65.2 +£0.2 [93.2 +£0.9| 99.4 +1.4
FERA 4 256 65.2 +£0.4 [92.7 +0.5| 98.7 £0.8
MLP-Mixer
Activation|deg Q|Hidden dim| MPJPE-PA| MPJPE | MPVPE
GELU - 64 80.6 +0.3 125.5 0.6 | 132.8 0.9
ReLU - 64 78.8 £0.9 |[122.9 +2.7|130.4 +2.8
Swish - 64 81.5 £0.7 |127.4 £2.8 |134.9 £2.3
ERA 2 64 73.8 £2.0 112.3 £3.5(119.5 +2.7
ERA 4 64 73.6 1.5 |112.1 +£3.5/119.5 +3.9
GELU - 256 63.0 0.2 89.1 £1.1 | 94.5 +0.7
ReLU - 256 69.8 £0.7 [101.9 £1.9|109.5 £1.8
Swish - 256 64.0 £0.5 91.1 £1.6 | 96.7 £1.3
ERA 2 256 62.5 +0.8 | 88.5 +£1.8 | 93.6 +2.0
ERA 4 256 63.5 £0.5 89.6 £1.9 | 95.0 2.1
Transformer

Table 6: Ablation for networks with MLP-Mixer (Top) and Transformer
(Bottom) architectures, trained in a weakly supervised regime. Results are
in mm, averaged over 3 trials, reported on the Human3.6M test dataset, protocol
P2. We mark the best and second best results.
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Activation|deg Q|Hidden dim MPJPE-PA| MPJPE MPVPE
GELU - 64 53.5 £1.2 |72.1£15|76.1£1.3
ReLU - 64 51.6 £0.7 |71.8 £1.5|75.8 £1.1
Swish - 64 54.2 £0.8 |73.9 £2.5|78.2 £3.0
ERA 2 64 51.4 £0.2 |70.9 £1.6|74.4 £1.7
ERA 4 64 51.2 £1.1 |69.6 £1.5|73.4 £1.5
GELU - 256 49.6 £0.8 |68.9 £1.2|72.9 +1.6
ReLU - 256 49.9 £0.9 [68.3 £1.5|72.2 £1.6
Swish - 256 49.6 £0.4 |68.2 +0.8/72.1 £1.6
ERA 2 256 50.1 £0.8 |70.6 £1.8|74.3 +£2.4
ERA 4 256 50.8 £2.1 |70.7 £4.8|74.8 £4.6
MLP-Mixer
Activation|deg Q|Hidden dim MPJPE-PA| MPJPE MPVPE
GELU - 64 50.9 £1.6 |71.6 £2.7|76.2 £3.0
ReLU - 64 51.5 £0.5 |72.8 £1.2|77.2 +£0.6
Swish - 64 51.8 £0.7 |71.9 £0.6|76.4 £0.5
*ERA 2 64 47.2 £1.5 |66.7 £1.9/71.3 £2.6
ERA 4 64 475 £0.6 |67.4 £1.4|72.1 £1.4
GELU - 256 44.8 £0.6 [63.1 £1.5/67.3 £2.0
ReLU - 256 454 £0.3 |64.2 £0.5|67.8 +£0.1
Swish - 256 44.9 £0.2 |63.7 £1.3|67.7 £1.4
ERA 2 256 43.7 £0.4 |63.4 £0.3|67.4 £0.5
ERA 4 256 44.8 £0.9 |63.5 £1.4|67.6 £1.6
Transformer

Method MPJPE-PA MPJPE

HMR [16] 56.8 88.0

GraphCMR [I8] 50.1 -

Pose2Mesh [6] 47.0 64.9

I2L-MeshNet [30] 41.7 55.7

SPIN [17] 41.1 -

METRO [24] 36.7 54.0

THUNDR [41] 34.9 48.0

[41] + ERA* (lightest network) 45.9 64.0

State of the art

Table 7: Ablation for networks with MLP-Mixer (Top) and Transformer
(Middle) architectures, pre-trained in a weakly supervised regime and fine-
tuned in a fully-supervised regime. Results are in mm, averaged over 3 trials,
reported on the Human3.6M test dataset, protocol P2. We mark the best and
second best results. (Bottom) We report our *best performing lightest net-
work with ERA out of the 3 trials (selected based on training error), relative to
the state-of-the-art methods. Our network is the lightest of the architectures, by
a large margin, with around 3.9M parameters (e.g. THUNDR has 25M param-
eters).
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