
Unpaired Image Translation via Vector Symbolic
Architectures

Justin Theiss1,2, Jay Leverett1, Daeil Kim1, and Aayush Prakash1

1 Meta Reality Labs
{theiss,jayleverett,daeilkim,aayushp}@fb.com
2 University of California, Berkeley, CA 94720, USA

Appendix A Additional Implementation Details

In order to encode image patches into the VSA hyperspace, we extract features
using VGG19 [5] pre-trained on ImageNet [1]. We select multiple layers from
VGG19 and concatenate features that share the same receptive field. For all
experiments, we extract features from multiple convolutional layers in VGG19.
For GTA to Cityscapes, we concatenate features for patch sizes 16 × 16, 8 × 8,
4 × 4, 2 × 2, and, 1 × 1. This means that extracted features within each patch
are concatenated into a single feature vector, which is reduced in dimensionality
using locality sensitive hashing as described in Section 3.3 of the main paper.
For all experiments, we used a hypervector dimensionality of 4096, which is the
dimensionality of the input to the discriminator and mapping networks. We then
used 1024 channels in all layers except the last (1 channel) for the discriminator,
and 4096 channels for both layers in the mapping network.

For Google Map to Aerial Photo, we use the same patch sizes as for GTA
to Cityscapes. However, for Aerial Photo to Google Map, we empirically found
that using “dilated” patches gave better performance. For this experiment, we
use features extracted from four convolutional layers with patch sizes 32 × 32,
16× 16, 8× 8, and 4× 4, where each patch has spaces between locations in the
extracted feature maps (i.e., equivalent to a convolutional dilation factor of 3).

For all experiments, we trained using 256 × 256 images (as was done in the
baseline methods). In the case of GTA to Cityscapes, we first resize the images
to a height and width of 256×512 followed by random cropping to 256×256. For
the Google Map and Aerial Photo datasets, images are resized from 600 × 600
to 256 × 256. Note that we do not report results for EPE in Table 1 of the
main paper as we are not able to replicate their method using 256× 256 image
resolution for GTA to Cityscapes and it is not feasible to use their method for
datasets without G-buffers. As was done in [3], we train for 20 epochs for GTA
to Cityscapes and 400 epochs for Google Map to Aerial Photo and Aerial Photo
to Google Map experiments. We multiply the learning rates (defined in Section
4.1 of the main paper) by a factor of 0.5 every 100K iterations.
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Appendix B Difference between VSA-Based Cyclic Loss
and Perceptual Loss

Many image-to-image translation methods have included a so-called “perceptual
loss” to minimize the distance between translated and source images in VGG
feature space. Although our VSA-based cyclic loss (Eqn 6) may seem similar to
the perceptual loss, our method is distinct: we minimize the distance between
source hypervectors and translated hypervectors that are mapped back from
the target to source domain, whereas methods using a perceptual loss directly
minimize the distance between source and translated features. Furthermore, as
noted previously, encoding these source and translated features into the VSA
hyperspace gives greater assurance that different semantic content will be almost
orthogonal to each other.

Appendix C Additional Ablation Studies

As indicated above, we changed the patch sizes used during feature extraction
across different experiments (i.e., “dilated” patches in Aerial Photo to Google
Map). We therefore, also looked at the effect of patch size within a specific
experiment. In addition to the 16×16 patch size used in the GTA to Cityscapes
experiment, we also tested 32×32 and 8×8 patch sizes. Compared to the results
in Table 1 (mIoU 30.89), we observed mIoU of 32.29 and 31.47 for 32 and 8 patch
sizes, respectively.

Furthermore, we conducted an ablation of the weight (λ) for our VSA-based
cyclic loss, showing that λ < 5 results in semantic flipping, which is reflected
in lower mIoU for the GTA to Cityscapes experiment. Specifically, we observed
lower mIoU for smaller (21.55 and 26.49 for λ = 1, 2) compared to larger λ
(29.13, 30.89, 29.78 for λ = 5, 10, 20).

Finally, we also tested the effect of the hypervector dimensionality. As demon-
strated in [4], the hypervector dimensionality should be at least greater than 700
(the probability of two randomly sampled vectors being orthogonal approaches
1). We tested 512 and 2048 dimensional hypervectors, demonstrating worse per-
formance for 512 compared to 2048 (29.35 vs. 30.87 mIoU for GTA to Cityscapes,
respectively).

Appendix D Hypervector Adversarial Loss

Since our hypervector adversarial loss (Eqn 5) has two negative targets and one
positive target, it’s possible that this could lead to an imbalance in training. For
the current experiments, we have tested using a balanced weighting of the loss
terms and did not empirically observe differences in stability or performance.
However, this may be an important consideration for future research with other
datasets.
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Appendix E Quantitative Comparison to Additional
Methods for GTA to Cityscapes

In order to compare our method against other relevant methods that have also
been applied to GTA to Cityscapes, we trained semantic segmentation networks
using our translated GTA images as done in other methods. In these comparisons
we used ResNet-50 as the feature extractor rather than VGG19. Specifically, we
compared our method against CyCADA [2] and Fourier Domain Adaptation
(FDA) [7]. CyCADA [2] is a method that uses the cycle-consistency approach
from CycleGAN [8] in order to ensure semantic consistency between segmen-
tation predictions before and and after image translation. Unlike GAN-based
methods, FDA [7] computes the Fourier Transform of source and target images,
and replaces the amplitudes of low-frequency features in the source images with
those from the target images. We observed comparable performance to these ap-
proaches (45.7 mIoU for VSAIT vs. 42.7 in CyCADA [2] and 44.6 in FDA [7]).

We further compared our results to those from [6], which is a recent video-to-
video translation technique that aims to prevent semantic flipping via pseudo-
supervision with optical flow from sequential video frames. By using a check-
point from the authors to evaluate semantic segmentation performance (GTA to
Cityscapes, Table 1), we observed lower performance compared to our method
(pixel accuracy: 66.04, class accuracy: 38.42, and mIoU: 24.53).

Appendix F VSA Hypervector Encoding

As noted in the main paper, VGG19 works well for most natural image domains;
however, it may not be optimal for encoding semantic segmentation masks or
similar types of images (e.g., Google Map images). For example, using VSAIT
to translate semantic masks to Cityscapes images using the same sub-sampling
method used in [3], we observed worse performance compared to that reported
in [3] (pixel accuracy: 69.28, class accuracy: 31.37, mIoU: 21.59). Therefore,
an important future direction for this research is to understand and improve
encoding methods when using VSA for computer vision applications.

Appendix G Additional Visual Examples

G.1 GTA → Cityscapes

In addition to the comparisons shown in the main paper, we provide more quali-
tative examples showing our method relative to the baseline methods for GTA to
Cityscapes. As described in the main paper, GTA and Cityscapes have seman-
tics that are naturally different. Most notably, Cityscapes has more vegetation
in the upper half of the image whereas GTA has more sky (see also Figure 1
from the main paper). Therefore, many GAN-based image translation methods
hallucinate trees in the sky as shown in Figures 1 and 2. More interestingly, EPE
does not hallucinate trees but instead removes palm trees from images. This is
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likely due to the fact that palm trees do not appear in Cityscapes. On the other
hand, our method correctly retains the palm trees without hallucinating more
trees in the sky.

Figure 3 provides a similar example of the typical hallucinations that occur
when translating GTA images with broad sky regions. However, notice the sandy
hill on the left side of the image, which we highlight in the figure. As shown in
the top-right panel, the semantic segmentation label for this region is the same
for both the grassy and sandy portions of the hill. Since EPE uses these labels as
part of its task-level consistency loss, it generates the same feature (i.e., grass)
across the region, irrespective of the underlying specific content differences.
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Fig. 1: Examples of semantic flipping for baseline methods in GTA to Cityscapes
experiment.
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Fig. 2: Examples of semantic flipping for baseline methods in GTA to Cityscapes
experiment.
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Fig. 3: Examples of semantic flipping for baseline methods in GTA to Cityscapes
experiment.
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G.2 Google Map → Aerial Photo

Fig. 4: Example image translations using VSAIT for the Google Map to Aerial
Photo experiment.

As described in Section 4.5 of the main paper, we sub-sample the Google Map
and Aerial Photo datasets (following [3]) to obtain unpaired source and target
datasets that differ in their semantic statistics. As a result, the sub-sampled
datasets differ in the proportion of image area containing land versus water.
Therefore, similar to the GTA to Cityscapes experiment, we would expect hallu-
cinations of houses or trees in the water. We demonstrate across multiple exam-
ples in Figures 4 and 5 that our method does not exhibit semantic flipping. It’s
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possible that some methods may rely on a one-to-one mapping using the RGB
values in the map images (e.g., blue for water) that could reduce the diversity of
translations overall. However, as shown in Figure 6, we observe diverse transla-
tions for the same RGB values across different map images. Specifically, notice
the translations associated with gray pixels in each source image as highlighted
in the figure.

Fig. 5: Example image translations using VSAIT for the Google Map to Aerial
Photo experiment.



10 J. Theiss et al.

Fig. 6: Example image translations using VSAIT for the Google Map to Aerial
Photo experiment.
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G.3 Aerial Photo → Google Map

Finally, we demonstrate examples of our image translations from the Aerial
Photo to Google Map experiment. As mentioned previously, we use the same
sub-sampling procedure to obtain datasets with unmatched semantic statistics.
Since the sub-sampled Google Map dataset has more regions with water relative
to the sub-sampled Aerial Photo dataset, we would expect that GAN-based
methods might suffer from semantic flipping by hallucinating water. However,
as shown in Figures 7 and 8, our method learns the correct mapping between
water and does not exhibit semantic flipping in scenes without water (Figure 9).

Fig. 7: Example image translations using VSAIT for the Aerial Photo to Google
Map experiment.
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Fig. 8: Example image translations using VSAIT for the Aerial Photo to Google
Map experiment.
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Fig. 9: Example image translations using VSAIT for the Aerial Photo to Google
Map experiment.
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G.4 Visual Comparison to Baseline Methods

We additionally demonstrate the comparison between VSAIT and baseline meth-
ods for the Aerial Photo to Google Map and Google Map to Aerial Photo ex-
periments in Figure 10. As shown in the figure, for these more difficult experi-
ments where the datasets are specifically sub-sampled to reduce content overlap
between domains, most of the baseline methods exhibit considerable semantic
flipping (e.g., water to land).

Fig. 10: Example image translations for VSAIT and baseline methods for Aerial
Photo to Google Map and Google Map to Aerial Photo experiments. Note that
EPE cannot be evaluated for these experiments.
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